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We investigate under which conditions the three-dimensional (3D) multicomponent Abelian-Higgs
(AH) field theory (scalar electrodynamics) is the continuum limit of statistical lattice gauge models,
i.e., when it characterizes the universal behavior at critical transitions occurring in these models.
We perform Monte Carlo simulations of the lattice AH model with compact gauge fields and N-
component scalar fields with charge q ≥ 2 for N = 15 and 25. Finite-size scaling analyses of the
Monte Carlo data show that the transitions along the line separating the confined and deconfined
phases are continuous and that they belong to the same universality class for any q ≥ 2. Moreover,
they are in the same universality class as the transitions in the lattice AH model with noncompact
gauge fields along the Coulomb-to-Higgs transition line. We finally argue that these critical behaviors
are described by the stable charged fixed point of the renormalization-group flow of the 3D AH field
theory.

I. INTRODUCTION

Three-dimensional (3D) Abelian U(1) gauge models
with multicomponent scalar fields and SU(N) global
symmetry (N ≥ 2)—the Abelian-Higgs (AH) models—
emerge in many physical situations. They provide effec-
tive theories for superconductors, superfluids, and quan-
tum SU(N) antiferromagnets [1–8]. In particular, they
are expected to describe the transition between the Néel
and the valence-bond-solid state in two-dimensional anti-
ferromagnetic SU(2) quantum systems [9–16], which rep-
resents the paradigmatic model for the so-called decon-
fined quantum criticality [17]. In this context several
studies have focused on systems with two scalar compo-
nents [7, 9–37].
Classical and quantum Abelian models have been ex-

tensively studied with the purpose of identifying their
phases and the nature of their phase transitions. It has
been realized that a crucial role is played by topologi-
cal aspects, like Berry phases, monopoles, or the com-
pact/noncompact nature of the U(1) gauge fields, to-
gether with the charge of the scalar fields. Indeed, the
phase diagram and the nature of the transitions is dif-
ferent in lattice AH models with compact and noncom-
pact gauge fields [18, 38], in AH compact models with
charge-one and higher-charge scalar fields [18, 39], and
in models with or without topological defects such as
monopoles [19–21, 40].
Multicomponent lattice AH models with U(1) gauge

invariance and SU(N) global symmetry are the lattice
counterparts of the multicomponent scalar electrody-
namics or AH field theory, in which an N -component
complex scalar field Φ(x) is minimally coupled to the
electromagnetic field Aµ(x). The corresponding contin-
uum Lagrangian reads

L = |DµΦ|2 + rΦ∗
Φ+

1

6
u (Φ∗

Φ)2 +
1

4g2
F 2
µν , (1)

where Fµν ≡ ∂µAν − ∂νAµ, and Dµ ≡ ∂µ + iAµ. Its

renormalization-group (RG) flow was investigated per-
turbatively, using the ε ≡ 4−d expansion [41–45], in the
functional RG [46] and in the large-N approach [41, 47–
50]. These studies showed that a stable charged fixed
point (CFP) with a nonzero gauge coupling exists only
when the number N of components is larger than N∗

D,
where N∗

D depends on the space dimension D. Close
to four dimensions, a stable CFP exists only in sys-
tems with a very large number of components, since
N∗

4 = 90 + 24
√
15 ≈ 183. However, N∗

D drastically de-
creases in three dimensions, N∗

3 ≪ N∗
4 . The 3D value N∗

3

has been estimated by constrained resummations of the
four-loop ε expansion using two-dimensional results [43],
obtaining N∗

3 = 12(4), and from the analysis of Monte
Carlo results for the noncompact lattice AH model [38],
obtaining N∗

3 = 7(2).
On general grounds, one would expect the stable CFP

of the 3D RG flow of the AH field theory to be asso-
ciated with the universality class of critical transitions
in 3D systems with local U(1) and global SU(N) sym-
metry. However, the behavior of lattice AH models is
not so simple. Indeed, they present different phases and
transitions belonging to different universality classes, de-
pending on features that are not present in the continuum
field theory. At present, we do not yet satisfactorily un-
derstand under which conditions statistical models have
transitions controlled by the field-theory CFP. In partic-
ular, it is not clear which are the key features of those
lattice U(1) gauge models that have critical transitions
described by the field-theory CFP of the RG flow of the
AH field theory.
In general, critical transitions in lattice gauge theories

can be classified in two different groups:

i) Transitions in which only matter correlations are
critical; at the transition gauge variables do not dis-
play long-range correlations.

ii) Transitions in which matter and gauge-field correla-
tions are both critical.
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In case (i), although gauge variables are not critical, the
gauge symmetry is crucial for identifying the scalar criti-
cal degrees of freedom. Indeed, gauge symmetry prevents
non-gauge invariant correlators from acquiring nonvan-
ishing vacuum expectation values and developing long-
range order: the gauge symmetry hinders some scalar
degrees of freedom—those that are not gauge invariant—
from becoming critical. In this case the critical behav-
ior or continuum limit is driven by the condensation
of gauge-invariant scalar operators, which play the role
of fundamental fields in the Landau-Ginzburg-Wilson
(LGW) theory that provides an effective description of
the critical regime, without including the gauge fields.
The lattice CPN−1 model is an example of a U(1) gauge
model that shows this type of behavior [40, 51]. Two-
dimensional U(1) gauge models with multicomponent
scalar matter [52] and several lattice nonabelian gauge
Higgs models in two and three dimensions [53–59] also
belong to class (i).

In case (ii), in which both scalar and gauge correla-
tions are critical at the transition, an appropriate effec-
tive field-theory description of the critical behavior re-
quires explicit gauge fields. Therefore, one would expect
that the field-theory CFP of the RG flow of the AH field
theory is the one that controls the universal features of
the critical transitions of type (ii) in AH lattice models.
Critical behaviors consistent with the universality classes
of the AH field theory have been observed in the lattice
AH model with noncompact gauge fields [38] (along the
transition line that separates the Coulomb and the Higgs
phase), and in the lattice AH model with compact gauge
fields and q = 2 scalar charge [39] (along the transition
line between the confined and the deconfined phase). We
also mention that continuous transitions of type (ii) have
been observed in a different lattice U(1) gauge model,
in the CPN−1 model without monopoles [21]. However,
they do not belong to the same universality class as those
observed in the noncompact lattice AH model [38].

In this paper we return to this issue, strengthening pre-
vious results. We provide compelling numerical evidence
that, for a sufficiently large number of components N ,
N & 10, say, the continuous transitions between the con-
fined and deconfined phase of the lattice AH model with
compact gauge fields and scalar charge q ≥ 2 belong to
the same universality class for any q ≥ 2. Moreover, the
critical behavior is the same as in the noncompact AH
model, which is formally obtained in the limit q → ∞.
A detailed finite-size scaling (FSS) analysis of the Monte
Carlo (MC) results allows us to obtain precise estimates
of the critical exponents. They turn out to be in ex-
cellent agreement with the field-theory predictions, ob-
tained in the large-N expansion [41, 48, 49]. Therefore,
we conclude that the CFP of the AH field theory is asso-
ciated with a line of critical transitions that is present in
the lattice AH model with compact gauge fields and any
scalar charge q ≥ 2 and in the model with noncompact
gauge fields. In all cases, the field-theory critical behav-
ior (or continuum limit) is observed along the transition

line that occurs in the small gauge-coupling part of the
phase diagram.
The paper is organized as follows. In Sec. II we define

the compact and the non-compact lattice AH model and
summarize the main features of their phase diagram. In
Sec. III we define the observables used in the numeri-
cal simulations and present the results of the numerical
analyses. Finally, in Sec. IV we draw our conclusions.

II. COMPACT AND NONCOMPACT

FORMULATIONS OF LATTICE AH MODELS

In this section we define the compact and noncompact
formulations of the multicomponent lattice AH model on
a cubic lattice, and summarize the known results for their
phase diagrams. In both formulations the scalar fields
are unit-length N -component complex variables zx as-
sociated with the lattice sites. The gauge fields are ei-
ther complex phases λx,µ (compact model) or real num-
bersAx,µ (noncompact model) associated with the lattice
links.

A. AH model with compact gauge variables

In the compact formulation we define a gauge variable
λx,µ ∈ U(1) (|λx,µ| = 1) on each lattice link (it starts
at site x along one of the lattice direction, µ = 1, 2, 3).
The compact AH model with N -component scalar fields
of integer charge q is defined by the partition function

Z =
∑

{z,λ}

e−βHc , (2)

where the Hamiltonian reads

Hc = −JN
∑

x,µ

2Re (z̄x · λq
x,µ zx+µ̂) (3)

−κ
∑

x,µ>ν

2Re (λx,µ λx+µ̂,ν λ̄x+ν̂,µ λ̄x,ν) .

Here the two sums run over all lattice links and plaque-
ttes, respectively. In the following we rescale J and κ by
β, thus formally setting β = 1. The parameter κ ≥ 0
plays the role of inverse gauge coupling.
The compact AH model presents a disordered (con-

fined) phase for small values of J and one (for q = 1) or
two (for q ≥ 2) low-temperature ordered phases for large
values of J . The transitions between the disordered and
the ordered phases are associated with the breaking of
the global SU(N) symmetry. The corresponding order
parameter is the gauge-invariant bilinear operator

Qab
x

= z̄a
x
zb
x
− 1

N
δab . (4)

For κ = 0 the model is equivalent to a particular lat-
tice formulation of the CPN−1 model, which undergoes a
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phase transition at a finite value of J (see, e.g., Ref. [40]).
In the κ → ∞ limit the model reduces to an O(2N) vec-
tor model, which presents a transition at a finite value of
J , as well.
For q = 1, only two phases are present, see Fig. 1 (top):

a disordered phase for small J and an ordered phase for
large J . They are separated by a single transition line,
along which only gauge-invariant scalar modes become
critical. Gauge fields do not develop long-range correla-
tions, but they prevent gauge-dependent scalar correla-
tions, such as the vector correlations 〈z̄x · zy〉, from be-
coming critical. As a consequence, the critical behavior
is described by a LGW Φ4 theory in terms of a gauge-
invariant scalar order parameter. The fundamental field
is a traceless hermitian matrix field Ψab(x), which can
be formally defined by coarse graining the lattice order
parameterQab

x
, defined in Eq. (4). The LGW field theory

is obtained by considering the most general fourth-order
polynomial in Ψ consistent with the U(N) global sym-
metry [40, 60]:

LLGW = Tr(∂µΨ)2 + rTrΨ2 (5)

+ w tr Ψ3 + u (TrΨ2)2 + vTrΨ4 .

In this approach, continuous transitions are possible only
if the RG flow in the LGW theory has a stable fixed point.
For N = 2 the Lagrangian (5) is equivalent to that of the
O(3) vector model (in particular, the Ψ3 term cancels),
thus continuous transitions in the Heisenberg universal-
ity class [61] can be observed in the N = 2 AH model.
For larger values of N , the LGW approach predicts all
transitions to be of first order, because of the presence of
the Ψ3 term [18, 40, 51].
For q ≥ 2 the phase diagram is more complex, see

Fig. 1 (bottom), with three different phases [39, 62–
68]. They are characterized by the large-distance be-
havior of both scalar and gauge observables. Beside the
scalar gauge-invariant observable (4), one may consider
the Wilson loop of the gauge fields, that signals the con-
finement or deconfinement of charge-one external static
sources. As shown in Fig. 1, for small J and any κ ≥ 0,
there is a phase in which scalar-field correlations are dis-
ordered and single-charge particles are confined (the Wil-
son loop obeys the area law). For large values of J (low-
temperature region) scalar correlations are ordered and
the SU(N) symmetry is broken. Two different phases oc-
cur here: for small κ, single-charge particles are confined,
while they are deconfined for large κ.
The three different phases are separated by three tran-

sition lines meeting at a multicritical point: the DC-OD
transition line between the disordered-confined (DC) and
the ordered-deconfined (OD) phases, the DC-OC line
between the disordered-confined and ordered-confined
(OC) phases, and the OC-OD line between the ordered-
confined and ordered-deconfined phases. The transition
lines have different features, since they are associated
with different phases. Moreover, their nature depends
on the number N of components and on the charge q of
the scalar matter. The transitions along the DC-OC line

κ

J

0 ∞

∞

disordered

ordered

CPN−1

O(2N)

q = 1

κ

J

0 ∞

∞

disordered
confined

ordered
deconfined

ordered
confined

DC-OD line

DC-OC line

O
C
-O

D
lin

eCPN−1

Zq

O(2N)

q > 1

FIG. 1: Sketch of the phase diagram of the 3D compact lattice
AH model, in which a compact U(1) gauge field is coupled to
an N-component unit-length complex scalar field with charge
q, for generic N ≥ 2. In the upper panel we report the phase
diagram for q = 1, with two phases separated by a single tran-
sition line. In the lower panel, we report the phase diagram
for q = 2, with three phases, the disordered-confined (DC),
the ordered-deconfined (OD), and the ordered-confined (OC)
phases. The AH model is equivalent to the CPN−1 model for
κ = 0, to the O(2N) vector model for κ → ∞. For J → ∞

and q ≥ 2, we obtain the lattice Zq gauge model.

are the same as that in the 3D CPN−1 model for κ = 0.
They are continuous for N = 2, belonging to the O(3)
vector universality class, and of first order for N ≥ 3.
For J = ∞, the model (3) is equivalent to a Zq gauge
model [39]. A natural hypothesis is that the transitions
along the OC-OD line belong to the universality class of
the Zq gauge model. This hypothesis has been verified
numerically for q = 2 [39], for which κc = 0.380706646(6)
in the limit J → ∞. Finally, transitions along the DC-
OD line are continuous for large values of N , as we shall
see below, and belong to the same universality class for
any q ≥ 2. We shall argue that they realize the contin-
uum limit of the AH field theory (1).

B. AH model with noncompact gauge variables

In the noncompact formulation the fundamental gauge
variable is the real vector field Ax,µ. The lattice Hamil-
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H
lin
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CPN−1

O(2)

O(2N)

FIG. 2: Sketch of the phase diagram of the lattice AH model
with noncompact gauge fields and unit-length N-component
complex scalar fields, for generic N ≥ 2. There are three
different phases, the Coulomb, Higgs and molecular phases,
and three transition lines: the Coulomb-to-Higgs (CH) line
between the Coulomb and Higgs phases, the Coulomb-to-
molecular (CM) line, and the molecular-to-Higgs (MH) line.
The model is equivalent to the CPN−1 model for κg = 0, to
the O(2N) vector model for κg → ∞, and to the inverted XY
model for J → ∞.

tonian reads

Hnc = −JN
∑

x,µ

2Re (z̄x · eiAx,µ zx+µ̂) (6)

+
κg

2

∑

x,µ>ν

(∆µ̂Ax,ν −∆ν̂Ax,µ)
2 ,

where the sums run over all links and plaquettes, respec-
tively, ∆µ̂Ax ≡ Ax+µ̂ − Ax, and κg ≥ 0 corresponds to
the inverse gauge coupling 1/g2 of the continuum theory
(1). The partition function reads

Znc =
∑

{z,A}

e−Hnc . (7)

Unlike the compact case, the charge q of the scalar field
is irrelevant: We can set q = 1 by a redefinition of the
gauge field Ax.
At variance with the compact case, the partition func-

tion (7) is only formally defined. Since the integration do-
main for the gauge variables is noncompact, gauge invari-
ance implies Znc = ∞ even on a finite lattice. If periodic
boundary conditions are used, this problem is present
even when a maximal gauge fixing is added. Indeed, the
partition function still diverges because of the presence of
gauge-invariant zero modes: noncompact gauge-invariant
Polyakov operators, i.e., sums of the fields Ax,µ along
nontrivial paths winding around the lattice [38], are still
unbounded. To overcome this problem, C∗ boundary
conditions [69, 70] were considered in Ref. [38]. These
boundary conditions preserve gauge invariance and pro-
vide a rigorous definition of the partition function in a
finite volume.
In Fig. 2 we sketch the phase diagram of the non-

compact lattice AH model. For any N ≥ 2 the phase

diagram is characterized by three phases. For small J
we have a Coulomb phase, in which the global SU(N)
symmetry is unbroken and electromagnetic correlations
are-long ranged. For large J , there are two phases char-
acterized by the breaking of the SU(N) symmetry. They
are distinguished by the behavior of the gauge modes. In
the Higgs phase (large κ), electromagnetic correlations
are gapped, while in the molecular phase (small κ) the
electromagnetic field is ungapped.
The Coulomb, molecular, and Higgs phases are sepa-

rated by three different transition lines meeting at a mul-
ticritical point: the CM line between the Coulomb and
molecular phases, the MH line between the molecular
and Higgs phases, and the CH line between the Coulomb
and Higgs phases. Their nature crucially depends on
the number N of components. The transitions along the
CM line are the same as that in the 3D CPN−1 model
(κg = 0): they are continuous for N = 2, belonging to
the O(3) vector universality class, and of first order for
N ≥ 3. The transitions along the MH line are expected
to be continuous, and to belong to the XY universality
class, at least for sufficiently large values of the parame-
ter J [the transition point in the limit J → ∞ is located
at κgc = 0.076051(2), obtained by using the estimate
βc = 3.00239(6) reported in Ref. [71] and identifying
κc = βc/(4π

2)]. Finally, transitions along the CH line
are continuous for a sufficiently large number N of com-
ponents. As argued in Ref. [38], they should realize the
continuum limit of the AH field theory (1).

C. Relation between the compact and the

noncompact model

It is interesting to note that the compact formulation
is equivalent to the noncompact one for q → ∞. Indeed,
if we rewrite the compact field λx,µ as

λx,µ = eiAx,µ/q (8)

with Ax,µ ∈ [−πq, πq], the Hamiltonian (3) becomes

Hc = −JN
∑

x,µ

2Re (z̄x · eiAx,µ zx+µ̂) (9)

−2κ
∑

x,µ>ν

Re exp

[
− i

q
(∆µ̂Ax,ν −∆ν̂Ax,µ)

]
.

For q → ∞, the gauge fields Ax,µ become unbounded and
the Hamiltonian is equivalent to that of the noncompact
formulation, provided that κg = 2κ/q2. Note that the
equivalence trivially holds as long as the fluctuations of
Ax,µ on each plaquette are bounded and uncorrelated for
q → ∞, i.e., for any point of the phase diagram except
possibly at phase transitions. Therefore, the noncompact
formulation (7) should be recovered from the compact
formulation (3) in the limit q → ∞, keeping κg = 2κ/q2

fixed.



5

The equivalence of the models also holds for J → ∞.
In this limit the compact formulation reduces to the Zq

model

Hq = −κ(q)
∑

x,µ>ν

Re (λx,µ λx+µ̂,ν λ̄x+ν̂,µ λ̄x,ν) , (10)

where κ(q) = 2κ and the gauge field takes the values

λx,µ = ei
2π

q
n, with n ∈ 0, 1, . . . , q− 1. If the limit q → ∞

is smooth, the critical value of the coupling κ(q) should
scale as

κ(q)
c ≃ κgc q

2 (11)

for large q, where κgc = 0.076051(2) is the critical
coupling of the inverted XY model that represents the
J → ∞ limit of the noncompact model [71]. The q-

dependence of κ
(q)
c has been numerically investigated in

Refs. [72, 73]. Ref. [73] determined the large-q behavior,
obtaining

κ(q)
c ≃ Cq2, (12)

with C = 0.076053(4) [we use the estimate A =
1.50122(7) reported in Ref. [73], identifying C =
A/(2π2)], which is in excellent agreement with the es-
timate of κgc.
The argument presented above only proves that the

compact model converges to the noncompact one as
q → ∞, but does not provide us with any information
on the critical behavior. For the Zq transition observed
for J → ∞, numerical results [73] indicate that the tran-
sition belongs to the XY universality class for any q ≥ 5.
Thus, for these values of q, the compact Zq model and
the noncompact inverted XY model have a transition in
the same universality class. In the next section we will
present numerical results showing that the same occurs
at the transitions controlled by the CFP of the AH field
theory. For N large enough and any q ≥ 2, the tran-
sitions along the CH line of the noncompact model and
along the DC-OD line of the compact model belong to
the same universality class, controlled by the CFP.

III. NUMERICAL ANALYSES

We have performed MC simulations of the compact
AH model with N = 15 and N = 25 and some values
of q ≥ 2. We use C∗ boundary conditions, as we did
for the noncompact model [38]. This allows us to com-
pare the FSS results—universal scaling curves depend on
boundary conditions—for the compact model with those
for the noncompact one. The results of the FSS analy-
ses of the MC data will provide strong evidence that, for
any q ≥ 2, the continuous transitions along the DC-OD
transition line, running up to κ → ∞, belong to the same
universality class as those along the CH transition line of
the noncompact formulation.

We will also compute the correlation-length exponent
ν and the exponent ηq that characterizes the singular
behavior of the susceptibility of the bilinear fieldQx. The
results will be compared with the large-N predictions
[41, 48]

ν = 1− 48

π2N
+O(N−2) , (13)

ηq = 1− 32

π2N
+O(N−2) . (14)

The good agreement of the numerical estimates of the
critical exponents with the large-N field-theory expres-
sions demonstrates that these continuous transitions are
associated with the CFP of the AH field theory (1).

A. Observables and finite-size scaling

To characterize phase transitions associated with the
breaking of the SU(N) symmetry, we consider correla-
tions of the gauge-invariant bilinear operator Q defined
in Eq. (4). Since Q is periodic when using C∗ bound-
ary conditions, its two-point correlation function can be
defined as

G(x− y) = 〈TrQxQy〉 . (15)

The corresponding susceptibility and correlation length
are defined as χ =

∑
x
G(x) and

ξ2 ≡ 1

4 sin2(π/L)

G̃(0)− G̃(pm)

G̃(pm)
, (16)

where G̃(p) =
∑

x
eip·xG(x) is the Fourier transform of

G(x), and pm = (2π/L, 0, 0).
In our analysis we consider RG invariant quantities,

such as Rξ = ξ/L and the Binder parameter

U =
〈µ2

2〉
〈µ2〉2

, µ2 =
∑

x,y

TrQxQy . (17)

At a continuous phase transition, any RG invariant ratio
R, scales as [61]

R(j, L) = fR(X) + L−ωgR(X) + . . . , (18)

where

X = (j − jc)L
1/ν . (19)

Here ν is the correlation-length critical exponent, ω is the
leading correction-to-scaling exponent, j is the Hamilto-
nian parameter driving the transition, and jc is the criti-
cal point (we will perform simulations varying J at fixed
κ or κg for the compact and noncompact model, respec-
tively, so that j should be identified with J). The func-
tion fR(X) is universal up to a multiplicative rescaling
of its argument. Assuming that Rξ is a monotonically
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increasing function of j, we can combine the RG predic-
tions for U and Rξ to obtain

U(j, L) = F (Rξ) +O(L−ω) , (20)

where F depends only on the universality class, boundary
conditions, and lattice shape, without nonuniversal fac-
tors. Eq. (20) is particularly convenient because it allows
us to test universality-class predictions without requiring
a tuning of nonuniversal parameters.
The exponent ν will be determined from the FSS be-

havior of Rξ and U , assuming the scaling behavior (18).
The exponent ηq will be computed from the scaling be-
havior of the susceptibility χ. In the FSS limit, it scales
as

χ(j, L) = L2−ηq

[
fχ(X) + L−ωgχ(X) + . . .

]
, (21)

where X is defined in Eq. (19).

B. Monte Carlo results

Let us first report our results for N = 25. We have
considered two values of q, q = 2 and 3, and, for each
of them, we have performed simulations at a fixed value
of κ, chosen so that the transition belongs to the DC-
OD line. For q = 2, simulations were already performed
[39] fixing κ = 1 and using periodic boundary conditions,
identifying the transition at Jc = 0.29333(3). For q = 3,
the results of Ref. [73] indicate that the OC-OD line ends
at κc = 0.5422(1) for J → ∞. To be on the safe side, we
have performed simulation keeping κ = 2 fixed, observing
a transition for J = Jc ≈ 0.2945.
To verify whether the transitions for q = 2 and q = 3

belong to the same universality class as the transitions
in the noncompact model along the CH line, in Fig. 3 we
report the Binder parameter U versus the ratio Rξ. The
compact-model data fall on top of the curve obtained
from simulations of the noncompact model [38]. The
agreement is excellent for both values of q. These results
demonstrate that the continuous transitions in the com-
pact model (DC-OD line) and in the noncompact model
(CH line) all belong to the same universality class.
For q = 2 we also estimated the critical exponents,

performing the same analysis we did in Refs. [38, 39]. To
estimate the exponent ν, we perform combined fits of U
and Rξ to Eq. (18). We parametrize the scaling func-
tions fR(X) and gR(X) with polynomials (we use 24th-
order and 8th-order polynomials for the two functions,
respectively). We perform fits including only data with
L ≥ 16, varying the exponent ω in the range [0.6, 1.2] (re-
sults depend marginally on the value of this exponent).
We only consider data in the interval X ∈ [Xmin, Xmax],
varying Xmin (between −0.5 and −0.3) and Xmax (be-
tween 0.15 and 0.25). Results are stable. We obtain
Jc = 0.293331(2) (in excellent agreement with the esti-
mate of Ref. [39] reported above) and

ν = 0.817(7). (22)
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non comp.
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FIG. 3: Estimates of U versus Rξ for the compact AH model
with N = 25 and C∗ boundary conditions. Top: results for
q = 3, κ = 2; bottom: results for q = 2, κ = 1. The continu-
ous line in each panel is an extrapolation of data for the non-
compact AH model [38]; noncompact-model data for L = 48
and L = 64 are also reported to provide an estimate of the
accuracy of the extrapolation.

The error includes the statistical error and also takes into
account the variation of the estimate as the fit parameters
are changed.
To estimate ηq, we have performed fits to

lnχ = (2− ηq) lnL+ h1χ(X) + L−ωh2χ(X), (23)

parametrizing h1χ(X) and h2χ(X) with polynomials. In
this case fits are sensitive to the value of ω. We end up
with ω = 1.05(10) and

ηq = 0.882(2). (24)

The estimates (22) and (24) are significantly more accu-
rate than, but consistent with previous determinations.
Ref. [38] obtained ν = 0.802(8) for the compact model
with q = 2, while Ref. [39] reported ν = 0.815(15) for
the noncompact model. As for ηq, previous estimates
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FIG. 4: Estimates of U versus Rξ for the compact AH model
with N = 15 and C∗ boundary conditions. Top: results for
q = 2 and κ = 1; bottom: results for q = 3 and κ = 2.
The continuous line is an extrapolation of the data for the
noncompact model [38]; noncompact-model data for L = 48
and L = 64 are also reported to provide an estimate of the
accuracy of the extrapolation.

are ηq = 0.88(2) (compact model with q = 2), and
ηq = 0.883(7) (noncompact model).
We have performed a similar analysis for N = 15. In

this case we have considered q = 2, q = 3, and q = 4,
performing simulations at fixed κ along the DC-OD line.
For q = 2 and q = 3 we have performed simulations at
κ = 1 (transition at J ≈ 0.307) and at κ = 2 (transition
at J ≈ 0.308), respectively, as we did for N = 25. For
q = 4, we have chosen κ = 4. Given that the OC-OD
line ends at [72, 73], κ = 0.76135(2), J = ∞, this choice
should guarantee that the transition we observe for J ≈
0.304 belongs to the DC-OD line.
The results for the Binder parameter as a function of

Rξ are reported in Fig. 4 for q = 2 and q = 3. Once
again, data for the noncompact lattice AH model with
N = 15 (from Ref. [38]) are also shown for compari-
son. In this case scaling corrections are larger than for

0 0.1 0.2 0.3 0.4 0.5
Rξ

1

1.02

1.04

1.06

1.08

1.1

U

L=16
L=32
L=48
L=64
L=48
L=64

q=4, N=15, κ=4

non comp.

FIG. 5: Estimates of U versus Rξ for the compact AH model
with N = 15 and C∗ boundary conditions. Results for q = 4
and κ = 4; The continuous line is an extrapolation of the data
for the noncompact model [38]; noncompact-model data for
L = 48 and L = 64 are also reported to provide an estimate
of the accuracy of the extrapolation.

N = 25. Nonetheless, data approach the expected scaling
curve when increasing the lattice size. Results for q = 4
are shown in Fig. 5. In this case, corrections to scaling
are large and, in spite of the large lattices considered—we
performed simulations up to L = 64—the compact-model
data are not yet close to the noncompact-model curve, al-
though they show the correct trend as L increases. Most
probably, this is a crossover effect due to the O(2N) fixed
point that controls the critical behavior for κ = ∞. In-
deed, its presence gives rise to crossover effects that in-
crease with κ and that can become particularly strong
for the simulations that have been performed along the
line with κ = 4.
As we did for N = 25, we also compute the critical

exponents. We consider only the data with q = 2, since
scaling corrections appear to be smaller than for q = 4
and only a limited number of lattice sizes is available
q = 3. The combined analysis of the Binder parameter
and of Rξ gives Jc = 0.306957(4) and

ν = 0.728(5), (25)

which is in agreement with the noncompact-model esti-
mate ν = 0.721(3), obtained in Ref. [38]. Again the error
takes into account statistical errors and how the estimate
changes as the fit parameters are varied. In particular,
the quoted result is consistent with an exponent ω vary-
ing between 0.6 and 1. We also estimate the exponent
ηq, obtaining

ηq = 0.815(3), (26)

which is in full agreement with the estimate 0.815(10),
obtained in the noncompact model [38].
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FIG. 6: Critical exponents ν (top) and ηq (bottom) versus
1/N . We report: results (N = 10, 15, 25) for the noncompact
model [38]; results (N = 25 only) for the compact model
with q = 2 and periodic boundary conditions (pbc) [39]; the
results for N = 15 and 25 of the present work (q = 2); the
leading-order (LO) large-N predictions [Eqs. (13) and (14)];
the phenomenological next-to-leading (NLO) interpolations,
Eq. (27) with aν = 10.5, aη = 7.0.

The estimates of the critical exponents for N = 15
and 25 are displayed in Fig. 6, together with the leading-
order large-N estimates Eqs. (13) and (14). They would
predict ν = 0.805, ηq = 0.870 for N = 25 and ν =
0.676, ηq = 0.784 for N = 15, to be compared with
the previosuly obtained numerical results ν = 0.817(7),
ηq = 0.882(2) for N = 25 [see Eqs. (22) and (24)], and
ν = 0.728(5), ηq = 0.815(3) for N = 15 [see Eqs. (25) and
(26)]. The values of the critical exponents for N = 25
are very close to their leading-order large-N estimates,
and deviations from the O(N−1) asymptotic behavior are
consistent with a next-to-leading O(N−2) correction. If
we assume

ν = 1− 48

π2N
+

aν
N2

,

ηq = 1− 32

π2N
+

aη
N2

.

(27)

and we fix the unknown parameters by requiring these ex-
pressions to be exact for N = 25, we obtain the estimates
aν = 7(4) and aη = 7(1). Using these values, we would
predict ν = 0.708(19) and ηq = 0.816(6) for N = 15, in
agreement with the estimates (25) and (26). For N = 10
we would predict ν = 0.59(4) and ηq = 0.749(13), again
in substantial agreement with the results ν = 0.64(2),
ηq = 0.74(2) of Ref. [38] for the noncompact model. By
fitting to Eq. (27) all the results for ν and ηq obtained in
this work, in the noncompact model [38] and in compact
model with periodic boundary conditions (only q = 2,
N = 25) [39] we obtain

aν = 10.5(5) aη = 7.0(5) , (28)

and the results of this phenomenological interpolation are
shown in Fig. 6.

IV. CONCLUSIONS

We have investigated whether and under which con-
ditions the 3D multicomponent AH field theory (scalar
electrodynamics) is realized as the continuum limit of
statistical lattice gauge models. For this purpose we
consider a lattice model with unit-length degenerate N -
component scalar fields of charge q coupled to compact
gauge fields with U(1) local and SU(N) global invariance.
The FSS analyses of the MC results show that, for

q ≥ 2, the transitions along the line that separates the
confined and deconfined phases, see Fig. 1 (bottom), are
continuous for a sufficiently large number of components
(we perform a detailed study for N = 15 and 25) and
that they belong to the same universality class for any
q ≥ 2. Morover, they are in the same universality class as
the transitions along the CH line (see Fig. 2), in the lat-
tice AH model with noncompact gauge fields. Since both
scalar and gauge correlations are critical along the CH
line, the effective field-theory description of these transi-
tions is provided by the AH field theory with Lagrangian
(1), with explicit gauge fields. The stable CFP point of
the RG flow of the AH field theory, which is present for
N ≥ N∗

3 with N∗
3 = 7(2), should characterize the univer-

sal features of these transition lines (the OC-OD line in
the compact model with q ≥ 2, see Fig. 1 (bottom), and
the CH line in the noncompact model, see Fig. 2).
We believe that these results improve our understand-

ing of the critical behavior (continuum limit) of gauge
field theories in dimension lower than four, which are
relevant in condensed-matter physics, see, e.g., Refs. [74–
76]. In particular, they shed light on the conditions under
which we may expect to observe transitions controlled by
the CFP of the RG flow of 3D gauge field theories. This
issue is also relevant for nonabelian gauge theories with
matter fields; see, e.g., Refs. [54, 55, 77, 78] for related
discussions. We believe that further investigations are
called for, to achieve a satisfactory understanding of the
nonperturbative regimes of abelian and nonabelian gauge
field theories.
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