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Quantum many-body spin rings coupled to ancillary spins: The sunburst quantum Ising model
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We study the ground-state properties of a quantum sunburst model, composed of a quantum Ising spin ring in
a transverse field, symmetrically coupled to a set of ancillary isolated qubits, to maintain a residual translation
invariance and also a Z2 symmetry. The large-size limit is taken in two different ways: either by keeping the
distance between any two neighboring ancillary qubits fixed or by fixing their number while increasing the
ring size. Substantially different regimes emerge, depending on the various Hamiltonian parameters: For small
energy scale δ of the ancillary subsystem and small ring-qubit interaction κ , we observe rapid and nonanalytic
changes in proximity to the quantum transitions of the Ising ring, both first order and continuous, which can be
carefully controlled by exploiting renormalization-group and finite-size scaling frameworks. Smoother behaviors
are instead observed when keeping δ > 0 fixed and in the Ising disordered phase. The effect of an increasing
number n of ancillary spins turns out to scale proportionally to

√
n for sufficiently large values of n.
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I. INTRODUCTION

The recent amazing progress on the control of physi-
cal systems at the nanoscale has paved the way toward
deep investigations of quantum properties of matter and the
more complex problem of monitoring the coherent quantum
dynamics of mutually coupled systems, addressing energy
interchanges and the relative decoherence properties among
the various subsystems [1]. These issues are relevant both for
fundamental reasons, such as to improve our understanding
of the emergence of interference and entanglement useful
for quantum-information purposes [2] or for enhancing the
efficiency of energy conversion in complex networks [3], and
for more applied quantum-thermodynamical purposes, such
as the optimization of energy storage in subportions of the
whole system [4] or the realization of work extraction engines
at the nanoscale [5]. The possible presence of different quan-
tum phases and the development of criticality in the system
may be exploited to characterize the sensitivity to a variety of
behaviors [6].

From a conceptual point of view, the cleanest scenario
is perhaps that of a system composed of several quantum
objects described by a global static Hamiltonian. A portion
of the system itself can thus be seen as an effective bath for
the remaining part. In this context, paradigmatic toy mod-
els are the so-called central-spin models [for a sketch, see
Fig. 1(a)], where one or a few qubits are globally coupled to
an environmental many-body system (see, e.g., Refs. [7–20]).
The main decoherence properties of a single qubit (red dot)
globally coupled to a many-body system (surrounding blue
dots) turn out to crucially depend on the quantum phase
of the many-body system, whether it is within the ordered
or disordered quantum phases, or at the quantum critical

*Authors are listed in alphabetic order.

point (QCP) separating them, when it develops long-range
correlations [20].

Here we return to issues related to the decoherence arising
from interactions between different parts of an isolated sys-
tem and propose an alternative arrangement of its composing
quantum objects, which we call the sunburst model [a sketch
is shown in Fig. 1(b)]. Namely, we consider a quantum spin
chain (blue dots) locally coupled to external isolated qubits
(surrounding red dots). The sunburst model admits a high
degree of flexibility in the choice of the number of external
qubits, which can be a finite or an infinite set at regular spatial
intervals, and may be interpreted as a probing subsystem. The
specific geometry of the model makes it nonintegrable, apart
from very specific cases; therefore, numerical approaches are
usually needed to study the emerging physics.

In this paper we study the case in which the inner ring
is described by a quantum Ising chain, being a prototypical
quantum many-body system which presents different quantum
phases, with both first-order quantum transitions (FOQTs)
and continuous quantum transitions (CQTs) when varying
the intensity of the two external, transverse and longitudi-
nal, fields. In this exploratory study of the sunburst quantum
Ising model, we investigate the equilibrium properties of the
ground state of the global system, focusing on the behav-
ior of observables associated with the Ising chain or the
ancillary qubits separately. This allows us to address the ef-
fects of interactions between the two parts on the coherence
properties of the single part, and the scaling behaviors asso-
ciated with the different phases of the Ising system. Close
to the quantum transitions, we exploit renormalization-group
(RG) and finite-size scaling (FSS) frameworks [20], which
constitute the natural theoretical context to effectively de-
scribe the behavior of systems in proximity to either a CQT
[21,22] or a FOQT [23–25], as well as in a dynamic con-
text [26–28], providing the asymptotic large-size scaling in
a variety of situations. Since here we expressly focus on the
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FIG. 1. (a) Sketch of the central-spin model. A ring made of L
interacting quantum spins (blue dots) is locally coupled to a single
central qubit (red dot) at every b lattice spacings (b = 3 in the figure).
Note that the typical case studied in the literature is with b = 1.
(b) Sketch of the sunburst model discussed in this paper. A ring of L
spins is locally coupled to n ancillary qubits at every b = L/n lattice
spacing (L = 24 and n = 8 in the figure).

ground-state properties, we make use of the equilibrium FSS
formalism [20,21].

We remark that, strictly speaking, decoherence is a dy-
namic process, while in this paper we are only discussing
the equilibrium ground-state properties of the sunburst model.
Within our FSS frameworks, this is equivalent to the study
of the adiabatic dynamics of a finite-size system, generally
characterized by a nonvanishing gap, and thus always possible
for sufficiently large timescales, even close to the quantum
transitions.

The paper is organized as follows. In Sec. II we introduce
the various Hamiltonian terms of the sunburst quantum Ising
model, the decoherence functions, and all observables that
will be addressed in the subsequent analyses and discuss some
simple limit cases. We then study situations where the system
parameters are close to the CQT of the Ising ring, in the
large-size limit achieved either by keeping fixed the number
of ancillary qubits coupled to the ring (Sec. III) or by taking
any two consecutive qubits at a fixed distance (Sec. IV). In
Sec. V we focus on the regime close to the FOQT line of the
Ising ring, while in Sec. VI we discuss the system behavior
within the Ising disordered phase. In Sec. VII we summarize
our findings and draw conclusions.

II. SUNBURST QUANTUM ISING MODEL

We start by defining our model, where a quantum Ising
(I) spin ring is coupled to a set of ancillary (A) isolated
two-level systems, in a sunburst geometry, as sketched in
Fig. 1(b). The quantum Ising chain is a useful theoretical
laboratory where fundamental issues of quantum many-body
systems can be thoroughly investigated, exploiting the exact
knowledge of several features of its phase diagram and quan-
tum correlations. Coupling it to ancillary spins allows us to
define a prototypical situation to address the emerging critical
behavior of composite quantum many-body systems. This is
what we are going to study below.

A. Hamiltonians

Quantum Ising rings are defined by the Hamiltonian

ĤI = −
L∑

x=1

(
Jσ̂

(1)
x σ̂

(1)
x+1 + gσ̂ (3)

x

)
, (1)

where L is the system size, σ̂ (i)
x are the Pauli matrices on the

xth site (i = 1, 2, 3 labels the three spatial directions), and
σ̂

(i)
L+1 = σ̂

(i)
1 , corresponding to periodic boundary conditions

(PBC). In the following we assume ferromagnetic nearest-
neighbor interactions with J > 0.

Several results for the low-energy properties of the model
(1) have been thoroughly obtained, both in the thermodynamic
limit and in the FSS limit with various boundary conditions
(see, e.g., Refs. [6,20,29,30] and references therein). Here we
recall that the model undergoes a CQT at g = gI = J , belong-
ing to the two-dimensional Ising universality class, separating
a disordered phase (g > gI) from an ordered one (g < gI).
Approaching the CQT, the system develops long-distance cor-
relations, with a length scale ξ diverging as ξ ∼ |g − gI |−ν ,
where ν = y−1

g = 1 and yg is the RG dimension associated
with the difference g − gI . The ground-state energy gap �I
(i.e., the energy difference between the two lowest Hamilto-
nian eigenstates of ĤI) gets suppressed as �I ∼ ξ−z, where
z is the dynamic critical exponent (z = 1). In particular, at the
critical point [31],

�I (gI, L) = π

2L
+ O(L−2). (2)

Another independent critical exponent arises from the RG
dimension of the symmetry-breaking homogeneous longitu-
dinal field h, coupled to an additional Hamiltonian term of the
form

∑L
x=1 σ̂ (1)

x , which is yh = (2 + d + z − η)/2 = 2 − η/2,
where d stands for the system dimensionality (here d = 1) and
η = 1/4, and thus yh = 15/8 (see, e.g., Refs. [6,20]). Along
the |g/J| < 1 line, the longitudinal field h drives FOQTs,
associated with the avoided level crossing of quantum states
with opposite magnetization in finite-size systems, which
leads to a discontinuity of the longitudinal magnetization
M = L−1〈∑x σ̂ (1)

x 〉 in the infinite-volume limit. The energy
difference of the lowest states along the FOQT line of the Ising
ring is exponentially suppressed with increasing L as [32,33]

�I (g < gI, L) ≈ 2

√
g2
I − g2

πL

( g

J

)L
. (3)

In our sunburst Ising model, we assume to have n ancillary
isolated spin-1/2 systems (qubits), each of them coupled with
one spin of the Ising ring, located at an equal distance b from
each other, so that b = L/n [see Fig. 1(b)]. We assume they
are all described by the same Hamiltonian

ĤA = − δ

2

n∑
j=1


̂
(3)
j , (4)

where 
̂
(i)
j are the Pauli matrices of the jth ancillary qubit.

The parameter δ quantifies the energy difference between the
lowest eigenstates of the Hamiltonian (4), thus providing the
energy scale associated with the ancillary system.
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The global closed system is formed by two subsystems: the
Ising ring with L spins and the n ancillary two-level systems.
Their interaction is assumed to be homogeneous for all n
qubits and described by the Hamiltonian coupling

ĤIA = −κ

n∑
j=1


̂
(1)
j σ̂

(1)
x= jb, (5)

with a strength controlled by the parameter κ .
The full sunburst-Ising-model Hamiltonian

Ĥ = ĤI + ĤA + ĤIA (6)

maintains some of the invariance under translation, i.e., the
translation of b lattice spacings. Moreover, the global system
has a Z2 symmetry, which also involves the ancillary spin
operators

σ̂ (1/2)
x → −σ̂ (1/2)

x , 
̂
(1/2)
j → −
̂

(1/2)
j , (7)

σ̂ (3)
x → σ̂ (3)

x , 
̂
(3)
j → 
̂

(3)
j .

Of course, the Z2 symmetry associated with the bare Ising
chain, i.e.,

σ̂ (1/2)
x → −σ̂ (1/2)

x , σ̂ (3)
x → σ̂ (3)

x , (8)

does not hold anymore. Moreover, one can easily show that
the phase diagram and generic global observables are sym-
metric with respect to changes of the sign of κ and/or δ.
Without loss of generality, in the following we restrict our-
selves to κ � 0 and δ � 0; we also set J = h̄ = 1, thus
providing the corresponding unities for all the other quantities.

We finally note that, for n = L, the above sunburst model
may be related to the so-called Heisenberg Ising-Kondo neck-
lace model, for some values of its parameters (see, e.g.,
Ref. [34]).

B. Decoherence functions and observables

We address the behavior of both subsystems composing
the sunburst model (the Ising ring and the ancillary isolated
qubits), within the global ground state |�0〉. In particular, we
aim at studying how their main features, such as the quantum
phases and the critical behavior, change when varying the
Hamiltonian parameters. To this purpose, we first consider the
reduced density matrices associated with the Ising ring (ρI)
and the ancillary subsystem (ρA) corresponding to the ground
state of the global system,

ρI = TrA[|�0〉〈�0|], ρA = TrI[|�0〉〈�0|], (9)

where TrA[·] and TrI[·] denote the partial traces over the
respective counterparts. Their coherence properties can be
quantified through the purities PI and PA, defined as

PI = Tr
[
ρ2
I
]
, PA = Tr

[
ρ2
A

]
, (10)

or equivalently by the decoherence factor

QI = 1 − PI, QA = 1 − PA. (11)

One may also define the corresponding Rényi entanglement
entropies SI and SA as

SI = −lnPI, SA = −lnPA. (12)

Exploiting the Schmidt decomposition for bipartitions of pure
states [2], one can easily prove that

PI = PA ≡ P, QI = QA ≡ Q, SI = SA ≡ S. (13)

The decoherence factor is limited between Q = 0 (corre-
sponding to P = 1 and S = 0, for a pure reduced state) and
Q → 1 (corresponding to P → 0, for a completely incoherent
many-body state). Now, since Q must be an even function of κ

and assuming analyticity at κ = 0, we may expand it at small
κ as

Q ≈ 1

2
κ2χQ + O(κ4), χQ ≡ ∂2Q

∂κ2

∣∣∣∣
κ=0

, (14)

where χQ keeps the role of decoherence susceptibility.
To characterize the effects of interactions between the two

subsystems, we also consider other indicators and observ-
ables. As a global quantity, we study the gap �, namely,
the energy difference between the first excited state and the
ground state of the full system. Then we focus on observables
related to the Ising ring only, such as correlations of the spin
operators σ̂ (1)

x . Due to the Z2 symmetry (7), Tr[ρI σ̂ (1)
x ] = 0.

The two-point correlation function can be written as

G(x, y) = Tr
[
ρI σ̂ (1)

x σ̂ (1)
y

]
. (15)

Defining its Fourier-like transform along the ring as

G̃(p) = 1

L

∑
x,y

e−ip(x−y)G(x, y), (16)

we consider its zero-momentum component χ = G̃(0) and
second-moment correlation length.

ξ 2 = 1

4 sin2(π/L)

G̃(0) − G̃(2π/L)

G̃(2π/L)
, (17)

where 2π/L is the minimum finite momentum along the
ring, representing a natural choice of an O(1/L) nonzero
momentum for the Ising subsystem. Finally, we also define
a Binder-like parameter

U = Tr
[
ρIμ̂2

2

]
(Tr[ρIμ̂2])2

with μ̂2 = 1

L2

∑
xy

σ̂ (1)
x σ̂ (1)

y . (18)

C. Extreme cases and notable limits

To understand the role of the Hamiltonian parameters δ and
κ describing the ancillary spin system (A) and the interaction
with the Ising ring (I) [cf. Eqs. (4) and (5)], respectively, it is
first useful to discuss some particularly simple cases.

(i) When κ = 0, the two subsystems A and I are trivially
decoupled; therefore, |�0〉 = |A0〉A ⊗ |ψ0〉I , where |A0〉A
and |ψ0〉I denote the ground states of the isolated qubits and
of the Ising ring.

(ii) When δ = 0, the lowest levels of the global system A +
I turn out to be twofold degenerate.

(iii) When δ → ∞, the state of each of the isolated qubits
gets fixed to the eigenstate of 
̂(3) with eigenvalue one,
which can also be written as a superposition of the eigen-
states |±〉 of 
̂(1). The global ground state is thus again
given by the product of states of the two subsystems, i.e.,
|�0〉 = |A0〉A ⊗ |ψ0〉I , where |A0〉A = |φ0〉1 ⊗ · · · ⊗ |φ0〉n,
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with |φ0〉 j = (|+〉 j + |−〉 j )/
√

2 for the jth ancillary qubit,
and |ψ0〉I is the ground state of the closed Ising ring (note
that the interaction term associated with κ vanishes on the
ancillary state |A0〉A).

(iv) The κ → ∞ limit is best discussed without fixing J =
1, i.e., leaving it free. When κ → ∞, the spins of the Ising
rings coupled with the ancillary system are forced to stay in a
state described by the reduced density matrix

ρA = 1
2

(
n⊗

j=1

|+〉 j〈+| +
n⊗

j=1

|−〉 j〈−|
)

(19a)

in the limit J → ∞ in the Hamiltonian (1) and

ρA =
n⊗

j=1

1
2 (|+〉 j〈+| + |−〉 j〈−|) (19b)

in the limit J → 0. As a consequence, the corresponding
decoherence measure of the Ising ring ranges from Q = 1/2
(for J → ∞) to Q = 1 − 1/2n (for J → 0).

The above considerations hint at the fact that the de-
coherence effects of the ancillary system may significantly
depend on the sunburst-model parameters, as explicitly shown
in Fig. 2 (data have been obtained by means of numerical
exact diagonalization techniques). Figure 2(a) shows how the
decoherence factor Q sets in when the coupling κ between the
critical Ising ring and the ancillary qubits increases, keeping
the ratio δ/�I of their energy scales fixed; here the thermo-
dynamic limit is taken by fixing the number n of qubits in
the sunburst geometry (case I below). We observe significant
differences when increasing the ring size. Figure 2(b) displays
the behavior of the decoherence factor Q, for finite values
of δ and κ , as a function of the transverse field strength g
(which drives the critical behavior on the Ising ring itself).
Here we approach the large-size limit by keeping the distance
b between two consecutive ancillary spins fixed and then
increasing the chain length L (case II below). We observe the
emergence of drastic changes in the decoherence properties of
the lattice with g, signaling that different phases are related to
qualitative variations of the decoherence factor Q.

In the rest of this paper we want to study the behavior of
the sunburst Ising model (6) for generic values of δ and κ , in
the limit of large size, by exploiting RG and FSS frameworks.
In this respect, we consider two different situations where the
large-L limit can be achieved.

(I) We keep the number n of the ancillary spins finite and
fixed, while L is increased [same situation as in Fig. 2(a)].
In this case, the bulk properties of the Ising ring are ex-
pected to remain unchanged. Thus we expect that, for any
value of Hamiltonian parameters κ and δ, the system develops
an Ising-like CQT at g = gI characterized by Ising critical
modes along the Ising ring, separating disordered and ordered
phases.

(II) We keep the distance b = L/n between two consec-
utive ancillary spins fixed such that their number increases
linearly with L [same as in Fig. 2(b)]. In this case the ancillas
are expected to give rise to drastic changes, with transition
lines related to the breaking of the global Z2 symmetry. In
particular, such transitions are expected to move the critical
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FIG. 2. Behavior of the decoherence factor Q as a function of the
various parameters of the sunburst Ising model, for different chain
lengths L: (a) Q vs κ for g = gI = 1, δ = 2�I (gI, L), and a fixed
number of ancillary spins (n = 1) and (b) Q vs g for δ = κ = 1, and
a fixed distance between two consecutive ancillary spins (b = 2).

point g = gI of the closed Ising ring, generally to gc > gI , as
we will see later.

III. SUNBURST ISING MODEL AT THE CQT, WITH A
FINITE NUMBER OF QUBITS

We start by discussing the effects of a finite number n
of isolated qubits coupled with the Ising ring, as described
by the Hamiltonian (6), which result in the distance between
them increasing as b = L/n in the large-size limit (case I
above). The ancillary spins play the role of particular defects
inserted within the bulk of the Ising system, controlled by the
parameter κ [cf. Eq. (5)].

As already mentioned, for an ancillary system with a finite
number n of isolated spins, the bulk properties of the Ising
ring do not change qualitatively, still showing disordered and
ordered phases separated by the CQT at g = gI = 1, inde-
pendently of the parameters κ and δ. However, some notable
change emerges in the FSS behavior close the CQT and of
course also in the coherence properties of the Ising ring. In
particular, we distinguish between two different FSS regimes:
(i) a scaling limit where the interaction with the ancillary
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spin-system Hamiltonian acts as a perturbation, and thus both
κ and δ are small and scale appropriately with increasing the
size of the Ising ring (cf. Sec. III A), and (ii) a FSS limit at
fixed values of δ > 0 (cf. Sec. III B).

A. FSS around the closed-Ising-ring criticality

The first question we address is how perturbations aris-
ing from the interaction with the ancillary system affect the
critical behavior of the closed Ising ring at g ≈ gI . When the
Hamiltonian ĤIA [cf. Eq. (5)] acts as a perturbation, we may
derive FSS laws using RG arguments based on the scaling
behavior of the parameters δ and κ . To address this problem,
we should first introduce scaling variables associated with
them.

The standard FSS of the closed Ising ring at the CQT is
controlled by the scaling variable

W = (g − gI )Lyg, yg = 1. (20)

The parameter δ represents the energy scale associated with
the isolated qubits. Therefore, its scaling variable should be
provided by the ratio between it and the gap �I (gI, L) of the
Ising ring at criticality, i.e.,

A = δ

�I
∼ δLz, z = 1. (21)

To identify the scaling variable associated with the parame-
ter κ , we note that the corresponding perturbations may be
interpreted as symmetry-breaking defects for the Ising ring
[under the Z2 transformation (8) restricted to the Ising-ring
subsystem only], controlled by an external operator 
̂

(1)
j , i.e.,

D̂x = −κ
̂
(1)
j σ̂

(1)
x= jb, (22)

where the index x denotes the position of the defect along the
ring. Since 
̂

(1)
j is related to the noncritical ancillary system,

we expect it to be not relevant for the determination of the
RG dimension of the parameter κ . Therefore, it should be the
same as that of the simpler symmetry-breaking defect

D̂x = −κσ̂ (1)
x (23)

for the critical Ising ring, which is equal to yκ = 7/8 [35]. The
scaling variable associated with κ should be thus given by

K = κLyκ , yκ = 7/8. (24)

In summary, the FSS limit of all the various observables
introduced in Sec. II B can be defined as the large-size limit
keeping W , A, and K fixed, therefore for δ ∼ L−z and κ ∼
L−yκ .

To monitor the decoherence properties of the Ising ring
and the ancillary subsystem, we consider their decoherence
factor Q defined in Eqs. (11). A natural ansatz for its scaling
behavior in the small-κ and -δ regime at the CQT of the Ising
ring is provided by the scaling equation

Q(n, g, κ, δ, L) ≈ Q(n,W, K, A). (25)

Note that

Q(n,W,−K, A) = Q(n,W, K, A) (26)

and Q(n,W, 0, A) = 0. The scaling in Eq. (25) implies that
the corresponding susceptibility χQ [cf. Eq. (14)] scales as

χQ(n, g, δ, L) ∝
(

∂K

∂κ

)2

C(n,W, A) = L2yκC(n,W, A). (27)

Therefore, the decoherence susceptibility is expected to de-
velop a nonanalytic power-law divergent behavior in the
small-δ regime.

We emphasize that the observation of the above FSS laws
requires that all Hamiltonian parameters g, δ, and κ must be
properly rescaled. In fact, it is easy to verify that the decoher-
ence factor with respect to the parameter κ does not present
signatures of data collapse under increasing Ising lattice size
L [see Fig. 2(a), where we use the scaling variables W = 0 and
A = 2, but we do not scale κ according to the scaling variable
K defined in Eq. (24)]. However, the scaling hypothesis put
forward in Eq. (25) is in complete agreement with the data
reported in Fig. 3(a), where Q is plotted in terms of the
correct scaling variable K . It is also possible to verify that the
decoherence susceptibility supports a power-law divergence
with L, as outlined in Eq. (27) (see data reported in Fig. 4 for
n = 1 and 2).

The scaling behavior of the gap of the global system is
expected to be

�(n, g, κ, δ, L) ≈ L−zD(n,W, K, A). (28)

Therefore, the ratio of the global gap with the gap of the closed
Ising ring at the QCP is expected to behave as

�(n, g = gI, κ, δ, L)

�I (gI, L)
≈ Dc(n, K, A), (29)

as shown in Fig. 3(b).
The two-point function (15) should behave analogously,

apart from an overall power law, i.e.,

G(x, y, n, g, κ, δ, L) ≈ L−2yϕG(n, X,Y,W, K, A), (30)

where yϕ is the RG dimension of the order-parameter operator
at Ising transitions, i.e.,

yϕ = (d + z − 2 + η)/2 = 1/8, (31)

X = x/L, and Y = y/L (note that, since the couplings with
the ancillary spins break the translation invariance, we must
keep the dependence on both spatial variables). In particular,
the corresponding susceptibility χ = G̃(0) should scale as

χ (n, g, κ, δ, L) ≈ L1−ηB(n,W, K, A). (32)

The RG-invariant quantities (not subject to overall power
laws), such as the ratio Rξ = ξ/L and the Binder parameter U
[cf. Eqs. (17) and (18)], are expected to behave as (we denote
them by R)

R(n, g, κ, δ, L) ≈ R(n,W, K, A). (33)

Results for the scaling of the RG-invariant ratio

ξ (n, g = gI, κ, δ, L)

ξI (g = gI, L)
= Rξ (n, g = gI, κ, δ, L)

Rξ (n, g = gI, κ = 0, δ, L)
, (34)

with ξI the correlation length of the standard Ising ring at the
QCP, are provided in Fig. 3(c) [note that we prefer to show
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FIG. 3. Scaling of (a) the decoherence factor Q, (b) the ratio of
the gaps �/�I defined in Eq. (29), and (c) the ratio of the correlation
lengths ξ/ξI defined in Eq. (34), in terms of the variable K = κL7/8.
The various data sets are for different sizes of the Ising ring and for
a fixed number n of isolated qubits. We also fix W = 0 and A = 2.
The predicted scaling behaviors are confirmed, showing convergence
to asymptotic large-L FSS curves. The insets display corrections to
the scaling of the corresponding quantities at fixed K = 1, which are
compatible with a decay law L−7/4 for Q and �/�I and with L−3/4

for ξ/ξI (straight lines interpolate the points for the largest available
sizes at our disposal and are drawn to guide to the eye).
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0.7

0.8

n=1
n=2χ

Q
L
-7/4

FIG. 4. Rescaled decoherence susceptibility χQL−7/4 versus
L−7/4 (that is, the way in which scaling corrections are expected to
be suppressed) for two values of n and fixed W = 0, A = 1, and
g = 1. Systematic errors stemming from the discretization of the
second derivative are smaller than the marker sizes. (In the actual
computation we use κ = 10−4 to evaluate χQ. Systematic errors are
estimated by comparing the discrepancies between data at κ = 10−3

and 10−4.) Straight lines are drawn to guide the eye. The data confirm
the asymptotic power-law divergence χQ ∼ L2yκ = L7/4 predicted by
the scaling (27).

the ratio (34), since it is subject to scaling corrections smaller
than Rξ = ξ (n, g = gI, κ, δ, L)/L].

We point out that the above scaling behaviors are expected
to be approached with power-law suppressed corrections,
which may depend on the observable considered, analogously
to the FSS of closed Ising rings [20,22,35]. The scaling cor-
rections characterizing the approach to the asymptotic FSS
are analogous to those of Ising rings in the presence of
symmetry-breaking defects discussed in Ref. [35]. We ex-
pect that such corrections decay as L−3/4 in the case of the
ratios Rξ = ξ/L and ξ/ξI , since they arise from analytical
backgrounds [20,21]. They are instead suppressed as L−7/4

in the case of the decoherence factor Q and the gap ratio
�/�I . Such O(L−7/4) = O(L−2yκ ) corrections arise from the
nonlinear scaling field [35] associated with the Hamiltonian
parameter κ , which is given by uκ = κ + cκ3 + · · · (where
the quadratic term vanishes, due to the parity-symmetry prop-
erties of the Ising ring), and in particular from its third-order
term. Plots to highlight the scaling corrections for the observ-
able considered are reported in the insets of Fig. 3 (notice
the different dependences on L of the quantities in the x
axis, which match the exponent of the various corrections).
They are definitely compatible with the expected finite-size
power-law suppressions.

Our numerical results also suggest that the dependence
on n for a sufficiently large number of ancillary qubits can
be taken into account through a redefinition of the scaling
variables, after introducing the variable

K ′ = √
nK. (35)

We provide evidence of this fact in Fig. 5, where the deco-
herence factor Q is shown versus K ′ for several values of n
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FIG. 5. (a) Decoherence factor Q versus K ′ at fixed W = 0 and
A = 2 and several values of n. For each n, we only provide data for
one of the largest lattice sizes at our disposal. However, we empha-
size that scaling corrections are barely visible under the increase of
L (cf. Fig. 3). (b) Plot of Q versus 1/n for fixed K ′ = 1, 2 at fixed
W = 0 and A = 2. Data are obtained by means of infinite-volume
extrapolations (L → ∞ at fixed n), assuming L−7/4 scaling correc-
tions. Straight lines are drawn to guide the eye. Extrapolations up to
n = 5 are compatible with a 1/n approach. The data provide a robust
check of the scaling behavior reported in Eq. (36).

[Fig. 5(a)]. The plot supports the scaling behavior

Q(n, g, κ, δ, L) ≈ Q̃(W, K ′, A), (36)

with corrections that are apparently suppressed as 1/n, as
shown in Fig. 5(b). Analogous behaviors are observed for
the other quantities. Note that the square-root power of n in
Eq. (35) is probably related to the fact that it actually takes
into account the effect of n independent ancillary systems.

The above scaling behaviors show that the low-energy crit-
ical behavior of the Ising ring experiences rapid and drastic
changes under the effects of perturbations arising from inter-
actions with the ancillary qubits, even in the case of one single
ancillary isolated qubit.

B. Behavior at finite ancillary energy scale δ

As already mentioned, in the case of a finite number of
ancillary spins, the system remains critical at g = gI , even for
finite values of the energy scale δ and the interaction parame-
ter κ . The FSS behavior changes, similarly to changes arising
from variations of boundary conditions in closed critical sys-
tems. However, the variations for finite κ and δ appear smooth,
i.e., much smoother than the drastic and rapid changes arising
from their turning on at small κ and δ (see Sec. III A).

In the following we consider the FSS limit, keeping the
Hamiltonian parameter δ > 0 fixed. The numerical results at

0 0.2 0.4 0.6 0.8 1

κ
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0.2
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ξ/ξ
I
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L=16
L=18

(a)

(b)

FIG. 6. (a) Ratio ξ/ξI and (b) decoherence factor Q versus κ ,
for finite n = 1, δ = 1, and g = gI = 1. The data show a smooth
behavior with κ , without any significant dependence on the size
of the Ising ring, suggesting that the effect at the QCP remains
essentially local when δ > 0 is kept finite in the large-L limit. The
inset in (b) shows that the decoherence susceptibility χQ converges
to a constant as L−1 in the large-volume limit.

g = gI show that the observables remain critical, but their
FSS curves change when varying κ and δ, without appar-
ent nonanalyticities, like those observed around κ = δ = 0
[Fig. 6(a)]. It is also worth noting that, when keeping δ >

0 fixed, the decoherence factor Q is expected to behave
smoothly around κ = 0; thus its susceptibility χQ is not ex-
pected to diverge in the large-L limit, unlike around δ = 0.
This is confirmed by the results in Fig. 6(b), where the smooth
behavior of the decoherence Q and its susceptibility χQ com-
pletely agrees with the presented scenario.

IV. SUNBURST ISING MODEL AT THE CQT, WITH
QUBITS AT FIXED DISTANCE

We now discuss a different situation, where the isolated
qubits of the ancillary system become infinite and their con-
tacts with the Ising ring are maintained at a fixed distance b
(case II in Sec. II C). Therefore, in the large-size limit, L →
∞ and also n = L/b → ∞. Again we distinguish between
two regimes: (i) The interaction with the ancillary qubits
represents a small perturbation, in which case we describe the

054111-7



FRANCHI, ROSSINI, AND VICARI PHYSICAL REVIEW E 105, 054111 (2022)

0 0.5 1 1.5 2

K~
0

0.1

0.2

0.3

Q

b=2, L=10
L=12
L=14

b=3, L=9
L=12
L=15

0 0.1 0.2

L-1
0.08

0.084

0.088

0.092

b=2
b=3

K~=1

FIG. 7. Scaling of the decoherence factor Q versus K̃ for fixed
W = 0, A = 2, and b = 2, 3. In the inset, large-volume extrapola-
tions for b = 2 and b = 3 are consistent with a decay L−1 and are
compatible with each other. These data definitely support the scaling
behavior of Eq. (38), thus implying the power-law divergence of
the corresponding decoherence susceptibility: χQ ∼ L2ỹκ with 2ỹκ =
11/4 [see Eq. (39)]. They also show that the parameter b does not
play a major role, apart from entering the definition of K̃ .

distortion of the FSS behavior around the quantum transition
of the Ising ring (cf. Sec. IV A), and (ii) the effect of the in-
teraction with the ancillary qubits is substantial, in which case
we show how the phase diagram gets changed, still developing
an Ising-like transition at gc > gI (cf. Sec. IV B).

A. FSS around the closed-Ising-ring criticality

As done in Sec. III A, in order to discuss the effects of
the perturbations arising from the ancillary spin system at
the CQT of the Ising ring, we should first determine the
corresponding scaling variables. For this purpose, we make
reasonable guesses based on the results for a finite number of
ancillary spins and in particular for a large number of n. Our
working hypothesis is that A, defined in Eq. (21), still remains
a good scaling variable (essentially because δ is again the gap
of the ancillary spin system), but we need to change K [cf.
Eq. (24)]. Indeed, using Eq. (35) and noting that n = L/b in
the case at hand, we arrive at the following expression:

K̃ = κb−1/2Lỹκ , ỹκ = yκ + 1/2 = 11/8. (37)

Therefore, the decoherence properties around the Ising-
ring criticality are expected to obey the scaling behavior

Q(b, g, κ, δ, L) ≈ Q̃(W, K̃, A). (38)

This implies that

χQ(b, g, δ, L) ≈ L2ỹκ C̃(W, A), (39)

showing a faster divergence with respect to that for a finite
number of ancillary spins [compare with Eq. (27)]. Numerical
data for the decoherence factor Q reported in Fig. 7 fully
support this scaling ansatz, within scaling corrections that, for
fixed b, appear to be suppressed as L−1. Analogous behaviors

1.325 1.35 1.375 1.4 1.425 1.45 1.475
g

0.3

0.35

0.4

Rξ

L=8
L=10
L=12
L=14

FIG. 8. The RG-invariant quantity Rξ versus g for b = 2 and
finite δ = κ = 1. The crossing point gc(κ = 1, δ = 1) ≈ 1.40 signals
the Ising-like transition between the paramagnetic and the ordered
phase of the lattice model, which moves away from the Ising critical
point gI = 1.

are developed by the other observables (not shown), for exam-
ple, in the case of RG-invariant quantities

R(b, g, κ, δ, L) ≈ R̃(W, K̃, A). (40)

We also expect that the microscopic distance b between the
ancillary contacts does not play a major role, apart from en-
tering the definition of the scaling variable K̃ .

B. Phase diagram for finite κ and δ

For finite values of the Hamiltonian parameters κ and δ,
the ancillary system may give rise to a modification of the
phase diagram. In particular, we expect that the system at
g = gI does not remain critical. Since the whole system has a
global Z2 symmetry, we may still have Ising-like transitions,
but their positions could shift to other values of g. This is
clearly demonstrated by the numerical results shown in Fig. 8,
which provide evidence of a transition along a surface at
gc(κ, δ) > gI (see Sec. VI for further details).

To address the nature of the transition, assuming that Rξ is a
monotonic function of g, one can invert Eq. (33) and substitute
it into the Binder dependence such that in the large-volume
limit

U (b, L, g, δ, κ ) ≈ UI (Rξ ). (41)

This relation is particularly useful to compare the universality
class of different models, as the function UI only depends
on the boundary conditions and the universality class at the
transition. Moreover, it does not require the tuning of any
nonuniversal parameter to be satisfied, so the universality
class of two different lattice models can be easily compared.
Leading scaling corrections to this formula are expected to get
suppressed as L−3/4 [20,21]. In Fig. 9 we show results for the
Binder parameter U vs the RG-invariant quantity Rξ = ξ/L
[cf. Eqs. (18) and (17), respectively] at finite values of δ and
κ , together with the interpolation of the universal Ising curve
UI (Rξ ) for PBC.
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FIG. 9. Binder parameter U versus the RG-invariant ratio Rξ for
b = 2, δ = 1, and κ = 1. The blue line represents the infinite-volume
extrapolation of the universal curve UI (Rξ ) for the conventional
Ising ring. Data for finite δ and κ > 0 approach the same RG uni-
versal curve of the Ising universality class with PBC. In the inset, we
show (U − UI )L3/4 in terms of Rξ . The behavior of the scaling cor-
rections appear substantially consistent with their expected O(L−3/4)
asymptotic suppression.

To better understand the features of the phase diagram in
the (g, κ ) plane, we keep δ > 0 fixed and discuss the behavior
when varying κ around κ = 0, around the pure Ising-ring QCP
(g = gI). Note that this is different from the case considered
in Sec. IV A, where δ was rescaled as δ ∼ L−z. Therefore, the
scaling behaviors outlined in Sec. IV A are not expected to
hold anymore.

To describe how the QCP moves, we may analyze the be-
havior of the scaling field ug under the effect of κ . While in the
previous analyses we considered ug = g − gI [cf. Eq. (20)],
here we should take into account the presence of the inter-
action with the ancillary system and therefore its dependence
on κ . Since the global system is invariant when changing the
sign of κ , ug must be an even function of κ . The additional
requirement of analyticity with respect to the Hamiltonian
parameters then gives

ug ≈ g − gI − Cκ (δ, b)κ2. (42)

Note that no terms containing only δ must be present, since
we must recover the closed Ising-ring expression when κ = 0
for any δ > 0.

The critical point occurs when ug = 0; thus we expect

gc(κ ) ≈ gI + Cκ (δ, b)κ2, (43)

which should hold for sufficiently small values of κ . This be-
havior has been numerically checked by estimating the critical
points gc(κ ) for various values of κ (see Fig. 10).

Therefore, assuming Ising transitions related to the break-
ing of the global Z2 symmetry, we expect to observe a scaling
behavior around gc in terms of the scaling variable

W̃ = (g − gc)Lyg, yg = 1. (44)

0 0.5 1 1.5 2
g

0
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0.4

0.6

0.8

1

1.2

1.4

κ ORDERED
PHASE

DISORDERED
PHASE

FIG. 10. Sketch of the g-κ phase diagram of the sunburst quan-
tum Ising model with b = 2 at δ = 1. The red square at κ = 1
corresponds to the specific case analyzed in Fig. 8, while the black
circles have been obtained by analyzing the RG-invariant quantity
ξ/ξI [cf. Eq. (34)] up to L = 12. The estimates of the critical points
are fully consistent with the behavior reported in Eq. (43), i.e.,
gc(κ ) − gI ∼ κ2 for sufficiently small values of κ .

This also implies, at g = gI and for small κ , the scaling
behavior (keeping δ > 0 fixed)

Q(g = gI, b, κ, δ, L) ≈ Qs(δ,Ws), (45)

R(g = gI, b, κ, δ, L) ≈ Rs(δ,Ws), (46)

where

Ws = κ2L ∼ W̃ (g = gI ). (47)

The above continuous transition line separates the phase dia-
gram in ordered and disordered phases for g < gc and g > gc,
respectively. Results inherent to the presented FSS ansatz are
shown in Fig. 11, where the decoherence factor Q nicely
scales in terms of b−1Ws. This plot also supports the fact
that the coefficient Cκ of the κ2 term in Eq. (43) behaves as
Cκ ≈ b−1 f (δ), implying again that the microscopic distance b
does not play a major role, apart from entering the redefinition
of the scaling variable Ws.

On the basis of the above results, in Fig. 10 we provide
a sketch of the phase diagram of the sunburst Ising model
with b = 2, at δ = 1, in the space of parameters g and κ . An
analogous scenario is expected to hold for any δ > 0 and any
value of b � 1.

V. BEHAVIOR ALONG THE FOQT LINE OF
THE ISING RING

We now discuss the effects of the interaction with the
ancillary system at the FOQT line of the Ising ring, i.e.,
when g < gI , and small values of κ and δ, around κ = δ =
0. Again we address the problem within a FSS framework,
which recently has been developed also at FOQTs (see, e.g.,
Refs. [20,23]). We consider the interaction with the ancillary
system as a perturbation, in particular when also its energy
scale δ is small. We recall that, at a FOQT, the gap �I (g, L) is
generally exponentially suppressed in the case of neutral
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FIG. 11. Plot of Q versus b−1Ws for finite g = gI and δ = 2
and various values of b. The data nicely confirm the FSS (45). In
the inset, scaling corrections at b−1Ws = 1 are compatible with an
L−1 behavior. Note that the large-volume extrapolations for the two
shown values of b = 2 and b = 3 are compatible with each other. The
straight lines are drawn to guide the eye.

boundary conditions [23,24], such as for Ising rings [cf.
Eq. (3)].

A. Case of a finite number of ancillary spins

We follow the same ideas at the basis of the FSS de-
scription of FOQTs of Ising systems driven by an external
magnetic field (see, in particular, Ref. [20]). We introduce the
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FIG. 12. Scaling of the decoherence factor Q versus Yκ at a
FOQT with n = 2, g = 0.9, and Yδ = 2. Data nicely collapse with
increasing lattice size, supporting the presented FSS theory [see, in
particular, Eq. (49)]. In the inset, scaling corrections at Yκ = 1 are in
complete agreement with an L−2 decay. The straight line is drawn to
guide the eye.

scaling variables

Yκ = κ

�I (g, L)
, Yδ = δ

�I (g, L)
. (48)

Here Yκ is proportional to the ratio of the energy change
arising from the perturbation associated with κ and the ex-
ponentially suppressed gap of the pure Ising ring [23], while
Yδ is the ratio between the gap of the unperturbed ancillary
system and that of the Ising ring. Therefore, we consider a
FSS limit keeping the scaling variables Yκ and Yδ fixed. The
decoherence factor defined in Eq. (11) is expected to behave
as

Q(n, g, κ, δ, L) ≈ Q(n,Yκ ,Yδ ). (49)

Numerical results for the scaling of Q in Fig. 12 fully support
the presented FSS hypothesis. Note that this also implies

χQ(n, g, δ, L) ≈ �I (g, L)−2C(n,Yδ ). (50)

In turn this implies that, since �I (g, L) is exponentially sup-
pressed [cf. Eq. (3)], the coherence shows an exponentially
rapid drop around κ = 0. Like the behavior at the CQT, we
again observe that the dependence on n can be absorbed
within the scaling variables for sufficiently large n, by replac-
ing Yκ with

Y ′
κ = √

nYκ . (51)

This clearly emerges from the plot in Fig. 13, where the de-
coherence factor Q is shown as a function of Y ′

κ at fixed Yδ for
several values of n. The analysis follows the same reasoning
as that carried out in the case of CQTs (see Fig. 5). Indeed,
the data are consistent with an asymptotic scaling behavior

Q(n, g, κ, δ, L) ≈ Q(Y ′
κ ,Yδ ) (52)

in the FSS limit, keeping Y ′
κ fixed.

Analogously to the behavior observed at the CQT, the
above scaling behavior changes significantly when δ > 0 is
kept fixed in the large-size limit. In this case, the decoherence
factor appears to depend smoothly on κ , even at κ = 0. There-
fore, also the corresponding susceptibility χQ does not diverge
in the large-size limit. Results are shown in Fig. 14 for δ = 1.

B. Case of ancillary spins at fixed distance

We now discuss the behavior at the FOQT of the Ising
ring when the ancillary spins are located at fixed distance b,
which results in their number scaling as n = L/b. Similarly to
the CQT case, on the basis of the large-n scaling variable Y ′

κ

introduced in Eq. (51), we argue that the appropriate scaling
variable when n = L/b is simply obtained by replacing n with
L/b, thus obtaining

Ỹκ = kL1/2

b1/2�I (g, L)
. (53)

The other scaling variable Yδ should be appropriate also in this
case. Therefore, the decoherence factor is expected to scale as

Q(b, g, κ, δ, L) ≈ Q̃(Ỹκ ,Yδ ). (54)

Numerical results displayed in Fig. 15 provide evidence of
this scaling behavior, within corrections that appear to decay
as L−1.
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FIG. 13. (a) Decoherence factor Q versus the inverse number of
ancillary spins 1/n for fixed Y ′

κ = 0.5 and 1. For each value of n, the
infinite-volume extrapolations for the decoherence are computed as-
suming L−2 scaling corrections. (b) Decoherence factor Q versus Y ′

κ

for many n and Yδ = 2 at a FOQT (g = 0.9). Data collapse improves
along the whole curve with an increasing number of ancillary spins.
These plots clearly support the scaling (52), when n is increased.
Indeed, the data appear to approach a scaling curve in the large-n
limit, which is clearly distinct from the curve for n = 1, at least for
sufficiently large values of Y ′

κ .

VI. BEHAVIOR IN THE DISORDERED PHASE

We finally discuss the effects of the interaction with the
ancillary system within the disordered phase of the Ising
ring. In this case we expect a trivial behavior when keeping
n fixed, i.e., a substantial independence of the size L when
increasing it, and a smooth behavior as a function of κ and δ.
However, it is interesting to note that, when increasing n, the√

n law emerges also within the disordered phase. Indeed, the
behavior is generally characterized by a dependence on

√
nκ

for sufficiently large n, and therefore on κL1/2b−1/2 when we
consider ancillary spins at fixed distance. In Fig. 16 numerical
results for b = 2 and 3 support this hypothesis.

According to previous sections, a reasonable doubt might
arise regarding the probed phase of the lattice model, as the
continuous transition line moves to higher values gc > gI
when b is fixed (cf. Fig. 10). However note that, with in-
creasing the lattice size, we also need to rescale κ ∼ L−1/2 to
keep κL1/2b−1/2 fixed. Thus, in the thermodynamic limit, we
only explore the phase diagram in the neighborhood of κ = 0,
where the system is always disordered for any g > gI .

VII. SUMMARY

We have investigated the ground-state properties of a sys-
tem of quantum spin-1/2 chains arranged in a sunburstlike
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FIG. 14. Decoherence factor Q versus κ for finite g = 0.9 and
δ = 1, with a single ancillary spin. The plot shows that Q behaves
as a smooth function of κ , as well as its susceptibility χQ, which
converges to a constant as L−1, in the large-volume limit (see the
inset, where the line is drawn to guide the eye).

geometry, as sketched in Fig. 1(b), where the L spins in
the ring are supposed to be described by a one-dimensional
quantum Ising model (1). The latter represents a prototypi-
cal quantum many-body system showing different quantum
phases, separated by FOQTs and a CQT, when varying the
intensity of the external transverse and longitudinal fields.
Although the full system is considered to be isolated and
thus governed by a unitary evolution, its subparts (namely,
the Ising ring and the external ancillary isolated spins)
are naturally subject to decoherence, as revealed by the
decoherence factor Q [Eq. (11)] and its susceptibility χQ

[Eq. (14)].
In this exploratory study of the sunburst Ising model, we

addressed the properties of its subsystems within the ground

0 0.5 1 1.5 2 2.5 3

Yκ
~

0

0.1

0.2

0.3

0.4

0.5

Q

b=2, L=10
L=12
L=14 

b=3, L=9
L=12
L=15

0 0.08 0.16

L
-1

0.37

0.41

0.45

b=2
b=3

Yκ
~

=2.5

FIG. 15. Decoherence factor Q versus Ỹκ for Yδ = 2 and b = 2
and 3, at a FOQT (g = 0.9). Data nicely collapse with increasing lat-
tice size, in agreement with the scaling behavior reported in Eq. (54).
In the inset, scaling corrections at fixed Ỹκ = 2.5 appear to decay as
L−1.

054111-11



FRANCHI, ROSSINI, AND VICARI PHYSICAL REVIEW E 105, 054111 (2022)

0 0.2 0.4 0.6 0.8 1 1.2

κL
1/2

b
-1/2

0

0.05

0.1

0.15

0.2

0.25

Q

b=2, L=8
L=10
L=12

b=3, L=9
L=12
L=15

FIG. 16. Decoherence function Q versus κL1/2b−1/2 = κ
√

n at
the disordered phase, with g = 1.5 and δ = 1. These data clearly
support the

√
n law of the dependence of the observables in the

large-n limit and in particular of the decoherence factor.

state of the global system, under different conditions con-
trolled by the various Hamiltonian parameters, such as the
Ising transverse field g, the energy scale δ of the ancillary
system, and the interaction strength κ between the two subsys-
tems. Even though we discussed the behavior in the large-size
limit, we essentially considered finite-size systems exploit-
ing FSS frameworks, and thus the equilibrium ground-state
properties could be associated with the adiabatic dynamics.
Finite-size systems generally have a nonvanishing gap; there-
fore, it is always possible to conceive adiabatic evolutions
for sufficiently large timescales, even close to the quantum
transitions.

Substantially different regimes emerge. At small κ they are
related to the different phases of the Ising ring. We observed
rapid changes with respect to variations of the Hamiltonian
parameters close to quantum transitions, such as along the
FOQT line (|g| < gI) and at the CQT (g  gI) of the Ising
ring, with the emergence of peculiar scaling regimes. To
perform this analysis we exploited RG and FSS frameworks
[20], which allowed us to effectively describe the behav-
ior of systems in proximity to either CQTs or FOQTs. We
distinguished two notable large-L limits where FSS laws de-
velop: (i) the case in which the number n of isolated spins
of the ancillary system is kept fixed and (ii) the case in
which their number increases as n = L/b, being located at
fixed spatial intervals of size b, to maintain a residual trans-
lation invariance. In the following we summarize the main
results.

For sufficiently small values of the Hamiltonian parameters
δ and κ , the decoherence factor and also the correlations along
the Ising ring show nonanalytic behaviors at the CQT, con-
trolled by scaling variables associated with the Hamiltonian
parameters κ and δ. The one associated with the interaction
strength κ is given by (i) K = κLyκ , where yκ = 7/8, for
a finite number of ancillary spins (the RG exponent yκ is
related to that of the symmetry-breaking defects [35]), and
(ii) K̃ = κLỹκ , with ỹκ = yκ + 1/2 = 11/8, for an infinite
number of ancillary spins. The crossover between the two

regimes is essentially controlled by the peculiar
√

n depen-
dence when increasing n, which can be reabsorbed by an
appropriate redefinition of the scaling variable associated with
the Hamiltonian parameter κ , i.e., K ′ = √

nK . Therefore, the
scaling variable K̃ reflects the fact that the large-n behavior
is essentially controlled by the scaling variable

√
nK leading

to K̃ when replacing n = L/b. The scaling variable associated
with the ancillary energy scale δ turns out to be A = δLz, with
z = 1, in both cases (i) and (ii). The scaling behavior of the
decoherence factor, reported in Eqs. (25) and (38), implies
rapid changes when moving κ and δ from zero, due to the
divergence of the corresponding susceptibility [cf. Eq. (14)],
as (i) χQ ∼ L2yκ for finite n and (ii) χQ ∼ L2ỹκ for n = L/b
(keeping A fixed).

The impact on the decoherence behavior in the small-κ
and -δ regimes appears even more drastic at the FOQT tran-
sition line, where the gap �I of the pure Ising ring gets
suppressed exponentially when increasing L. The scaling vari-
ables turn out to be (i) Yk = κ/�I for finite n and (ii) Ỹk =
κL1/2/b1/2�I for n = L/b, while Yδ = δ/�I in both cases
(i) and (ii). As a consequence, the decoherence susceptibility
now diverges exponentially, i.e., χQ ∼ �−2

I ∼ ecL.
The above behaviors change when considering the large-

size limit while keeping the energy scale δ > 0 of the ancillary
subsystem fixed. In particular, we observed a smooth depen-
dence of the various quantities on κ even around κ = 0, when
the number n of ancillary spins is finite. However, this is
effectively controlled by the product

√
nκ when n increases

and by κL1/2 when n increases linearly as n = L/b. This led
to the predictions that the decoherence susceptibility remains
finite [χQ = O(1)] at finite n, while it increases as χQ ∼ L for
n ∼ L. Likewise, we observed an analogous behavior of χQ

with L, at the disordered phase of the Ising ring (i.e., when
g > gI).

Finally, we have analyzed the global phase diagram of
the model in the space of the Hamiltonian parameters g, κ ,
and δ. As expected from considerations based on the global
symmetry of the system, which maintains a Z2 symmetry
[cf. Eq. (7)], there is a line of Ising-like CQTs separating
disordered and ordered phases. This line runs for gc(κ, δ) >

gI , and in particular close to κ = 0 it behaves as gc(κ, δ) ≈
gI + Cκκ

2. Around it, the decoherence factor behaves (i) as a
smooth function of κ for finite n or (ii) as κL1/2 for n = L/b.

Our analysis has focused on the sunburst Ising model with
a one-dimensional geometry (namely, the subsystem made of
L interacting spins is effectively a ring). However, from a
conceptual point of view, it is straightforward to generalize
such model to higher dimensions (for example, the two-
dimensional case corresponds to an interacting spin system on
a square lattice, where some spins are coupled with isolated
qubits, following a regular pattern). Unfortunately, the lack
of integrability of such a model drastically limits the pos-
sibilities of standard numerical approaches up to very small
sizes.

It would be tempting to also investigate the sunburst model
under dynamic out-of-equilibrium protocols for examples
arising from sudden quenches of one-Hamiltonian parameter,
such as those already considered within the more familiar
central spin models (see, e.g., Ref. [20]). In this context,
one could study peculiar mechanisms arising in composite
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quantum systems, such as the onset of decoherence in time
or the exchange of heat and work between the various sub-
portions of the whole system, characterizing their quantum
thermodynamic properties.

We point out that all the results obtained in this paper
have been carefully checked by means of numerical simula-

tions for systems with a limited number of coupled qubits
(L � 20). This suggests the possibility to devise near-term
experiments with quantum simulators to access our predic-
tions directly in the laboratory, e.g., by means of trapped
ions [36,37], ultracold atoms [38,39], or superconducting
qubits [40,41].
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