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Abstract— Objective: Infrared Thermography (IRT) has
been used to monitor skin temperature variation in a
contactless manner, in both clinical medicine and psy-
chophysiology. Here, we introduce a new methodology to
obtain information about autonomic correlates related to
perspiration, peripheral vasomotility, and respiration from
infrared recordings. Methods: Our approach involves a
model-based decomposition of facial thermograms using
Independent Component Analysis (ICA) and an ad-hoc
preprocessing procedure. We tested our approach on 30
healthy volunteers whose psychophysiological state was
stimulated as part of an experimental protocol. Results:
Within-subject ICA analysis identified three independent
components demonstrating correlations with the reference
physiological signals. Moreover, a linear combination of
independent components effectively predicted each phys-
iological signal, achieving median correlations of 0.9 for
electrodermal activity, 0.8 for respiration, and 0.73 for pho-
toplethysmography peaks envelope. In addition, we per-
formed a cross-validated inter-subject analysis, which al-
lows to predict physiological signals from facial thermo-
grams of unseen subjects. Conclusions/Significance: Our
findings validate the efficacy of features extracted from
both original and thermal-derived signals for differenti-
ating experimental conditions. This outcome emphasizes
the sensitivity and promise of our approach, advocating
for expanded investigations into thermal imaging within
biomedical signal analysis. It underscores its potential for
enhancing objective assessments of emotional states.

Index Terms— Blind Source Separation, Contactless
Monitoring, Independent Component Analysis, Infrared
Thermography, Psychophysiology, Skin Temperature.

I. INTRODUCTION

INFRARED Thermography (IRT) is the technique that
measures the infrared radiation emitted by objects with

temperature above absolute zero. IRT allows for the detection
of temperature variations and heat patterns of entire scenes,
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which are invisible to the human eye, enabling non-invasive
and contactless temperature monitoring. In this context, the
use of IRT in psychophysiology holds promise for monitoring
mental states without physical contact to minimize the impact
of electrodes on the mental state being investigated [1]–[4].
In particular, the observed variations in skin temperature, as
detected by IRT, serve as a valuable indicator of Autonomic
Nervous System (ANS) activity, reflecting the interplay of
physiological factors such as subcutaneous blood perfusion,
respiratory activity, metabolism, perspiration, and more. In
this light, the thermal signal of the skin can be considered
a multivariate signal, that carries information about several
physiological processes.

Several previous studies have analyzed facial thermal im-
ages to extract features capable of characterizing the psy-
chophysiological state [5]–[11]. Other investigations have at-
tempted to isolate and retrieve physiological correlates from
thermal recordings, such as perspiration, cutaneous blood per-
fusion, and respiration [12]–[16]. Specifically, the respiratory
waveform has emerged as the most successfully retrieved
physiological signal, achieved through various methods [15],
[17], [18]. In most of the cases, these techniques have re-
lied on manual or automatic segmentation and tracking of
specific facial regions. However, one of the most promising
techniques applied spatial Blind Source Separation (BSS)
to isolate the nostrils and retrieve the associated temporal
pattern, thereby capturing the respiratory signal [18]. Indeed,
BSS decomposes a mixture of various source signals into
their individual components, with no prior knowledge of the
sources or the mixing process. This concept is applicable to a
variety of fields, including audio, image, and biological signal
processing. The Independent Component Analysis (ICA) is the
most well-known BSS algorithm [19]. In a thermal video, each
pixel records a variety of physiological and non-physiological
(artefact) processes that affect the apparent temperature of the
target region beneath it. Temporal ICA attempts to identify
the individual temporally independent time courses from the
observed mixtures and finds their associated spatial maps.

The aim of this study is to obtain information about the
physiological phenomena that influence skin temperature, to
gain a comprehensive understanding of the psychophysiologi-
cal state of a subject at a distance. To this aim, we employed
ICA to extract sources related to perspiration, peripheral vaso-
motility, and respiration from the thermal signals of individual
facial pixels. ICA decomposition serves a dual purpose. Firstly,
it separates the contributions of the physiological phenomena,
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providing insights into various ANS mechanisms that would
otherwise be challenging to discern through simple temper-
ature evaluations due to potential overlap in their influence
on skin temperature. Secondly, it generates spatial maps that
enable the identification of patterns associated with each
phenomenon, facilitating a non-invasive means of gaining
physiological insights into thermal skin modulation across the
face. This method represents an innovative approach in IRT
in psychophysiology, allowing for the comprehensive analysis
of facial thermograms, expanding beyond the standard region-
specific approach [20], [21]. Indeed, this approach does not
rely on the thermal signal extraction from a specific region of
the face but it involves the whole face. Hence, this analysis
is fully automatic, eliminating the need for region selection
procedures. The main challenge of this approach is the need
of motion correction. This is particularly important to make
sure that each pixel produces a signal reflecting temperature
changes rather than inherent movement in the face. Moreover,
the ICA is sensitive to noise which can lead to lower accuracy
of the extracted independent components or reduced separation
quality. Here, we propose an ad-hoc preprocessing procedure
to optimize the accuracy and reliability of the ICA model.
Our approach was tested on the facial thermograms of 30
volunteers, using their physiological signals, i.e. electrodermal
activity (EDA), photoplethysmography (PPG) and respiration
(RESP), as reference for the independent sources obtained
from their facial thermal recordings. We performed both
inter- and intra- subject analyses to evaluate the physiolog-
ical meaning of each independent source. The protocol was
intended to activate the ANS, leading to alterations in the
physiological signals. Furthermore, it was designed to induce
distinct affective states to evaluate how well the independent
sources obtained after the ICA can differentiate among them.
See details in the next sections that are organized as follows:
in Section II, we describe the experimental protocol and setup,
the processing procedure of the physiological signals, the ICA
model and the ad-hoc thermal processing procedure, the intra-
and inter- subject analyses and the statistical analysis for
feature comparison; then, we present experimental results and
a discussion on them in Sections III and IV respectively.

II. MATERIALS AND METHODS

A. Experimental Protocol and Setup

A cohort of 30 volunteers, with an age range of 26.6±3.6
years and comprising 20 females and 10 males, participated in
this study. The experiments were approved by the “Bioethics
Committee of the University of Pisa” (n.85 15/2019), and each
volunteer signed the informed consent. The experimental time-
line is shown in Fig. 1. The experiment involved alternating
between rest sessions, Stroop test, and Emotional Elicitation
Task (EET), each session lasting 5 minutes.
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Fig. 1. Experimental timeline.

We designed a paced and computerized Stroop Test, intend-
ing to induce mental stress [22]. This is a well-known task
that requires the resolution of stimuli with conflicting colour
and semantic-meaning. Here, the subject had to press a button
corresponding to the tint of the word presented in the middle
of the screen every 2 seconds. Moreover, at the top of the
screen, a counter kept track of the number of successes as
a motivational stressor. Additionally, for each wrong/missing
answer, the counter was reset while an acoustic buzzer alerted
the subject. During the task, a ticking sound was being played
in the background to mark the passage of time.

For the EET, we employed the International Affective
Picture System (IAPS) public database, which is a consistent
and effective resource for eliciting emotions [23]. It contains
images rated by a large population in terms of valence, arousal,
and dominance. The EET consisted of a set of images from the
the IAPS, that had been chosen for their high level of arousal
and negative valence, presented to the participant one after the
other, for 5 seconds each.

Facial thermograms were acquired using a FLIR T640
thermal camera with a 24.6 mm lens, 640 × 480 pixels, Noise
Equivalent Differential Temperature (NETD) < 0.04 mK @
+30◦C and spectral range of 7.8–14 µm Long Wave InfraRed
(LWIR). The sampling frequency was 5 Hz. The EDA and
RESP were acquired using a BIOPAC MP150 system, at a
sampling rate of 250 Hz. Specifically, EDA electrodes were
placed on the distal phalanx of the index and ring fingers of the
non-dominant hand. RESP was monitored with a piezoelectric
chest belt. Finally, PPG was recorded using a Shimmer GSR +
Unit sensor, with the optical pulse probe providing the signal
from one finger of the non-dominant hand.

Regarding the thermal acquisition, we followed the checklist
for the assessment of skin temperature detailed in [24]. In
particular, the experiments were conducted in a controlled
environment. The room atmospheric temperature and humidity
ranged around 24–26 ◦C and 40–60%, respectively. Within
the same experimental session, the temperature change was
never over 1◦C and humidity variation was a maximum of
5%. Moreover, all recordings took place away from direct
heat and ventilation sources. Subjects were required to sit still
and never move their head during the experiment, however,
they did not have any physical constraints. They sat for at
least 10 minutes before the acquisition started to complete a
time of acclimatization in the testing environment for thermal
regulation, balance with the testing environment, and stability
of the participants’ emotional states. The camera’s emissivity
was set to 0.98, the recommended value for a human body
surface. Twenty minutes before the start of the recording, the
camera was turned on to allow for sensor stabilization.
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B. Autonomic Correlates Processing Procedure

In this section, we provide an overview of the physiological
signals gathered in this study, namely EDA, RESP, and PPG,
along with the processing algorithms employed.

EDA processing: The EDA signal records variations in skin
conductance, which are directly affected by the amount of
sweat produced by the eccrine glands. These glands are under
the control of the sympathetic branch of the ANS, making the
EDA signal a valuable tool for assessing SNS dynamics. The
EDA signal can be divided into two components: tonic and
phasic, each characterized by different time scales. The tonic
component represents a slowly changing aspect of the signal
with a spectrum below 0.05 Hz, and it carries information
about the overall psychophysiological state of the subject. On
the other hand, the phasic component reflects short-term and
event-related responses. In this study, we employ the cvxEDA
model to separate the EDA signal into these two components.
The cvxEDA model is based on physiological principles and
interprets the raw EDA signal as a linear combination of tonic
and phasic elements, with the inclusion of white Gaussian
noise that accounts for both model prediction errors and any
measurement errors or artifacts. This model is founded on a
robust framework that integrates Bayesian statistics, convex
optimization, and sparsity, allowing for the decomposition of
the EDA signal without the need for additional pre- or post-
processing steps, as described in [25]. Of note, only the tonic
component of the EDA signal was employed in this analysis,
as it has comparable dynamics with the thermal signals.
Specifically, the tonic component was downsampled to 5 Hz
to match the frequency rate of the thermal recordings. Finally,
we computed the mean of the tonic component, referred to as
MTonic, averaged within non-overlapped 30-second-long time
windows.

RESP processing: The RESP was used as a further index
of sympathovagal activity. The typical frequency range for
respiratory activity is 0.15 to 0.5 Hz, considering 9 to 30 cycles
per minute. Therefore, we used a bandpass filter to isolate the
respiratory activity from other sources in the signal and we
downsampled it to 5Hz to match the frequency rate of the
thermal recordings. Finally, we estimated the respiratory rate
FRESP as the maximum peak in the frequency spectrum.

PPG processing: PPG is an optical method to measure vari-
ations in blood volume in the microvascular bed of tissue. The
PPG signal has a pulsatile component, called AC, superim-
posed onto a quasi-DC component. The AC waveform has its
fundamental frequency around 1 Hz, depending on heart rate.
Its increase is associated with the higher light attenuation due
to the increase in microvascular blood volume with each heart-
beat, also called “peripheral pulse”. On the other hand, the
quasi-DC component is related to the average blood volume
under the tissue and it contains frequencies in the spectrum
below 0.04Hz [26]. This DC component varies slowly due
to respiration, vasomotor activity and vasoconstrictor waves.
Therefore, the PPG signal provides information about the
cardiovascular system and peripheral vascular activity [27].
Moreover, the evolution of the pulsatile amplitudes of the PPG
signal reflects changes in the peripheral vasomotor activity

[28], [29]. In this work, the PPG signal underwent a multi-
step processing procedure to obtain a signal that carries only
the amplitude information, which we will henceforth denote
as PPG Peaks Envelope. First, a Butterworth highpass filter
with a cutoff frequency of 0.04Hz was applied to eliminate the
baseline. Subsequently, the PPG peaks were detected using the
algorithm developed by Jesús Lázaro, relying on a low-pass-
differentiator filter, as detailed in [30]. Finally, the detected
peaks were linearly interpolated at 5 Hz, to align with the IR
recordings frequency. From the obtained PPG Peaks Envelope
signal, we estimated the mean which we refer to as MPPG.

C. Independent Component Analysis Model of Thermal
Recordings

The ICA model is a generative statistical model that de-
scribes how the observed data xj , considered as random
variables, are generated by a mixing process of the sources
si, as follows:

xj = aj,1s1 + aj,2s2 + ...+ aj,P sP (1)

where P is the number of sources. The ICA model of a thermal
recording is described by:

X = AS (2)

where thermal signals of length K from P pixels are arranged
in matrix X ∈ RP×K , A ∈ RP×P is the mixing matrix with
elements aij , and S ∈ RP×K are the sources. In particular,
the s variables are latent as they cannot be observed directly,
and the A matrix is unknown.

The inverse of the A matrix is called the “unmixing matrix”
and it is conventionally denoted by W , where W = A−1. This
provides an estimate S̃ of the sources S as:

S̃ = WX (3)

We gain a good approximation of the sources if the estimation
of the unmixing matrix is accurate. For simplicity, this model
ignores all noise components and any time delays in the
recordings. However, additive noise can be present and, in
this specific application, there is no time delay between the
recordings, which are pixels of the same frame.

In order for ICA to work, it is necessary to make the as-
sumption that source signals are “statistically independent” in
addition to being uncorrelated. For thermal data, we consider
the sources to be independent because we assume them to
reflect different physiological processes. Moreover, the sources
should not be Gaussian for the ICA to be possible. In fact, if
they were Gaussian, their joint distribution would be sym-
metric, thus, it would have no information on the directions
of the columns of the mixing matrix A, which could not be
estimated. Here, ICA was performed using an implementation
of the FastICA processing applications, based on Hyvarinen’s
fixed point algorithm maximizing non gaussianity [31].

Ideally, the ICA works well when the number of recordings
is equal to the number of sources. In this case, even if we
cannot say exactly how many sources are mixed to produce
the observed thermal signals, we can expect them to be less
than the number of recordings (i.e. the number of pixels). This
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is called undercomplete ICA, and it requires a dimensionality
reduction step in order to reduce the redundancy in the
recordings. The most widely used dimensionality reduction
method in signal processing applications is the Principal
Component Analysis (PCA). PCA is a statistical technique
that converts a set of possibly correlated variables into a set
of linearly uncorrelated variables called principal components
(PC), using an orthogonal transformation. PCA is often used
to reduce the dimensionality of a dataset while preserving as
much variability as possible [32]. In this application, PCA
is used as a standard whitening process in ICA analysis and
for dimensionality reduction at the same time. Whitening
transforms the mixing matrix into a new orthogonal one, thus
reducing the number of parameters to be estimated and the
complexity of the ICA problem.

Thermal Recordings Preprocessing: The pipeline for the
preprocessing of thermal video for ICA analysis is illustrated
in Fig. 2.
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Fig. 2. Preprocessing pipeline for ICA.

First of all, the thermal frames were coregistered to remove
motion. This is a crucial step to ensure that the ICA sees each
pixel as a signal representing changes in temperature and is
not misled by an underlying movement of the face. Therefore
frames should be aligned at pixel level, so that corresponding
pixels represent the same physiological features. Here, we used
a dense optical flow algorithm with the adaption used in [18].
This method aligns the IR frames at the pixel level by esti-
mating the nonlinear motion vector field between consecutive
frames, effectively eliminating any movement of the subject.

To remove any physiognomic differences across partici-
pants, the first frame of each subject’s IR video was then
warped to match the anatomical features of a reference model.
The RGB model was selected from the public database FACE
[33], among the neutral faces. This step allows keeping the i-th
pixel, ideally, in the same facial position for each participant
throughout the inter-subject analysis. Since the IR frames
for each subject had already been co-registered, eliminating
possible movement artefacts, it was possible to calculate the
transformation for each subject on the first frame and then
apply it to all the frames of the same subject. In particular,
a set of manually-selected fiducial points in the first frame

of the IR video and the model image were used to estimate
a transformation matrix which was applied to all the subse-
quent frames of the same video. This step relies on a Local
Weighted Mean (LWM) transformation, which outperforms
other geometrical transformations according to Cardone et al.
[34]. All frames were spatially Gaussian smoothed to remove
high-frequency noise. Moreover, we downsized the original IR
frames to 60×80 pixels, effectively reducing its original size
by a factor of 8, in order to lower the computational load. The
total number of face pixels, or signals, after segmentation and
eye masking was P = 2112.

A mask to remove the background and the eyes was applied
to all frames before the analysis. The background is not of
interest as we want to perform the analysis only on facial
pixels, and the eyes are excluded to prevent blinks from
contaminating the expected sources. In fact, blinks have a very
strong impact on thermal pattern variations in the thermograms
compared to the physiological temperature change of the
skin. Specifically, the face segmentation mask was created by
shaping an ellipse centred in the nose tip, with a minor axis
length equal to the width of the face (being determined by the
location of landmarks close to the ears) and a major axis length
equal to twice the distance between the nose tip and the chin
landmarks. Facial landmarks were identified in the RGB model
image using the Yuval Nirkin algorithm [35]. Analogously, the
ellipses to exclude the eyes were automatically determined
based on the landmarks’ location.

The processed videos were converted into matrices where
each row corresponds to a pixel and each column to an
observation in time. To clarify, if a frame has dimension
N ×M and the video has K frames, the output matrix will
have N ×M = P rows and K columns. In the inter-subject
application, the matrices for all subjects were concatenated
along the first dimension, resulting in a P × (K ·D) matrix,
where D is the number of subjects.

The thermal signals were sampled at 5 Hz over a period of
25 minutes, hence, the number of observations was K = 7500.
Each signal was filtered in time based on the specific target
frequency range. More in detail, a lowpass filter with cut-off
frequency equal to 0.05 Hz was applied to all signals when
exploring the perspiration component, to match the frequency
content of the tonic component of the EDA. Moreover, to
isolate the respiration signal, we applied a bandpass filter with
cutoff frequencies between 0.16 and 0.5 Hz. Whereas, no filter
was applied to the signal when exploring the relation with the
PPG Peaks Envelope signal.

Finally, whitening was performed together with dimension-
ality reduction by means of a PCA. As a result of the whitening
process, the observed vector x is linearly transformed, its
components are uncorrelated and their variances are equal
to one. The PCA dimensionality reduction was set to use
the first L eigenvectors, where L was equal to 10. These
eigenvectors correspond to the directions capturing the highest
variance within the high-dimensional data and projecting it
onto a lower-dimensional subspace while keeping most of the
information. The choice of L represents a trade-off between
the complexity of the model and the achieved results.

Of note, when searching for a component associated with
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the EDA tonic signal and the PPG Peaks Envelope, nor-
malization by means of zscore was performed on the rows
of the previously shaped P × K matrix of thermal signals.
Indeed, considering the anticipated minor effects of processes
such as perspiration and blood redistribution on the overall
frame temperature compared to the impact of respiration,
which leads to cold and warm airflow around the nostrils, this
normalization enables the comparability of small variations to
stronger factors.

D. Independent Components Evaluation

The thermal preprocessing led to a set of L Principal
Components (PCs), uncorrelated between each other. After
the application of the ICA model to these PCs, we obtained
the ICs, temporally independent of each other. Our next step
involved the selection of the components that correspond
to each reference physiological signal. We performed both
intra- and inter-subject analyses. In particular, we focused on
retrieving the physiological components that are known to
play a role in thermal modulation, while being also used in
psychophysiology to infer the subject’s mental state. Specif-
ically, we used the tonic component of the EDA signal as a
reference for the source related to the slow varying fluctuation
of eccrine perspiration, the PPG Peaks Envelope for the
peripheral vasomotor activity, and RESP for the respiration
component.

Within-subject Analyses: Firstly, we performed the ICA for
each subject, where the X matrix of the ICA model in (2)
was composed of P rows, equal to the number of pixels of
the face, and K columns, equal to the number of observations,
as described in Section II-C. For each physiological signal
(EDA, PPG, RESP), denoted as y ∈ R1×K , we identified
the jth IC that exhibited the highest absolute value of the
Spearman correlation coefficient, referred to as s̃max, which
can be defined as:

ρs̃maxy = max
1≤j≤L

{|ρs̃jy|}. (4)

The significance of the correlations was assessed using
a non parametric permutation test with 1000 repetitions. In
particular, to create the null distribution, the IC was split
into 1-minute long blocks, which is reasonable for capturing
meaningful temporal dynamics in physiological signals while
introducing randomness to limit local dependencies, and they
were randomly shuffled at each iteration. Analogously, we
selected the jth IC with the highest value of the cross-
correlation coefficient, denoted as ρs̃maxy(τ). This allows us
to account for potential physiological delays between the
reference and thermal signals, with τ representing the time
displacement or lag between the respective time series. The
ρs̃maxy(τ) was evaluated for values of τ smaller than 15
seconds, as lags within this limit are likely to be physiological.

Furthermore, we computed the median values of both
ρs̃maxy and ρs̃maxy(τ), along with the Median Absolute
Deviation (MAD), across all subjects.

At the subject level, we conducted another analysis that
involves the use of all the ICs obtained after ICA. In particular,

we fitted a linear model to explain the physiological signal y
as a function of all the estimated ICs (s̃j with j = 1, . . . , L):

y = c0 + c1 s̃1 + c2 s̃2 + · · ·+ cL s̃L (5)

where cj , with j = 1, . . . , L, is the jth coefficient, weighting
of the jth IC, and c0 is the constant term within the model.
The coefficient of determination R2 was used as a metric to
evaluate the goodness of fit of the model.

Inter-subject Analyses: In addition, we performed an inter-
subject analysis to obtain a model that could generalize to
new unseen subjects to extract the physiological signal from
the processed IR videos. Importantly, this approach enables
the extraction of components correlated with each physiolog-
ical signal without relying on a reference, thereby making
contactless analysis possible. To ensure the robustness of
our model, we implemented Leave One Subject Out (LOSO)
cross-validation of the pipeline including the PCA, ICA and
linear regression model. At each iteration, we excluded one
subject from the dataset, while using data from all other
subjects as a training set (D−1 subjects). Specifically, we
concatenated the X matrices corresponding to each subject
along the first dimension, resulting in an extended data matrix,
denoted as Xtrain ∈ RP×R, where R = K · (D − 1). Of
note, this concatenation is only feasible due to the warping
procedure, which registers all frames of all subjects to a
common reference RGB model. This extended matrix Xtrain

served as the input data for PCA, followed by subsequent
ICA analysis. After obtaining the estimated sources s̃j through
ICA, we used them to build a regression model, analogous to
the model described in (5) for the within-subjects analysis, but
fitted to D−1 subjects. The data from the excluded subject is
used as the test set. The matrix Xtest ∈ RP×K underwent a
transformation based on the PCA and ICA outcomes obtained
during the training phase. This transformation yields the
predicted sources, denoted as ŝj . Subsequently, we compute
the predicted physiological signal ŷ as a linear combination
of these ŝj components:

ŷ = c0 + c1 ŝ1 + c2 ŝ2 + · · ·+ cL ŝL (6)

employing the coefficients cj that were obtained on the
training set. In order to quantify the relationship between the
predicted ŷ and the reference y, we performed the Spearman
correlation coefficient between the two time series, ρyŷ . More-
over, to assess the goodness of fit of our predictive model we
computed the R2, which measures the proportion of variance
in the reference physiological signal y that is explained by
our model. In addition, we computed the Root Mean Square
Error (RMSE) which quantifies the average magnitude of the
differences between the predicted and reference values, thus
providing an understanding of the average accuracy of our
predictions. For each physiological signal, the shared spatial
maps across subjects were calculated using the whole dataset
as a weighted sum of the map corresponding to each IC (6).

Moreover, to obtain the spatial map corresponding to each
physiological signal ŷ, we obtained the coefficients cj used in
(6), by using the entire dataset (D subjects). These coefficients
were then employed to weight the maps corresponding to each
ŝj , resulting in the final representations. These maps can be
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visually compared to the ones obtained from the raw thermal
signals. Indeed, as a preliminary analysis, we examined the
correlation between the raw thermal signals associated with
individual pixels and each reference physiological signal [4].
Specifically, for each reference signal, a global correlation map
was created by computing the average values of the correlation
maps for all the participants, along with the standard deviation
for each pixel. The correlation was evaluated by means of the
Spearman correlation coefficient, denoted as ρ.

E. Features Comparison

Finally, we derived a representative feature from each
couple of original and predicted physiological signal for the
four distinct tasks. Specifically, we extracted the mean value
from the original and predicted tonic component of the EDA
signal, denoted as MTonic and M̂Tonic , respectively. Similarly,
we obtained the mean value of each original and predicted
PPG Peaks Envelope signal, referred to as MPPG and M̂PPG,
respectively. Additionally, from the original and predicted
RESP signals, we computed the dominant frequency, denoted
as FRESP and F̂RESP, respectively. We conducted a two-way
Analysis of Variance (ANOVA) to assess differences between
original and fitted features (a two-level variable, Feature),
while simultaneously examining variations between conditions
(a four-level variable, Task). In particular we tested three
null hypothesis at the same time: I) there is no difference
in group means at any level of the Task variable; II) there
is no difference in group means of the Feature variable; III)
the effect of one independent variable does not depend on the
effect of the other independent variable. Finally, we performed
the correlation and Bland-Altman plots to comprehensively
assess the agreement between the original features and those
extracted from the fitted signals.

III. RESULTS

Within-subject Analyses: In the context of the intra-subject
analysis, the following results emerged. The results are re-
ported as median ± MAD. For the EDA tonic signal, the
ρs̃maxy across subjects was 0.49±0.1. The analogous ρs̃maxy(τ)
was 0.58±0.08, with lags of 7.4±4 seconds. Moreover, the
coefficient of determination (R2) of the linear regression model
in (5) was 0.9±0.09 for the EDA tonic component. The IC
s̃max and the estimated ŷ after the regression model along
with the corresponding spatial and weighted map for a sample
subject is shown in Fig. 3. While the signal was consistently
recovered among all subjects, the maps exhibited variations
from one subject to another.
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Fig. 3. Results of the ICA within subject between thermal and EDA
tonic time series, for a sample subject. a. Independent component
(Right) and corresponding spatial map (Left); b. Estimated EDA tonic
component by a linear combination of independent components (Right)
and corresponding spatial weighted map.

For the RESP signal, the ρs̃maxy across subjects was
0.53±0.17, while the ρs̃maxy(τ) was 0.80±0.14, with lags
of 2±1 seconds. The R2 of the linear regression model to
explain the respiratory signal as a function of the s̃j was
0.73±0.17. Fig. 4 displays the IC s̃max, the estimated ŷ, and
the related spatial maps for a sample subject. The signal was
always accurately retrieved, and the nostrils were consistently
depicted on the maps for all subjects. For the PPG Peaks
Envelope signal, the ρs̃maxy across subjects was 0.42±0.08,
while the ρs̃maxy(τ) was 0.47±0.07, with lags of 6.6±2.3
seconds. The R2 of the linear regression model to explain
the respiratory signal as a function of the s̃j was 0.73±0.09.
Fig. 5 displays the IC s̃max, the estimated ŷ, and the related
spatial maps for a sample subject.
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Inter-subject Analyses: Regarding the inter-subject analysis,
the following findings were obtained for each physiological
signal:

• EDA tonic: the median ρyŷ across the subjects was
0.45±0.19;

• RESP signal: the median ρyŷ across the subjects was
0.28±0.14;

• PPG Peaks Envelope signal: the median ρyŷ across the
subjects was 0.4±0.15.

As additional metrics, we calculated the R2 and RMSE for
each physiological signal. For the EDA tonic signal, the
median R2 was 0.2 ± 0.24, with an RMSE of 0.9 ± 0.12.
For the RESP signal, the median R2 was 0 ± 0.08, with an
RMSE of 1 ± 0.04. For the PPG Peaks Envelope signal, the
median R2 was 0.17 ± 0.15, with an RMSE of 0.91 ± 0.08.

The maps produced by the PCA, ICA, and Linear Regres-
sion pipeline using all the subjects are presented in Fig. 6.

The correlation maps between the thermal signals of the
face and each physiological signal, along with the histograms
of the standard errors per pixel, are shown in Fig. 7.
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Fig. 7. Correlation Maps. Each pixel is the Spearman correlation
coefficient between the thermal signal of that pixel and the physiological
signal, and the histogram represents the number of pixels (#Pixels)
per standard deviation value (std), for each physiological signal: a. EDA
tonic; b. Respiratory signal RESP; c. PPG Peaks Envelope signal.

The tonic component of the EDA signal’s correlation map
reveals that the thermal signals of the pixels in the nose, max-
illa, and chin areas are anti-correlated with the tonic signal, as
shown by the presence of negative ρ values. The correlations
with the respiratory signal are close to 0 across the entire
face. The nostrils exhibit correlation values that are similar, in
absolute value, to those observed on the forehead and upper
lip. Positive correlations with the PPG Peaks Envelope signals
are shown in the correlation map around the nose area.

A. Statistical Comparison

The results of the feature comparison between tasks are
shown in Fig. 8. For all physiological features assessed,
the comparison between original and fitted features did not
reveal any statistically significant differences. Similarly, the
interaction effect between the independent variables (Feature
and Task) was not statistically significant. In contrast, across
all scenarios, a significant Task effect was observed as the null
hypothesis was rejected at the alpha level of 0.05.
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Fig. 8. Two-way ANOVA results for each physiological feature (MTonic,
FRESP and MPPG); ns = non-significant; * = significant; R1 = First
Rest; S = Stress; R2 = Second Rest; EET = Emotional Elicitation Task.

Particularly, the MTonic during R2 was significantly lower
than in the other sessions (p < .0001 for all comparisons),
whereas the MTonic during the stress session (S) was the
highest (p < .0001 for all comparisons). R1 and EET showed
intermediate levels that were significantly different from R2
(p = .0078 and p = .0074, respectively) and S (p < .0001
for both comparisons) sessions but not from each other (p =
1.0000). Concerning FRESP, only S was statistically different
from the other sessions, showing a significantly higher res-
piration rate (p < .0001 for all comparisons). Finally, for the
feature MPPG, no significant difference was found between R1
and R2 (p = .3544); however, the MPPG during these resting
phases was significantly higher than in the other sessions
(p < .0001 for all comparisons). On the other hand, the S
session showed a significantly lower MPPG compared to EET
(p = .0006), which consequently showed an intermediate level
(p < .0001 for EET vs. R1 and p = .0010 for EET vs. R2).

B. Bland–Altman analysis results
Both MTonic and MPPG features showed a strong linear

relationship (R2 = 0.93 and R2 = 0.92 respectively) and no
evidence of systematic bias (p>0.05) between the fitted and
original values, supporting the robustness of our estimating
method for both the EDA and PPG signals. In contrast, the
FResp feature exhibited a moderate linear relationship (R2 =
0.72) and a small but significant bias of 0.01 (p < 0.001).
These results are visually summarized in the Bland-Altman
and correlation plots for each feature in Figures 9.

IV. DISCUSSIONS

Selecting a single IC has proven to be highly effective,
consistently yielding correlation values exceeding 0.4 for all
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Fig. 9. Bland-Altman plot and correlation analysis for A) MTonic, B)
FResp, C) MPPG features.

the physiological signals under investigation. However, the
within-subject analyses of the three reference signals revealed
a noteworthy trend: the predictive performance significantly
improved when employing a linear combination of all ICs to
predict each physiological signal, in contrast to selecting only
a single component. For instance, the correlation coefficients
obtained between the predicted tonic component after the
linear regression and the original signal reached a median of
0.9 with low variability across subjects. The correlation of
one IC with the PPG peaks envelope signal, from a median
of around 0.5, increases to 0.7 when all the components
were linearly combined. These outcomes suggest that the ICA
method employed might face challenges in effectively separat-
ing distinct physiological components, possibly identifying the
same physiological phenomenon distributed across multiple
sources. In practice, in situations where the unmixing model
has more output ICs than truly independent source signals in
the mixture, the excess components may appear as duplicates
of unmixed ones close to independence. However, this is a
common problem in ICA applications, and the ways to avoid
it usually employ a stronger dimensionality reduction [36]. The
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observed enhancement in predictive accuracy when combining
multiple ICs underscores the complexity of the underlying
physiological processes. In future work, as we anticipate a
larger population sample, a model selection strategy will
be employed to optimize the choice of the dimensionality
reduction parameter, L. This strategy will involve assessing
various values of L, using a cross-validation approach, to
determine the dimensionality reduction that maximizes the
effectiveness of our method.

In addition, it is worth noting that the correlations signifi-
cantly increased in absolute value when examining a delayed
version of the reference signals. This phenomenon is particu-
larly important when assessing the relationship between the
physiological response recorded with conventional systems
in standard anatomical locations and the thermal response
of the face. For instance, in the within-subject analyses, the
EDA tonic component predominantly appeared in a single
component, exhibiting a median correlation of around 0.49
consistently across subjects, as indicated by the low median
absolute deviation. However, the correlation increased when
considering a lag of 7.4±4 seconds between the two sig-
nals. Temporal latency of cutaneous temperature change is a
widely known phenomenon, but different delays have been
documented by several studies [2]. More recently, another
study reported a regionally specific decrease in temperature
for up to 15 seconds and a short delay of approximately
2 seconds of thermal variation in comparison to EDA in
response to an auditory stimulus, highlighting the need for
deeper exploration [37]. Similarly, the correlation between the
IC and the respiratory signal increased when considering a lag
of around 2 seconds between the two, which is approximately
the duration of a respiratory cycle.

On note, to evaluate and choose the component that was
the most related to the referenced phenomenon, we used the
absolute value of the correlation coefficient as one of the
ambiguities of the ICA is the impossibility of retrieving the
sign of the components, therefore one limitation of this method
is the uncertainty of the correlation sign, and consequently the
associated spatial maps could be as presented or the negative
counterpart. In general, a very low MAD is associated with
the median correlation values, meaning that the results are
consistent across subjects.

As a preliminary analysis, we investigated the correlation
maps between the thermal signals of each facial pixel and the
reference signals, as in [4]. Each reference signal produced
a unique mask. When examining the mask associated with
the tonic component, a predominant pattern of negative coef-
ficients emerged, particularly concentrated around the areas of
the nose, upper lip, and chin. The temperature signal typically
exhibits a negative correlation with skin conductance, which
is consistent with other research in the field, because sweat
production makes the conductance rise and the temperature
decrease [4], [37]. The standard deviation associated with the
map is high, indicating a wide variability among subjects. The
map associated with the respiratory activity has low correlation
values, ranging around zero. Even though the nostril regions
displayed the highest correlation values, it is crucial to note
that the generally low correlation values across the entire map

preclude us from ascribing any meaningful interpretation to
these results. Finally, the map associated with the peripheral
vasomotor activity presents high correlations, close to 0.4,
around the nose. This finding is in agreement with the results
of our previous application which saw the nose as the most
influenced region by the cardiovascular system during stress
[38].

The spatial maps associated with the RESP component
exhibit remarkable consistency across subjects, consistently
pinpointing the nostrils or the region just below them. In
contrast, the maps corresponding to perspiration and peripheral
vasomotility display more diversity and are less straightfor-
ward to categorize visually. However, the cross-validation
process allows us to derive distinct and unique maps for each
physiological phenomenon that is shared across subjects. The
incorporation of the warping procedure plays a pivotal role
in this process. By aligning the anatomical features of all
subjects, each pixel in the maps corresponds to the same
anatomical location across time and subjects. Consequently,
when we apply the maps generated using the training set to the
test set, we can predict, on an unseen subject, physiologically
meaningful time series data without the need for a reference
signal. This marks a substantial advancement in the application
of IRT in psychophysiology, as it enables us to generalize to
new subjects without the requirement for individual calibration
or electrode placement. Instead of relying on specific subject-
related information, this method leverages the shared spatial
distribution of each physiological phenomenon’s impact on
facial thermal variations. As a result, a set of established maps,
generated from the training set, can be universally applied
to new subjects for the acquisition of multiple physiological
cues using just one contactless device. Therefore, by extracting
information from the naturally occurring thermal variations
on the face, we can access various physiological parameters
related to the ANS activity. This approach not only simplifies
the data collection process but also offers numerous prac-
tical applications in healthcare, where monitoring multiple
physiological parameters is essential for patient care. The
performance evaluation of the predicted versus the original
data reveals promising results. Specifically, we obtain a cor-
relation coefficient of 0.45 for the tonic component, 0.28 for
the respiratory activity, and 0.4 for the envelope of the PPG
peaks. These correlations underscore the effectiveness of our
approach in predicting physiological signals patterns.

Regarding the determination coefficients, R2, which mea-
sures the amount of variability of the dependent variable
explained by the model and how well the model predicts the
outcome, we observed lower values. In particular, the models
explaining the EDA tonic and the PPG peaks envelope signals
showed similar R2, with a high subject variability. For the
respiration, the R2 was zero, meaning that the independent
variables fail to explain any of the variation in the dependent
variable. However, we noticed a scaling problem and potential
phase shift between the predicted and original signal, which
explains the low determination coefficient. Specifically, the
model’s inability to capture the amplitude variations of the
respiratory signal contributed to this result, as well as possible
phase shifts that may arise from differences in how the respira-

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2024.3486628

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



10 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. XX, NO. XX, XXXX 2024

tory signals were measured. The position of the piezoelectric
belt used to acquire the respiratory signal from the Biopac
system can affect the phase, with belts positioned higher on the
chest being more influenced by thoracic breathing, and those
positioned lower capturing more of the abdominal compo-
nent. Likewise, different facial and nose conformations among
subjects may introduce variable delays in the thermal signal,
as the thermal data reflect the cumulative warming effect of
the airflow in the area beneath the nostrils. Nevertheless, we
can accurately predict the frequency of the respiratory signal,
which is considered a robust feature in psychophysiology, as
demonstrated by the two-way ANOVA. This indicates that
while the model may fail to capture the precise magnitude
or timing of the respiration signal, it effectively identifies the
periodicity and pattern of the respiratory cycles.
In addition, it is worthwhile noting that the map associated
with the respiratory activity does not depict a well-defined
area, as in the intra-subject maps, but highlights the lower
part of the nose with two flows corresponding to the nostrils.
Even in this case, this result may be due to the anatomical
differences in the noses of different subjects. These differences
could lead to variations in the thermal signals captured from
the nostrils, depending on their visibility and the individual’s
facial structure. In fact, due to the conformation of their
noses or the position of their faces, some subjects have less
visible or completely hidden nostrils in the frames compared
to others. For these subjects, the most responsive area will
be the part immediately below the nose. Additionally, other
facial features, such as the presence of a beard, can intro-
duce variability in the thermal signal due to differential heat
retention and reflection, which cannot be equalized using
morphing procedures. Despite our population being hetero-
geneous, we were still able to obtain promising results. In
fact, the correlation coefficient between the predicted and
original signals were reasonably high. Indeed, the last analysis
showed that the features obtained from the predicted signal
were not significantly different from the features obtained
from the original signals, as indicated by the comparison
between features, original and fitted, in the two-way ANOVA.
This outcome suggests that the ICA and regression modelling
process effectively captured essential characteristics of the
original data. In other words, our model successfully mimicked
the features present in the original signals. At the same time,
we observed a significant Task effect, meaning that these
features varied significantly across the stimulation tasks as
expected. Furthermore, the strong correlations and minimal
biases showed by the Bland Altman analysis for the MTonic

and MPPG features indicate the effectiveness of our thermal
imaging-based estimation method for these signals. On the
other hand, the lower correlation and significant bias for FResp

is consistent with previous limitations, suggesting a need for
further refinement to enhance the robustness and accuracy of
our method for this feature.

In the future, for real-case applications, a set of models, each
adopting slightly different strategies (e.g., addressing beard or
invisible nostrils), could be developed. For each new subject,
the most suitable model from this diverse set could be selected
based on the subject’s distinctive morphology. This approach

would overcome the limitations associated with relying on a
single super-subject model. Further future works will focus
on the integration of pulse rate variability (PRV) metrics to
enhance the robustness of our physiological assessments from
thermal imaging data. This will involve developing advanced
algorithms for precise PPG raw signal estimation and peak
detection directly from thermal videos. By achieving accurate
peak detection, we can derive reliable PRV metrics, which
are well-established indicators of autonomic nervous system
function. Furthermore, the application of our method to higher-
resolution thermograms will be explored. Specifically, reduc-
ing or eliminating the resizing step and finding a better balance
between resolution and computational load could significantly
enhance the performance of our analyses.

V. CONCLUSIONS

In conclusion, the application of temporal ICA for the direct
prediction of physiological signals from thermal data is a
remarkable breakthrough. Indeed, the proposed methodology
involves a single, portable device for remote and unobtrusive
monitoring of several physiological phenomena. As a result,
this innovative approach not only contributes to the theoretical
understanding of psychophysiological dynamics but also holds
promise for real-world applications in fields such as healthcare,
psychology, neurology, and human-computer interaction. The
data that support the findings of this study are available from
the corresponding author, F.G., upon reasonable request.
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