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a b s t r a c t

Cluster-based permutation tests are widely used in neuroscience studies for the analysis of high-
dimensional electroencephalography (EEG) and event-related potential (ERP) data as it may address
the multiple comparison problem without reducing the statistical power. However, classical cluster-
based permutation analysis relies on parametric t-tests, whose assumptions may not be verified in case
of non-normality of the data distribution and alternative options may be considered. To overcome this
limitation, here we present a new software for a cluster permutation analysis for EEG series based on
non-parametric Wilcoxon–Mann–Whitney tests. We tested both t-test and non-parametric Wilcoxon
implementations in two independent datasets of ERPs and EEG spectral data: while t-test-based and
non-parametric Wilcoxon-based cluster analyses showed similar results in case of ERP data, the t-test
implementation was not able to find clustered effects in case of spectral data. We encourage the use
of non-parametric statistics for a cluster permutation analysis of EEG data, and we provide a publicly
available software for this computation.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Motivation and significance

Cluster-based permutation tests of EEG/ERP data are widely
sed methodologies in the fields of psychophysiology and neuro-
cience. EEG data are characterized by the spatiotemporal struc-
ure in which univariate statistical tests should be conducted
t every data sample in time; however, this may lead to mis-
onclusions due to errors related to multiple statistical compar-
son [1]. Classical correction methods for multiple testing may
e used to tackle this issue, nevertheless, they may reduce the
easured effect size and the probability of observing the true
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effect present in the data [2]. To address these concerns and
maximize the power in the statistical analysis, a cluster-based
analysis has been proposed with the assumption that neural
effects are clustered in the different dimensions of interest: space,
time, and/or frequency.

Cluster-based analysis leverages on univariate tests, a mask
definition based on their a priori significance, and candidate
clusters identification by neighboring points in the dimensions
of interest. The first proposal of cluster-based permutation tests
was introduced for magnetic resonance analysis [3], and since
then other generic open-access implementations have been re-
leased [4–6]. Classical implementations of cluster-based permu-
tation analysis rely on parametric t-tests in the sample-to-sample
analysis to identify the candidate clusters. However, the t-test
ttps://doi.org/10.1016/j.softx.2022.101170
352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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ssumes the normality of distributions associated with the ran-
om variables that generated the samples; moreover, such dis-
ributions are assumed to have equal variances. EEG and/or ERP
amples may show non-normal distribution, failing the assump-
ions of a parametric statistical analysis. Specifically, t-tests fail in
he conditions of small sample size, presence of non-normality, or
eteroscedasticity [7–9].
An illustrative example on the differences between paramet-

ic and non-parametric tests is shown in Fig. 1. We generated
amples from two random variables having different mean and
pposite skewness. Samples were generated at different sample
izes, and for each generation we tested statistical differences
hrough Wilcoxon test and t-test. While Wilcoxon tests showed
he majority of p-values lower than 0.05, the application of para-
etric t-test was associated with the majority of p-values higher

han 0.05. This may also be due to the differences in standard
eviation, as revealed by the application of F-tests.
Thus, a rank-based non-parametric statistical analysis, where

o assumption on the specific probability density function of
he random variables is made, would be more appropriate for
cluster analysis. Despite the vast availability of software im-
lementations, to our knowledge non-parametric Wilcoxon and
ann Whitney tests, paired sign rank or unpaired rank sum,

espectively, for mask and candidate cluster definition have not
een exploited.
We remark that the application non-parametric tests may not

lways be optimal or outperform a parametric method [10–13],
or instance, in case the random variables have equal median and
ifferent higher-order moments (e.g., skewness and kurtosis).
Here we describe a new software implementation of non-

arametric cluster analysis and show differences and similarities
n the application of a t-test and a Wilcoxon test using real data.

. Software description

.1. Software architecture

This implementation of cluster-based analysis comprises the
pplication of univariate statistical tests for each data sample in
ime, a mask definition based on their a priori significance, and
andidate clusters identification based on neighboring points in
he dimensions of interest. Cluster-level statistics are computed
y combining all cluster’s data samples and univariate tests to
ultiple random partitions to evaluate the probability of having
true effect.
Mask definition
A mask is defined as the set of statistical tests associated

ith a significant p-value, i.e., p<αc where αc is the significance
that is typically set at 0.05 or 0.01 [14]. A preliminary mask is
constructed by performing univariate statistical tests at individ-
ual data points, with consecutive candidate clusters definition
based on neighboring points in the dimensions studied, i.e., time,
time–space, and time–frequency–space. The mask is defined by
performing first-level statistical tests comparing two conditions
or two independent groups of participants, i.e., paired or unpaired
statistical test. To illustrate, the null hypothesis H0 for an un-
paired test refers to two groups of subjects exposed to the same
experimental condition; under H0, while the difference in the
sample mean/median is likely different from zero, the difference
between the two random variables’ mean/median is precisely 0.
For a paired test, the null hypothesis H0 refers to, e.g., one group
of subjects exposed to two different experimental conditions,
resulting in random variables’ mean/median difference between
the two conditions equal to 0.

In this study we compare the clustered effects found by the
algorithm using parametric t-tests and non-parametric Wilcoxon

tests. The chosen statistical test is repeated for all possible data
points in the dimension under study (e.g., time). The tests result-
ing in a p-value lower than a significance αc will be included
in the preliminary mask. Given the high-dimensional data and
associated multiple comparison issue, it is expected to observe
significant p-values even in case the samples are derived from
the very same random variable, i.e., the null hypothesis H0 should
be accepted. This issue is resolved by identifying the clusters as
described below.

Candidate cluster identification
Different methods for multiple comparison correction exist,

such as error rate control (false discovery rate, or family-wise
error rate), or cluster-based permutations [1], which are the most
widely used in EEG/ERP analyses [14]. Cluster-based permutation
tests group neighbor data samples if present in the preliminary
mask. In one-dimension data, i.e., 1-D time series without spatial
definition, the grouping is considered for adjacent data points
over time. In 2-D data, the time series have also a spatial dimen-
sion, and their neighboring definition depends on the EEG system
(e.g., number of channels and electrode positioning system) and
should be properly defined by the user along with a minimum
cluster size (min nchannel). Two or more clusters can be combined
if they have a minimum number of channels in common at
the same timestamp (min nchannel). In 3-D data, the power at
defined frequencies is retained for further analyses along with the
existing time and spatial dimensions. In this case, the candidate
clusters could be constituted first on individual time stamps and
separately for each frequency band. The combination of clusters
can be performed if they intersect in a minimum of 2-D points,
in time and space dimensions (min nchannel x time), at the same
frequency. An additional parameter to set is the threshold for the
cluster’s minimum duration (min T cluster ), i.e., the overall dura-
tion of the cluster considering the latency between the earliest
point in the cluster and the latest.

Cluster statistics
Statistical inference from the clusters can be performed through

permutation tests [15]. The data points defined by the cluster’s
mask in space, time and frequency dimensions are averaged, and
nrand random partitions are constructed to compute the Monte
Carlo p-value (pmc) [14]. The null hypothesis H0 of such second-
level statistics is that the identified cluster effect is exchangeable
between the conditions. Therefore, the statistical test on the
random partitions aims to represent the empirical cumulative
density function of all possible null values. A number of random
permutations nrand ≥ 800 is recommended [16]. The samples of
the two conditions are randomly permutated and the statistical
test is performed over every single random partition. The com-
putation of the Monte Carlo p-value considers the proportion of
random partitions that resulted in a lower p-value (or higher
effect size) than the observed one. The significance of the cluster’s
Monte Carlo p-value is defined as p < αcluster . The cluster statistic
presented in this study is the maximum effect size (t-stat or z-
value) found within the cluster during the first-level univariate
statistical tests stage.

2.2. Software functionalities

The algorithm reads the data and channel neighboring infor-
mation as structured in Fieldtrip Toolbox [6] for MATLAB, but
the Toolbox is not needed to run the MATLAB functions. This
implementation of cluster permutation analysis can be applied
to any EEG data or EEG-derived markers. This implementation
was successfully applied to describe brain-heart interplay under
thermal stress [17] and emotion elicitation [18].

A summary of the parameter to set is shown in Table 1. These
parameters must be indicated in the configuration struct required
as an input in the MATLAB function.
2
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Fig. 1. Simulation analysis comparing two random vectors. The random vectors X and Y were generated with a Pearson system with the following parameters
for mean, variance, skewness and kurtosis: {35, 40, −3, 20} and {20, 40, 3, 20}, respectively. (A) The random vectors were compared with a Wilcoxon test, t-test,
nd F-test. P-values are reported for each test as a function of the sample size, ranging from 20 to 200. The red line indicates p-value = 0.05. (B) Exemplary
istogram distribution for sample size 200. The resulting p-values for Wilcoxon, t-test and F-test are 0.0006, 0.1978 and 0.8531, respectively. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Summary of parameters and configuration options for cluster-based permutation analysis.
Configuration/Parameters Options/Default In this study

Dependency Paired or unpaired Paired
Statistical test t-test or Wilcoxon test t-test and Wilcoxon test
Number of randomizations ≥ 800 10000
Critical alpha (αc ) ≤ 0.05 0.01
Minimum cluster size (min nchannel ) ≥ 2 channels 3 channels
Minimum 2D neighboring points (min nchannel x time) ≥ 1 1
Cluster alpha (αcluster ) ≤ 0.05 0.01
Cluster duration (min T cluster ) ≥ 2 samples 5 samples

3. Illustrative examples

In these examples we describe the software application in two
ndependent datasets. The inclusion criteria were EEG data pub-
icly available, one with the possibility to perform ERP analysis
i.e., the stimuli have a short duration, and evoke a cortical po-
ential associated to a sensory, motor, or cognitive event), and an-
ther in which spectrogram analyses is suitable (i.e., audiovisual
timuli with at least 60-second-long duration).
(1) ERP dataset: Brain invaders P300 dataset, consisting in

isual stimuli (Space invaders-like images, 1978 video game by
aito) with or without presence of a flashing icon (white colored).
2 channel EEG data were gathered from 41 participants (age
ange 19–32 years, 30 males). For further details on this dataset,

(2) Spectrogram dataset: MAHNOB-HCI dataset of emotion
elicitation, consisting in visual stimuli through video clips with
affective content. 32 channel EEG data were gathered from 26
healthy subjects (age range 20–37 years, 11 males). For further
details on this dataset, please see [20]. The selected trial is an
excerpt from the 2002 film The Pianist, by Roman Polanski (dis-
tributed by BAC Films in France, Tobis Film in Germany, Syrena
Entertainment Group in Poland, and Pathé Distribution in United
Kingdom). The emotions associated are anger and sadness. The
trial corresponds to the highest arousal score among all trials. The
approximate duration of the video clip is 80 s.

The study was performed in accordance with the Declaration
of Helsinki.

EEG data processing was performed using Fieldtrip toolbox [6].

lease see [19]. The pre-processing consisted in 0.5–45 Hz bandpass frequency

3
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Fig. 2. Cluster permutation analysis on the ERP dataset, (A) based on Wilcoxon test and (B) based on t-test. Scalp topographies show the statistic, Wilcoxon’s Z-value
or T-stat, comparing flashing light vs without flashing light. Thick electrodes show presence of an observed effect in cluster-permutation analysis. (C) Time course of
three channels (median ± median absolute deviation) during the visualization of the flashing light (in blue) and without flashing light (in red). (D) Distribution of
he selected three channels AFz, Cz and Pz, averaged at 350–450 ms, 150–250 ms and 150–250 ms, respectively, for the ERP during the visualization of the flashing
ight (in blue) and without flashing light (in red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
his article.)

iltering, large artifact removal, eye movements and cardiac-field
rtifacts removal through independent component analysis, in-
erpolation of contaminated channels, and common average re-
eference [21]. The EEG spectrogram was computed using a short-
ime Fourier transform to gather time series integrated within the
elta band (δ; 0–4 Hz). For a more comprehensive review of EEG
re-processing, please see [21].
We performed a cluster permutation analysis based on t-test

nd Wilcoxon test in the ERP dataset. The clusters did not differ
ignificantly between the two methods. Four clusters were found
hen comparing the ERPs when visualizing flashing icons vs the
RPs without flashing icons.
The clusters identified through a Wilcoxon and T-test are

resented in Table 2. Both methods found the same clusters, and
ifferences are mainly related to the latency, where t-test repeat-
dly found the clusters at a later latency with respect to Wilcoxon
est. Figs. 2A and 2B show the results from a cluster permutation
nalysis based on Wilcoxon tests and t-test, respectively. Fig. 2C
hows the time course of three EEG channels: AFz, Cz and Pz,
nd Fig. 2D shows the distribution of all data points for the same
hannels.
Next, we show the same cluster permutation analysis on the

pectrogram dataset. The method based on Wilcoxon test found 4
lusters, as shown in Fig. 3A, whereas the method based on t-test
id not find clusters. The distribution of the averaged delta power
n frontal channels is shown in Fig. 3B.

4. Impact

Neural data distributions may present non-normality and migh
show very skewed distributions or heavy tails, therefore the
use of non-parametric tests for statistical inference is recom-
mended [7,22].

The use of non-parametric methods for statistical inference
may have a positive impact in brain research, the validation of
biomarkers developed for cognitive paradigms, brain–computer
interfaces, and diagnostic/therapeutic applications based on ERP
data analysis [23–25].

In the examples above, we showed minor differences when
comparing t-test vs Wilcoxon test in ERP data. However, when
performing the same comparison on EEG spectral data, the algo-
rithm based on parametric t-test did not find any clustered effect,
whereas the algorithm based on non-parametric Wilcoxon test
found four clusters.

As previously recommended, the results obtained from a clus-
ter permutation analyses should have a cautious interpretation
[26] as they depend on a specific threshold set to accept or reject
the null hypothesis. We encourage to follow those guidelines for
a proper interpretation of the results obtained through a clus-
ter analysis, with special regard to the use of non-parametrical
statistics when analyzing neural data.
4
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Table 2
Clustered effects found in the ERP dataset using cluster permutation analysis based on Wilcoxon and T-test.

Wilcoxon implementation T-test implementation

pmc Stat (Z) pcluster Latency (ms) pmc Stat (T) pcluster Latency (ms)

Negative clusters < 0.0001 −5.46 6.77 · 10−8 15–101 < 0.0001 −9.67 7.48 · 10−12 27–95
< 0.0001 −5.54 5.85 · 10−8 336–422 < 0.0001 −10.26 1.08 · 10−10 338–422

Positive clusters < 0.0001 5.33 7.82 · 10−8 172–250 < 0.0001 8.6 1.38 · 10−10 173–240
< 0.0001 5.57 3.03 · 10−8 332–422 < 0.0001 13.4 5.19 · 10−15 345–423

Fig. 3. Cluster permutation analysis based on Wilcoxon test in EEG spectral data. (A) The four clusters found are represented in different colors in the bottom graph.
ach colored pixel represents a point in the channel and time dimensions belonging to a specific cluster. Scalp topographies represent the averaged Wilcoxon’s
-values on the clusters’ latencies, and thick electrodes show presence of an observed effect in cluster-permutation analysis. (B) Distribution of the delta power
verage in frontal channels for rest and four time windows in which a clustered effect was found using the Wilcoxon implementation.

. Conclusions

Cluster-based permutation tests address the multiple compar-
son problem without reducing the statistical power. This new
oftware implementation offers a cluster permutation analysis for
EG series based on non-parametric Wilcoxon–Mann–Whitney
ests, as well as the standard t-test. The results using t-test and
on-parametric Wilcoxon implementations in two independent
atasets showed that the Wilcoxon implementation may outper-
orm the t-test version in finding underlying clustered effects in
he data. We encourage the use of fully non-parametric statistics
or a cluster permutation analysis applied on EEG data.
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