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We give a short review on recent progress in the theory of tidal deformability of a slowly
spinning compact object. A rotating object immersed in a quadrupolar, electric tidal field
can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments
to second order in the spin. Angular momentum introduces couplings between electric
and magnetic distortions and new classes of spin-induced, tidal Love numbers emerge.
All tidal Love numbers of a Kerr black hole were proved to be exactly zero to first order

in the spin and also to second order in the spin, at least in the axisymmetric case. The
tidal Love numbers of a neutron star depend strongly on the equation of state. Spin-
tidal couplings deteriorate some approximate universal relations that exist for neutron
stars in the static case. For a binary system close to the merger, various components of
the tidal field become relevant. Preliminary results suggest that spin-tidal couplings can
introduce important corrections to the gravitational waveforms of spinning neutron-star
binaries approaching the merger.

1. Introduction

In the last few years there has been considerable progress in understanding the

tidal deformations of a spinning compact object. The motivation for these studies

is twofold. On the one hand a deeper theoretical understanding of the tidal de-

formability within general relativity is highly desirable, because the nonlinearities

of the theory introduce some subtleties in the definition of the tidal Love numbers1,2

for relativistic compact objects3,4. On the other hand, the first direct detection of

gravitational waves (GWs) by aLIGO5, the prospects of measuring the tidal Love

numbers through GW detections of compact binaries6–18, and the related possibil-

ity of constraining the equation of state (EoS) of neutron stars (NSs) through GW

astronomy, make it urgent to include spin-tidal effects in the gravitational wave-

forms. In this work we briefly review some recent results on the deformability and

tidal Love numbers of spinning black holes (BHs) and NSs.

2. Selection rules for the tidal deformations of a spinning object

Before reviewing the main results, let us discuss some selection rules that govern

the deformations of a spinning object immersed in a tidal field. As a result of

the external perturbation, the mass and current multipole moments19–21 (denoted

by M� and S�, respectively) of the compact object will be deformed. In linear
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perturbation theory, for a nonspinning object one can define the standard (electric

and magnetic) tidal Love numbers7,22,23 as

λ
(�)
E ≡ ∂M�

∂E(�)m

, λ
(�)
M ≡ ∂S�

∂B(�)
m

, (1)

where E(�)m and B(�)
m denote24 the amplitude of the electric and magnetic components

of the external tidal field with harmonic indices (�,m), where m is the azimuthal

numbera. When the object is spherically symmetric, m is degenerate and parity

and the angular momentum number � are conserved: an electric (i.e. even parity)

tidal field with harmonic index � can only deform the mass multipole moment of

order �, whereas a magnetic (i.e. odd parity) tidal field with harmonic index � can

only deform the current multipole moment of order �. When the central object is

spinning such degeneracy is broken and there exist some selection rules24,25 which

allow to define a more generic set of tidal Love numbers,

λ
(��′m)

E,− ≡ ∂M�

∂B(�′)
m

, λ
(��′m)

M,− ≡ ∂S�

∂E(�′)m

, (2)

λ
(��′m)

E,+ ≡ ∂M�

∂E(�′)m

, λ
(��′m)

M,+ ≡ ∂S�

∂B(�′)
m

, (3)

which enjoy various interesting properties24:

(1) At zeroth order in the spin, the Love numbers in Eq. (2) vanish, whereas the

Love numbers in Eq. (3) are different from zero only when �′ = � and reduce to

those defined in Eq. (1). The azimuthal number m is degenerate in this case.

(2) At first order in the spin, the Love numbers in Eq. (2) are different from zero

only when �′ = � ± 1, whereas the Love numbers in Eq. (3) are different from

zero only when �′ = � and in the nonaxisymmetric case, m �= 0.

(3) At second order in the spin, the Love numbers in Eq. (2) acquire new corrections

only in the nonaxisymmetric case, whereas the Love numbers in Eq. (3) are

different from zero both when �′ = � and when �′ = � ± 2 for any value of

m. The terms λ
(��m)

E,+ and λ
(��m)

M,+ include O(χ2)b corrections to the static Love

numbers in Eq. (1).

3. Tidal deformations of spinning BHs

The geometry of a tidally-deformed, spinning BH was obtained by Yunes &

Gonzalez through an integration of the Teukolsky equations26, whereas more re-

cently the intrinsic geometry of a spinning BH distorted by a small compact compan-

ion has been studied in the extreme-mass ratio limit by O’Sullivan and Hughes27,28.

These papers considered arbitrary values of the BH spin parameter but are limited

aWe adopt the same decomposition of the tidal field as Binnington & Poisson22.
bHenceforth χ := J/M2 � 1, where M and J are the object’s mass and angular momentum.
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to numerical (or semi-analytical) analysis. An analytical study of the tidal de-

formations of a spinning BH was initiated by Poisson25, who computed the tidal

deformations of a Kerr BH immersed in a generic quadrupolar tidal field to first

order in the spin. He constructed a set of coordinates which are regular on the BH

horizon, decomposed the external tidal field in terms of irreducible potentials, and

extracted the tidal moments through a matching to the post-Newtonian metric of a

binary system. As a result of this procedure, the metric of a tidally deformed Kerr

BH to first order in the spin is given explicitly in closed form25.

For axisymmetric tidal fields, such results have been extended to include second-

order spin corrections for a quadrupolar electric tidal field29, and to include both

electric and magnetic tidal fields with � = 3, 4 to first order in the spin24.

The main result of these studies is the analytical proof that the rotational

tidal Love numbers of a Kerr BH are precisely zero24,29,30, as in the Schwarzschild

case4,22,31,32. This result is a direct consequence of the regularity of the tidal pertur-

bation on the event horizon, and has important implications. Indeed, the multipole

moments of any stationary BH in isolation can be written as20

M� + iS� = M �+1 (iχ)
�
, (4)

and therefore all moments with � ≥ 2 can be written in terms of M0 = M and

S1 = J through the above relation. Any independent measurement of three multi-

pole moments (e.g. the mass, the spin and the mass quadrupole M2) is a null-test of

the Kerr metric and, in turn, it might provide a genuine strong-gravity confirmation

of general relativity33–36. The results mentioned above show that the no-hair rela-

tions (4) hold also for a slowly rotating BH immersed in a weak tidal field and can

therefore be interpreted as a generalization of the no-hair theorems for stationary,

tidally-deformed spinning BHs.

In light of these results, it is natural to conjecture that the Love numbers of

a Kerr BH are zero to any order in the spin. Verifying this important conjecture

requires an extension of current analyses (at least) to second order in the spin and

in the nonaxisymmetric case.

4. Tidal deformations of spinning NSs

The tidal Love numbers of a NS depend on the object’s internal structure, namely

on the NS mass and on the EoS of the matter composing the star. Measuring the NS

deformability through GW detections would help to constrain the behavior of mat-

ter at ultranuclear density18,37–40. This has motivated a vast literature on the tidal

deformability of nonspinning NSs. On the other hand, spin effects have been con-

sidered only recently within a perturbative scheme. Landry & Poisson30 computed

the external metric of a spinning material object immersed in a generic quadrupo-

lar (both electric and magnetic) tidal field to first order in the spin, whereas Pani

et al.24 considered an axisymmetric tidal field with � = 2, 3, 4 and computed the

rotational Love numbers (2)–(3) to first order in the spin for various tabulated EoS.
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Two of the main results of the latter analysis are:

(1) For a binary system close to the merger, various components of the tidal field

become relevant. In this case it was found that an octupolar magnetic tidal

field can significantly modify the mass quadrupole moment of a NS. Assuming

a spin parameter χ ≈ 0.05 and an orbital distance r0 ≈ 5R, deformations can

differ by � 10% relative to the static case. These results suggest that spin-tidal

couplings can introduce important corrections to the gravitational waveforms

of a spinning NS binary system.

(2) Some of the rotational Love numbers deviate from the approximately universal

relations that hold for nonrotational Love numbers41–43 by an amount as large

as 200% in the electric-led case and as large as 50% in the magnetic-led case.

The approximate universality of the induced mass quadrupole moment deteri-

orates from 1% in the static case to roughly 6% when χ ≈ 0.05 and r0 ≈ 5R.

Finally, very recently Landry & Poisson44,45 have studied the gravitomagnetic

response of an irrotational self-gravitating fluid to an external tidal field to first

order in the angular momentum. Remarkably, they found that in such condition

the irrotational fluid undergoes a dynamical (i.e. time-dependent) response on the

time scale of the rotation period, whereas the exterior geometry remains stationary.

This result also shows the existence of a novel family of magnetic-led Love numbers,

which have been studied so far only in the nonspinning case44.

5. Open issues

We wish to conclude with a list of open problems related to the theory and phe-

nomenology of the tidal deformability of compact objects:

(1) The computation of the tidal Love numbers relies on the separation – in the

perturbed metric – of the external tidal field from the linear response of the

object. Even at the linearized level this procedure presents some subtleties3,4,29

and a more rigorous analysis would be highly desirable, even in the static case.

This would likely require a 5th-order post-Newtonian expansion of the field

equations for a binary system with comparable masses.

(2) Are the tidal Love numbers of a Kerr BH zero to any order in the spin?

(3) Are the tidal Love numbers of a BH zero also in gravitational theories other

than general relativity?

(4) Spin-tidal interactions seem to have a nonnegligible impact on the NS deforma-

bility. A more rigorous analysis is needed to quantify their impact on the grav-

itational waveforms of a spinning NS binary system. A promising approach to

incorporate such effects in the relativistic two-body dynamics is by extending

effective point-particle techniques46 to include spin-tidal couplings.
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