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A B S T R A C T   

A key issue in GCxGC-HRMS data analysis is how to approach large-sample studies in an efficient and 
comprehensive way. We have developed a semi-automated data-driven workflow from identification to suspect 
screening, which allows highly selective monitoring of each identified chemical in a large-sample dataset. The 
example dataset used to illustrate the potential of the approach consisted of human sweat samples from 40 
participants, including field blanks (80 samples). These samples have been collected in a Horizon 2020 project to 
investigate the capacity of body odour to communicate emotion and influence social behaviour. We used dy-
namic headspace extraction, which allows comprehensive extraction with high preconcentration capability, and 
has to date only been used for a few biological applications. We were able to detect a set of 326 compounds from 
a diverse range of chemical classes (278 identified compounds, 39 class unknowns, and 9 true unknowns). Unlike 
partitioning-based extraction methods, the developed method detects semi-polar (log P < 2) nitrogen and 
oxygen-containing compounds. However, it is unable to detect certain acids due to the pH conditions of un-
modified sweat samples. We believe that our framework will open up the possibility of efficiently using GCxGC- 
HRMS for large-sample studies in a wide range of applications such as biological and environmental studies.   

1. Introduction 

There have been surprisingly few non-targeted biological studies 
with GCxGC-HRMS. One of the main reasons is that large-sample batch 
data processing of GCxGC-HRMS data is in its infancy. There are several 
levels of identification and verification steps needed for such a data- 
driven approach which were recently summarized by Stefanuto et al. 
[1] and Schymanski et al. [2] It is often concluded that the automation 
of non-target analysis and subsequent suspect-screening remains an 
elusive process. 

This process can be intricate due to small deviations in retention 
times, suboptimal peak shapes, intensive background, and the diversity 
of chromatographic features among samples (e.g., large qualitative 
differences between samples), which makes the development of an 
efficient approach for use with large batches of samples challenging. 
There are automated packages available for the first step of peak 
alignment among a multitude of samples based on spectral similarities 
and retention time proximity [3–6]. Reichenbach et al. proposed 

cumulative chromatograms for comprehensive compound identification 
across multiple samples with chromatographic feature templates which 
can be geometrically adjusted to automatically account for these dif-
ferences (e.g. a slight shift in first-dimension retention time) [7]. They 
showed the application of this approach to a set of 20 samples. However, 
batch data processing with automatic template generation above this 
number of samples became quickly very time-consuming, which might 
also explain why the suggested approach has never been used for 
comprehensive compound screening in biological studies. We therefore 
developed an approach which can handle batch sizes required for bio-
logical studies (i.e., with a minimum of 60 samples for a two-group 
comparison with 30 samples each). 

Full automation of the whole process does not yet seem feasible due 
to several workflow steps which require expert knowledge and manual 
curation. For example, the compound identification of electron impact 
spectra is not expected to be replaced by machine learning in the near 
future due to distinct fragmentation mechanisms even for closely 
structurally related compounds, as well as ion rearrangements. 
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Automated peak deconvolution and correct peak selection are limited 
for abundant low intensity peaks with co-elution, which do not yield 
high purity peak spectra. The assignment of automated peak formulae is 
challenging for low intensity peaks, especially when the molecular ions 
are not available [8]. In addition, the selection of characteristic ions 
across hundreds of compounds is difficult without knowing which ions 
can be relied upon for certain molecules. 

Therefore, we have developed a method that simultaneously moni-
tors a large set of chemicals (i.e., 326 compounds) across a large set of 
samples (i.e., 80 samples) with a semi-automated approach based on 
cumulative GCxGC chromatograms and what we call high-mass reso-
lution extracted ion images (or in short: EIIs) and corresponding tem-
plates (i.e., 65 templates). Our framework enables new compounds to be 
easily added and allows to quickly adapt the data processing method to 
account for detrimental batch effects, or experimental artefacts (e.g., 
retention time shifts due to humidity issues). We believe this framework 
will open up the possibility to exploit GCxGC-HRMS for large-sample 
studies in a wide range of applications such as biological and environ-
mental studies. 

The example data set which we used to illustrate the potential of our 
approach contains human sweat volatiles and is part of the European 
Union Horizon 2020 POTION project aimed at studying the capacity of 
body odour to communicate emotion and influence social behaviour [9]. 
We used evaporative dynamic headspace extraction for this purpose, 
which enables comprehensive extraction with a high preconcentration 
capability, and has to date only been reported in three biological studies 
[10–12]. 

2. Materials and methods 

2.1. Participants 

We enrolled 40 healthy participants for this study, which was per-
formed in accordance with the Declaration of Helsinki and approved by 
the local ethical review board at our university. Informed written con-
sent was obtained from participants before the start of the study, whose 
requirements are described in Supplementary Table 1. There were 18 
female and 22 male participants representing 45% and 55% of the total 
study population, respectively (Supplementary Table 2). The mean age 
of the participants was 27 ± 3 years. The study was performed in two 
batches of 20 participants, during the summer and following winter 
period. 

2.2. Preparation of standards 

For the method validation, a mixture of certified standard materials 
was used. The composition of the standard mixture is presented in 
Supplementary Table 3. For the internal standard spiking mixture, we 
used deuterium labelled standard materials (Cambridge Isotope Labo-
ratories, Massachusetts, USA). All spiking mixtures were prepared in 
methanol and were added to artificial apocrine sweat (Pickering Labo-
ratories, Mountain View, California, USA). 

2.3. Sampling protocol 

We used commercially available sweat pads called Dermatess (Pie-
trasanta Farmaceutica, Capannori, Italy), they were double layered, 10 
× 10 cm made of viscose (67%) and polyester (33%). The pads and tools 
used for sampling were thermally pre-treated (150 ◦C for 20 min) and 
were applied to the armpits of the volunteers using head injury gauze for 
good flexibility. The samples were taken from the axilla of the non- 
dominant hand of each volunteer. The pad was applied using previ-
ously heat-treated tweezers. Sweat was collected for a 10-min period 
while the volunteers were presented with a virtual reality scenario of a 
relaxing environment which had been recently validated [13]. After-
wards, the pads were removed from the volunteers’ armpits and 

transferred into glass containers, which were placed in a freezer at - 
80 ◦C until the analysis. 

2.4. Dynamic headspace extraction 

Thermal extraction was performed using a Markes μ-Chamber 
(Llantrisant, United Kingdom). Prior to extraction, the cuvettes of the 
chamber were thermally treated at 150 ◦C for 20 min with a nitrogen 
flow of 150 mL min− 1. Pure nitrogen (>4.0) was purified from com-
pressed air using an LNI Swissgas NG EOLO 10 L nitrogen generator 
(Versoix, Switzerland). After thermal treatment, the μ-Chamber was 
cooled down to 35 ◦C, the purge flow was switched off and the sorbent 
tubes packed with 120 mg of Tenax-GR (poly-2,6-diphenylphenylene 
oxide with 23% carbon, 60/80 mesh, average particle size 0.5 μm) were 
placed into the outlet of the four cuvettes of the μ-Chamber. The sweat 
pads at this point were taken out of the freezer and immediately placed 
into the cuvettes of the μ-Chamber. Next, 3 μL of the internal standard 
mixture was spiked onto the sweat pads. The cuvettes were closed, and 
the flow was applied at this point for 30 s to test whether the system was 
leak tight. The temperature was then set at 60 ◦C, and after the setpoint 
was reached, the headspace was left to equilibrate for 15 min. Upon 
completion, the purge flow was applied (75 mL min− 1), and the 
extraction lasted for 20 min for a total purge volume of 1500 mL. 

2.5. Thermal desorption 

Thermal desorption of the sorbent tubes was performed on-line using 
the thermal desorption compartment of a Markes Centri multi-mode 
extraction and enrichment platform. The desorption process was car-
ried out in two steps to refocus and concentrate the sample band and to 
interface the optimal flow rates both for thermal desorption (25–75 mL 
min− 1) and capillary chromatography (0.5–5 mL min− 1). This was 
achieved according to standard procedure by inserting a cold trap be-
tween the tube desorption and the chromatographic column. The trap 
material covered a range of C4–C32. A pre-purge of 2 min at 250 mL 
min− 1 was used to mitigate the effect of humidity. Afterwards, the pri-
mary desorption flow was 35 mL min− 1 at a starting temperature of 
35 ◦C, then heated up to a final desorption temperature of 300 ◦C, which 
was held for 5 min. The in-line cold trap was kept at 2 ◦C throughout the 
tube desorption. The trap was desorbed afterwards using flash-heating 
to 300 ◦C and kept there for 7 min. The trap desorption flow was 4 
mL min− 1, which consisted of a column flow of 0.5 mL min− 1 and split 
flow of 3.5 mL min− 1. This split flow was passed through to a recol-
lection tube for later use. After each sample, trap heating was performed 
through the split line in order to minimize the carryover (300 ◦C for 5 
min at 50 mL min− 1). 

2.6. GCxGC-TOF parameters 

An overview of the method is presented in Fig. 1. The comprehensive 
two-dimensional gas chromatograph (GCxGC) was an Agilent 7890B 
equipped with a capillary flow technology flow modulator (Agilent 
Technologies, Santa Clara, California, USA). The first-dimension column 
configuration was a J&W DB-5MS (30 m * 0.25 mm * 0.25 μm), while 
the second-dimension column was a J&W DB-INNOWAX (5 m * 0.25 
mm * 0.15 μm). The separation was performed in constant-flow mode. 
The first column volumetric flow rate was 0.5 mL min− 1, the second 
column flow rate was 18 mL min− 1 with a modulation period of 2s. Both 
column flows were sub-optimal, the confining factor being the fixed 
volume loop of the modulator (19 μL) which limits the first column flow 
and therefore the sharpness of the first-dimension peaks. This resulted in 
at least five modulated sub-peaks for each 1D peak, which proved to be 
very useful in the recreation of first-dimension retention times (tR1) by 
fitting a Gaussian-curve during data processing. 

The outlet of the second-dimension column was connected to a 
passive splitter between two deactivated silica-capillaries. The first 
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capillary (3 m * 0.18 mm) was connected to the quadrupole time-of- 
flight (7250 Q-TOF, Agilent Technologies) mass spectrometer, and the 
other capillary (0.9 m * 0.25 mm) was connected to an olfactory 
detection port. This resulted in a split ratio of 6:1, with less than 3 mL 
min− 1 entering the mass spectrometer (maximal accepted flow for the Q- 
TOF). 

2.7. GCxGC-HRMS data processing 

The batch analysis of high resolution GCxGC-Q-TOF MS data 
currently poses the biggest challenge in GCxGC-Q-TOF MS data pro-
cessing. We used GC Image (v.2.8. Lincoln, Nebraska, USA) for this 
purpose. First, a non-targeted qualitative approach was followed. The 
qualitative composition of a sample was examined with the high chro-
matographic resolution granted by the GCxGC system in combination 
with the high mass-resolving power of the Q-TOF. Using the power of 
this technique, both in terms of spectral similarity, linear retention index 
(LRI) comparability, and elemental formulae assignment through ac-
curate mass measurement, the tentative identity of the chemicals can be 
inferred with good confidence. 

3. GCxGC-HRMS data analysis for biological studies 

3.1. Composite chromatograms for comprehensive compound 
identification 

First, each chromatographic raw data file was pre-processed and 
saved as a total ion image (TII – a two-dimensional image based on the 
total ion current) in order to minimize the irrelevant information in the 
data. The application of a threshold filter practically eliminated the 
peaks on the mass spectra that originated from electronic noise or from 
the shift in mass peaks due to diverse effects such as detector saturation 
or space-charge effects in the mass analyzer. This filter (20 counts) also 
drastically reduced the data processing time. A further spectral filter was 
also applied to remove some of the peaks that were attributed to column 
bleed, carbon dioxide, argon, and their respective isotope peaks. 

A phase shift of the second-dimension retention time (tR2) was then 
applied to position the least retained class of organic compounds by the 
second column (n-alkanes) near the bottom of the 2D chromatogram. 
This is important for the easy interpretation of the physico-chemical 
information that is correlated with the first- and second-dimension 
retention times (Fig. 2). It is also important in aligning the chromato-
grams consistently between different batches of analyses. Differences in 
tR2 between batches may arise from different lengths of the uncoated 
capillary between the MS and the splitter which change the overall flow 
path between the MS and the modulator. Automatic peak detection was 

performed after automatic baseline correction using a default algorithm. 
These TIIs were then used to automatically generate a composite chro-
matogram by batch reprocessing [7] (Figure TOC). 

Automatic peak detection was performed on the composite chro-
matogram followed by a search in the EI spectral library of NIST (Na-
tional Institute of Standards and Technology version 2017, 
Gaithersburg, Maryland, USA). LRI calibration was done using an n- 
alkane series (C5–C20). We used peak filters of at least 750 spectral 
similarity and maximum 50 LRI unit deviation from the library value 
(when applicable). The value of 750 may seem relatively low for a GC- 
MS library search. We loosened this criterion due to an inherent 
discrimination of TOFs for lighter ions (lower m/z values), which 
slightly decreases the spectral similarity values of the library hits. The 
discrimination happens because even though there is no voltage applied 
to the collision cell (which fragments the ions for multi-stage MS mea-
surements), there is an automatic standby flow of 2 mL min− 1 of ni-
trogen which causes ion-molecule collisions prior to the ions entering 
the flight tube. 

Using the automated identification, only a quarter of the compounds 
were tentatively identified. This limited identification was due to coe-
lutions, interferences of peak tailing, lack of linear retention index li-
brary data or having a feature with unknown compound identity. For 
this reason, some user supervised identification was necessary. 
Furthermore, elemental formulae assignment of molecular and charac-
teristic ion peaks was not possible to perform automatically. In any case, 
automation reduced the time spent on identifying the major and pure 
peaks. 

Each peak was examined using the mass spectra extraction function 
of the software, and these spectra were then matched with the NIST 
spectral library (spectral similarity >750 and ± 50 LRI units). To further 
strengthen the tentative identification, elemental formulae were 
assigned to the molecular ions when they were present. When molecular 
ions were not available, characteristic ions were used to classify the 
compound. The measure of the correct formula assignment is accuracy, 
which is the difference in the theoretical (m/zthe) and measured mass 
(m/zmeas) of the ion expressed in parts-per-million (ppm). A value below 

Fig. 1. The dynamic headspace, thermal desorption unit and GCxGC-QTOF MS 
system setup. The thermal desorption unit includes tube & trap desorption and 
re-collection. The GCxGC system Q-TOF uses the flow-modulation. The sta-
tionary phase of Column 1 is a DB-5MS UI, whereas Column 2 is coated with a 
DB-INNOWAX. 

Fig. 2. The total ion image (TII - above) and the extracted ion image (EII) of m/ 
z 44.0256, a characteristic ion for n-aldehydes (bottom). The rectangles for 
each EII template represent the retention time windows for integration of each 
individually monitored chemical. 
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10 ppm is considered to be an accurate match, although this threshold 
may depend on the intensity and the mass of the ion peak. Tentative 
identity was only assigned for the detected peaks once all the three key 
parameters matched well (spectral similarity, LRI proximity and mo-
lecular/characteristic ion formulae). The tentatively identified com-
pounds are reported in Supplementary Table 4. 

3.2. Characteristic ion templates for batch-wise data processing 

After identifying and funnelling the suspected list of chemicals, we 
assigned characteristic ions to each one. The characteristic ions were 
chosen based on two criteria: a) the ion had to be selective for the in-
dividual chemical, b) the ion had to be an intensive peak on the spec-
trum, and at least 30% of the base peak. By selecting these characteristic 
ions with a narrow asymmetrical spectral window (m/zacc - 0.003, 
+0.01), we extracted the ion images (EIIs) from the initial raw data files 
that were specific for either a class of chemicals (e.g., m/z 44.0256 – 
C2H4O+* for n-aldehydes) or in certain cases, for individual compounds 
(Fig. 2). The asymmetrical extraction window was chosen in this way 
due to the positive mass shift of the ions saturating the detector. 

Based on the previous identification work and the prepared EIIs, a 
peak template was then created, which included the respective retention 
time windows for each compound which were drawn as rectangles or 
polygons on the EIIs (Fig. 2). This template was then applied to all EIIs 
prepared from the samples, thus resulting in the final feature matrix 
with all the chemicals as variables and all the samples as observations. 

For all the tentatively identified unknown class and unknown 
chemicals, a set of 65 peak templates was generated, some including 
only one characteristic ion, others including up to 5 ions that did not co- 
elute with each other. We also successfully eliminated data processing 
difficulties caused by wraparound using the EIIs. Wraparound occurs 
when a highly retained chemical on the second column elutes in the 
successive modulation period [14]. This would normally cause issues 
with data processing but using the EIIs we were able to spectrally resolve 
the affected peaks. The templates were further adjusted for four different 
batches to account for minute retention time shifts. This means that from 
one raw data file, 65 SIC images were extracted. This procedure was 
then repeated for all the sweat samples and their respective blanks. This 
approach is useful because each compound can be very selectively 
monitored in terms of its retention times (first and second dimension) 
and characteristic ions. The templates and a guide for data processing 
are available in the Supplementary information (Supplementary 
Table 5). The templates can be relatively easily extended with additional 
compounds, while the semi-automated data processing steps could be 
performed by non-specialists. 

3.3. Systematic compound origin assignment 

Systematic origin assignment for hundreds of compounds is rarely 
carried out in biological studies with hundreds of chemicals due to the 
amount of work involved and the ambiguity with regards to labelling a 
compound as either as “endogenic” (known origin from the “human 
body”) or as “exogenic” (known “anthropogenic” compounds, i.e., 
created through human activity, without known origin of the human 
body). We developed the following workflow to address this issue. First, 
we investigated the compounds reported in the main human and bio-
logical databases, including the Human Metabolome Database (HMDB) 
[15], the Kyoto Encyclopaedia of Genes and Genomes database (KEGG) 
[16], and the Lipid Metabolites and Pathways Strategy database (Lip-
idMaps) [17] (Supplementary Table 6). Matching was done by CAS 
identifier or compound name with the publicly available Chemical 
Translation Service tool (CTS) [18]. Compounds contained in these 
databases were individually checked and labelled with known origin 
from the “human body” including compounds originating from food or 
microbial origin. The remaining compounds were either classified as 
known “anthropogenic” compounds or as chemicals with “unknown” 

origin, by comparison with the EPA chemical dashboard from the U.S. 
Environmental Protection Agency (EPA), which is currently the most 
comprehensive public resource to label compounds as “anthropogenic” 
[19]. We narrowed down the most relevant databases to 18 concerning: 
personal care products, cleaning detergents, solvents, indoor dust, 
plastic packaging, and tobacco. The database search was done by CAS 
identifier, and if needed compound name. Of course, the compounds 
originating from the human body can have an anthropogenic contri-
bution, and the currently known compounds in environmental databases 
are by no means comprehensive. In addition, it has to be carefully 
defined what “endogenic” and “exogenic” means depending on the type 
of study. Our main contribution here is the proposed workflow which 
allows origin assignment for a large number of compounds with avail-
able public databases in a timely manner. The resulting table with 
compound origin assignment for the identified sweat volatiles can be 
found in the Supplementary info (Supplementary Table 7). 

Selecting the relevant environmental databases and organism iden-
tified clearly depends on the type of biological study. In our case the 
focus was on human sweat volatiles. A recent update regarding human 
volatiles was a good reference point [20]. This review contains a rela-
tively large number of skin volatiles, including 581 compounds 
belonging to 26 compound classes. 

3.4. Statistical analysis 

Chemical data analysis was performed with R version 4.2.0 (R 
Foundation for Statistical Computing, Vienna, Austria) with the pack-
ages: tidyverse, ggplot2, and ggforce. Data analysis was based on the 
recommendations from Refs. [21,22] with the following main steps: 1.) 
replacement of artefacts and missing values with 1/5 of the minimum 
peak volume (V*s [2]) for each compound, 2.) sweat weight normali-
zation (V*s [2]/mg), 3) log 10 transformation. Further information can 
be found in the data analysis info file, the data tables 1–13, and data 
analysis scripts 1–10. 

4. Results and discussion 

4.1. Detected compounds 

Using a single analytical method, we were able to detect a set of 326 
compounds from a diverse range of chemical classes (278 identified 
compounds, 39 class unknowns, and 9 true unknowns) (see Fig. 3). The 
developed GCxGC-TOF method with DHS at 60 ◦C allowed to identify 
compounds from most chemical classes. The highest number of com-
pounds were either alcohols, aldehydes, hydrocarbons, esters, or ke-
tones. We could detect a high abundance of nitrogen containing and 
heterocyclic oxygen containing compounds, which is probably because 
these generally more hydrophilic chemicals (log P < 2) are particularly 

Fig. 3. Detected skin volatiles with the developed GCxGC-TOF method with 
DHS at 60 ◦C. 
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efficiently extracted using DHS. In contrast, most sampling methods 
reported in the literature have used partitioning-based sampling tech-
niques such as liquid extraction, stir-bar sorptive extraction (SBSE) [23], 
sorptive tap extraction (STE) [24] or solid phase micro-extraction 
(SPME) [25] with less efficient extraction of nitrogen and heterocyclic 
compounds. 

The retention of the polar chemicals has some variability, since we 
are using thermal desorption and despite purging the carrier gas in order 
to dry the sorbent tubes prior to desorption, there are still traces of 
humidity that enter the GC column. This results in the formation of 
water micro-droplets on the highly apolar inner surface of the dimethyl 
siloxane coated first column, due to its poor wettability by water. As a 
result, the hydrophilic compounds are trapped in these water droplets 
and are less efficiently focused on the head of the first column. However, 
with our strategy for data processing, we adjust the templates of these 
compounds individually. This increases the quality and the consistency 
of the resulting feature matrix before the statistical analysis is 
performed. 

Our method’s main drawback is the lack of detectability of some 
organic acids and of a few very volatile chemicals. In fact, the physio-
logical pH of human skin ranges between 4.0 and 7.0, which shifts the 
equilibrium towards the deprotonated form of the short-chain fatty 
acids. This greatly reduces their ability to volatilize and thus the 
detectability with our method, which is proportional to their protonated 
fraction. This is a common issue for liquid-liquid extraction methods 
with decreased pH of the aqueous phase [26,27]. 

There is very limited literature about sweat volatiles, and even less 
about armpit sweat in particular. There is the review about human 
volatiles from healthy human breath and bodily fluids [20] and a recent 
review dedicated to the human skin volatilome [28]. This recent review 
highlights two studies which analysed armpit sweat samples with a 8 
min cotton pad collection followed by static headspace TD and GC-MS 
analysis which could identify 23 sweat volatiles [29], respective a 
study with a 24 h sterile gauze collection followed by static headspace 
SPME and GC-MS analysis which resulted in 45 identified compounds 
[25]. 

4.2. Predicted physico-chemical properties for unknowns 

The correlation between retention times and physico-chemical 
properties was evaluated for both the first- and second-dimension col-
umns in relation to boiling point and log P, as a proxy measure to hy-
drophobicity. We used the OPERA predicted values for both properties. 
Since we used a linear oven temperature program, the boiling point – tR1 
linear correlation proved to be very good both for the samples with the 
278 tentatively identified chemicals (R2 = 0.90) (Supplemental Fig. 1). 
For log P versus log tR2 relationship (Supplemental Fig. 2), there was a 
correlation of R2 = 0.54. This effect can be explained by the selectivity of 
the DB-INNOWAX phase and the extended set of chemicals, where half 
of the dataset is not comprised of homologue series. The correlation (R2 

= 0.90) between the first-dimension retention times and boiling points 
allows us to make predictions about the boiling points of the class un-
knowns, unknown chemicals and tentatively identified chemicals with 
unknown boiling points (i.e., 65 features). This strictly indicative pre-
dicted information is included in Supplementary Table 4. 

4.3. Dynamic headspace extraction 

The estimated limits of detection (LOD) and quantification (LOQ) are 
shown in Supplementary Table 8. Our sample-amount normalized limits 
of detection were slightly higher than those reported for the analysis of 
environmental pollutants in natural water [30]. The usual dynamic 
range of our method was 2–8000 pg of reference standard chemicals in 
1 μL of sweat (e.g., methyl salicylate – Supplementary Fig. 3). Repeat-
ability was estimated to be 14 ± 6 RSD %. The robustness of the method 
was examined at 6, 20 and 60 ng of total spiked amounts to the tubes and 

pads, respectively. At the highest level, the average recovery ranges 
between 4 and 91% depending on the chemicals (Supplementary 
Table 9). 

Note that the sweat pads and all applied sampling equipment 
(tweezers, sample bottles and aluminium foil surfaces) were treated at 
150 ◦C for 20 min to minimize contamination (Supplementary Fig. 4). 

The median sweat weight that we measured was 86 ± 91 mg, how-
ever including some extreme values of 33 and 408 mg. We tested for 
systematic errors in absolute peak volume as a function of the artificial 
sweat amount spiked to the pads. The general trend is a slight decrease 
in peak volumes as the amount of sweat increases. The set of chemicals 
that did not systematically increase in peak volume with the added 
artificial sweat amounts due to blank contribution show a systematic 
decrease in peak volumes by 56 ± 19% and 54 ± 23% at 300 μL and 600 
μL sweat amounts, respectively (Supplementary Table 9). 

The effect of humidity was initially a problem for high-temperature 
DHS of the sweat samples. The mean collected sweat weights were 121 
mg for females (n = 18) and 133 mg for males (n = 22), therefore an 
adsorption of excessive amounts of water on the Tenax-GR is expected 
despite its low breakthrough volume. Our pre-purge step (750 mL at 
250 mL min− 1) prevented the excessive introduction of water into the 
apolar 1st dimension GC column. In fact, water is very destructive 
during thermal re-focusing of the chemicals due to the poor wettability 
of the apolar stationary phase with water (Supplementary Figs. 5–8). 
This thus raises the question of the very volatile sweat chemicals 
breaking through during the extraction and pre-purging steps. We used 
selected-ion flow tube mass spectrometer (SIFT-MS) for real-time 
detection (SYFT, Christchurch, New Zealand) to evaluate the qualita-
tive and quantitative extent of chemicals breaking through (SI Table). 
The results suggested that acetone and 1-propanol (C3) are mostly 
broken through (Supplementary Figs. 9–10) and thus can only be 
considered for qualitative analysis. 2-Butanone and 1-Butanol showed 
significant breakthrough as well - about half of the spiked amounts were 
retained at the concentration level examined. Since the extent of the 
breakthrough depends on the amount of chemicals in the sample, their 
peak areas cannot be reliably used for comparative analysis. However, 
for 2-Pentanone and 1-Pentanol or higher homologues, we can safely 
assume the retention of the chemicals on Tenax-GR to be quantitative 
using this method (Supplementary Fig. 11). Therefore, only very few 
very volatile compounds could not be detected with the developed 
method. The areas on the chromatogram that are affected are shown in 
Supplementary Fig. 12. 

The question of pH is especially relevant regarding the volatilization 
of organic acids since they lose their volatility in deprotonated form. The 
aim of this study was to characterize the volatilization process of 
chemicals from the skin in a similar way to real life conditions; we did 
not investigate the pH dependence of extraction dynamics. Since the 
physiological skin pH ranges between 4.1 and 5.8 or according to other 
sources 4.0–7.0, which is a complicated pH range with regards to the 
speciation of short-chain fatty acids, the efficient extraction of organic 
acids is a weakness of this method. 

5. Conclusions 

We have developed a semi-automated data-driven workflow from 
identification to suspect screening, which allows highly selective 
monitoring of the response of the identified chemicals in large-sample 
GCxGC data. In other words, we change the focus of a typical GCxGC 
analysis from: “What do we have in the sample?” to “How do the 
amounts of the identified compounds change across all samples?“. We 
believe that our framework will open up the possibility to efficiently use 
GCxGC-HRMS for large-sample studies for a wide range of applications 
(e.g., biological or environmental studies). In addition, dynamic head-
space extraction proved to be a powerful method to extract and pre-
concentrate sweat volatiles. We were able to extract more hydrophilic 
compounds than comparable partition-based extraction methods. In 
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total, we could detect 326 compounds from a diverse range of chemical 
classes (278 identified compounds, 39 class unknowns, and 9 true 
unknowns). 
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