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Modeling particle-laden turbulent flows at high volume fractions requires accounting

for the coupling between phases. The latter is often a sensitive point, and proper

closure of the exchange and production terms due to the presence of particles is

not straightforward. In the present work, a Lagrangian probability-density-function

(PDF) model developed for homogeneous cluster-induced turbulence is extended to

a channel flow. The key features are consistent two-way coupling and the decompo-

sition of the particle velocity into spatially correlated and uncorrelated components,

which is crucial for dense flows, and which allows to deal with collisions from a sta-

tistical point of view. A numerical scheme for the coupled solution of the stochastic

differential equations for the particles and a Reynolds-stress model for the fluid is

developed. Tests with tracer particles without two-way coupling are done to assess

the validity and the consistency of the numerical scheme. Finally, two sets of numer-

ical simulations with particles with different diameters in a turbulent channel flow

at a shear Reynolds of Reτ = 300 are reported. The effect of two-way coupling by

varying the mass loading of the dispersed phase in the mass-loading range ϕ = 0–2

is analyzed, and the results are compared to previous Eulerian–Lagrangian (EL) and

Eulerian–Eulerian (EE) direct-numerical simulation (DNS) studies. Mean velocities

and turbulent kinetic energy show good agreement with DNS, especially regarding

the trend with respect to mass loading. Consistent with prior work, increased mass

loading causes a drastic reduction of turbulent kinetic energy in the range ϕ = 0–2.

a)Electronic mail: a.innocenti@lamma.toscana.it
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I. INTRODUCTION

Particle-laden turbulent flows are present in a number of industrial and geophysical ap-

plications and their study has a long history in the literature. Depending on the volume

fraction of the particle phase within the flow, different regimes have been identified with to-

tally different mechanisms of energy production and transfer between the phases1,2. Several

pioneering works3–5 have investigated the so-called dilute regime, where interphase coupling

can be null or negligible, and the majority of the fluid-phase turbulence is generated by mean

shear. In this regime, the particles exhibit several features caused by their interaction with

turbulent structures. For instance, they tend to group together in particular regions of the

flow, depending on their inertia, and to form clusters5. Increasing the volume fraction, the

effect of the particles on the fluid phase cannot be neglected anymore and at some point colli-

sions start to be also important6,7. At sufficiently high mass loading (ϕ = ρpαp/(ρfαf ) & 1),

recent works using both Eulerian–Lagrangian (EL) and Eulerian–Eulerian (EE) methods8–10

have shown that even for homogeneous conditions, spatial fluctuations of particle clusters

can generate turbulence in a resting fluid due to the effect of gravity. Under these con-

ditions, turbulence is mainly fed by the mean-slip velocity of the clusters instead of the

classical mean-shear production. Thus, the primary source of turbulence production is a

term proportional to the drift velocity and mean slip between the phases. At intermediate

mass loading of order unity, it has been found1,11 that particles tend to reduce the turbulent

kinetic energy of the carrier phase, and relaminarization of the flow is even possible. Inho-

mogeneous flows are particularly interesting and challenging, because they show important

preferential concentration in certain regions, notably near to the walls in a channel. In this

case, it may be found that significant effects due to coupling and collisions cannot be ne-

glected locally even in those cases for which the average volume fraction would indicate a

dilute regime.

The most widely used numerical approach for particle-laden flows is EL point-particle

simulations12. With this approach, the continuous fluid phase is described by means of

a direct-numerical simulation (DNS) or with a turbulence model (e.g., Reynolds-averaged

(RA) equations, large-eddy simulations (LES)), and the dispersed particle phase is tracked

with a Lagrangian point of view13,14. This type of approach offers an extremely good ap-

proximation whenever particles are very small compared to the smallest turbulence length
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scales. Otherwise, the particle size should be taken into account explicitly through particle-

resolved simulations15,16. The coupling of fluid-phase turbulence models with the Lagrangian

equations of particle motion has been shown to suffer from several drawbacks, e.g., a wrong

estimation of particle clustering and concentration, because of the lack of information due

to the reduced level of description17–19. Several works have shown the possibility of partially

reconstructing the fluid-phase fluctuations by means of a stochastic model in the equation

of particle motion20–22 for dilute flows.

From an historical perspective, stochastic or probability-density-function (PDF) methods

have been developed in turbulence since the 1960s23, and key advances towards the modern

modeling approach were carried out by Ted O’Brien24–30. PDF methods are useful because

of the exact treatment of nonlinear terms local in variable space31–33. They are widely used

in reactive flows34, and have been extended to particle-laden flows more recently20,35–37.

Our recent work has extended the possibility to use this class of Lagrangian models with

high mass loading38, where collisions are considered from a statistical point of view. Namely

a stochastic particle model has been developed for the case of homogeneous fully developed

cluster-induced turbulence (CIT) based on the exact mesoscopic equations derived from the

kinetic theory of collisional fluid–particle flows. In the present work, we test this model for

an inhomogeneous application, i.e., a channel flow, comparing our results with a EL-DNS1,

a EE-DNS2, and a Reynolds-stress model39, with a mass loading in the range 0 ≤ ϕ ≤ 2,

therefore from dilute to moderately dense flows. It is worth remarking that for the lower

mass loading tested, simpler versions of the particle model20 with only two-way coupling

and without particle collisions, could equally be valid. However, it has been shown38 that

the present model developed for dense flows is consistent with the two-way model and gives

correct results also in the dilute regime. Therefore, the analysis of such a model may give

insights into the physical mechanisms at play in the different regimes.

In contrast to homogeneous CIT where the agreement between EE and EL approaches is

quite satisfactory9,10 for all Stokes numbers, a recent work2 found that the EE-DNS breaks

down for high-Stokes-number particles at low volume fractions when compared to EL-DNS

for vertical channel flows. Similar issues are observed with the EE Reynolds-stress model

(RSM) of Baker et al.39 where qualitative agreement is obtained only for low-Stokes-number

particles.

Our goal is to try to improve on that work by formulating a stochastic model for dense
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flows including the fluid seen by particles, which is modeled through a crude correlation in

the EE RSM that is not justified near the channel walls. The stochastic model starts at a

more fundamental basic that should allow for improvements using physics-based modeling.

Thus, our objective here is to assess the particle Lagrangian model developed for dense

flows38 at high mass loading and different Stokes numbers, which has been already assessed

for homogeneous CIT. In particular, we test whether the Lagrangian formulation is able to

capture better the transition of the flow that occurs when increasing the mass loading from

zero to values above unity as compared to the EE RSM39 with comparable turbulence clo-

sures. Yet, it remains out of the scope of the present work to provide a complete calibration

of the model that could lead to a more accurate comparison with DNS. The purpose of this

work is to appraise the Lagrangian stochastic model’s capability to describe inhomogeneous

flows, and in this framework we stick with the model parameters previously validated. This

analysis is already a valuable contribution since in this approach information is available

that is not in EE RANS models.

The remainder of this work is organized as follows. In section II, we summarize the

Lagrangian model equation for the channel flow case. In section III, the flow and geometric

parameters of the vertical channel flow are described. In section IV, a new numerical scheme

is derived for the solution of coupled stochastic differential equations (SDE). In section V, we

present results for tracer and inertial particles with mass loading up to ϕ = 2, and compare

them to prior work.

II. LAGRANGIAN PDF MODEL FOR VERTICAL CHANNEL FLOW

Here we provide an overview of the model equations for dense fluid–particle flows derived

in a recent work38, and adapted to a vertical channel flow. We consider a channel of width

W , with the span-wise direction denoted by x, the wall-normal direction by y (0 ≤ y ≤ W ),

and the vertical direction by z. All time-averaged statistical quantities depend only on the

wall-normal direction, y. The fluid–particle model consists in a set of Reynolds-average (RA)

equations for the fluid phase, and a set of Lagrangian stochastic equations for the particle

phase with two-way coupling. In the RA fluid-phase model equations, the only relevant

quantities for channel flow are the following: 〈Uf,z〉 (mean vertical velocity), 〈uf,xuf,x〉,

〈uf,yuf,y〉, 〈uf,zuf,z〉, 〈uf,yuf,z〉 (Reynolds-stress tensor). In addition, a transport equation
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for the fluid-phase dissipation εf has to be included to close the model. On the other hand,

the modeled Lagrangian quantities are yp (particle wall-normal position), δvp, Up and Us,

which are, respectively, the uncorrelated velocity, the correlated in space particle velocity,

and the fluid velocity seen by particles. The latter is the most natural choice in Lagrangian

two-phase stochastic models, since it represents the fluid velocity at the particle position,

i.e., sampled along particle trajectories. It takes into account the fact that solid particles

do not follow fluid–particle trajectories due to particle inertia. It is generally used also in

dilute models, though without the terms responsible for two-way coupling, and it is worth

remarking that in the limit of vanishing particle inertia it should retrieve the Lagrangian

fluid velocity.

The Lagrangian particle velocity Vp has been split into two components Up and δvp via

a coarse-graining approach on the kinetic equation. This procedure was initially proposed

for dilute two-phase turbulent flows40 and for collisional dense flows41, both in an Eulerian

framework, and formalized in a Lagrangian sense38. The coarse-graining operation consists

in filtering the microscale total particle velocity Vp to obtain a filtered mesoscale component

Up that represents the correlated part of the microscale velocity, and a residual uncorrelated

component δvp that has zero mean and is uncorrelated with Up. Also, for the dispersed

phase, an additional dissipation transport equation for εp is necessary to close the model.

The stream-wise and span-wise components of the particle position are not relevant since the

channel is periodic in those directions. Particle statistics are evaluated over slabs parallel to

the channel walls.

For the unfamiliar reader, stochastic Lagrangian models are the Lagrangian counterpart

of Eulerian RA models, though with fewer unclosed terms. Each statistical Lagrangian

particle represents a fluid/particle realization and, with a sufficient number of samples, RA

quantities can be reconstructed from local spatial averaging. From a formal point of view,

fluid- and particle-phase RA transport equations can be derived from the stochastic La-

grangian ones (in single-phase turbulence33 , in two-phase turbulence42 , and for the present

model38); however, some transport terms would remain unclosed and a direct solution of the

RA equations would not be possible without further modeling. This is one of the advan-

tages of sticking to the Lagrangian description, together with the fact that some modeling

assumptions are more natural and straightforward from the particle point of view.
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A. Stochastic model for particle phase

We review here the set of SDEs for the particle phase proposed in Innocenti et al.38,

expressed for an inhomogeneous flow. The Lagrangian particle position in the wall-normal

direction is

dyp = Vp,y dt = (Up,y + δvp,y) dt (1)

where Vp is the particle velocity. As previously explained38, following previous Eulerian

models for dilute40 and dense8 flows, the particle velocity is decomposed into a spatially

correlated part Up, and a uncorrelated residual δvp, derived from a coarse-graining/filtering

approach. The former is governed by

dUp,i =
1

τp
(Us,i − Up,i) dt+ gi dt−

1

〈αp〉
∂〈αp〉〈Pij〉

∂xj
+ δvp,j

∂〈Up,i〉
∂xj

dt

− 1

TLp
(Up,i − 〈Up,i〉) dt+

√
Cpεp dWp,i. (2)

The first term of the RHS of (2) is the drag force exerted by the fluid on the particle. Us

is the fluid velocity seen by the particle, i.e. at the particle position. Up is the correlated

component of the particle velocity. τp = ρpd
2
p/(18ρfνf ) is the particle relaxation time (here-

inafter taken as a constant). dp is the particle diameter, and νf the kinematic viscosity of

the fluid. This drag force is the only contribution accounting for the effect of the fluid phase

on particles, which is justified by the large density ratio limit ρp/ρf � 1. The second term

is the gravitational acceleration, g = [0, 0, g]T . The third term is a pressure term with 〈αp〉

being the particle-phase volume fraction and 〈Pij〉 = 〈δvp,iδvp,j〉 the particle-phase pressure

tensor. The brackets 〈·〉 denote phase-specific Reynolds average, i.e., weighted with the

respective volume fraction. Therefore they stand as an abbreviation of 〈(·)〉p = 〈αp(·)〉/〈αp〉

when averaging particle-phase quantities, and of 〈(·)〉f = 〈αf (·)〉/〈αf〉 when averaging fluid-

phase quantities. It is worth noting that in a Lagrangian approach, when doing an ensemble

average of particle quantities over a computational cell, we are intrinsically weighting with

the volume fraction.

The fourth term in (2) comes directly in closed form from the coarse-graining procedure38

and is a transport term for the filtered particle velocity Up due to the uncorrelated part δvp,

and has its counterpart in the Lagrangian transport equation of the uncorrelated particle

velocity δvp (Equation (5)). In practice, since the two particle velocity components are un-

correlated and 〈δvp〉 = 0, it gives no contribution either in the first-order moment transport
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equation for d〈Up〉 nor in the second-order one for d〈up · up〉. However, it is important to

balance the corresponding term in (5) when the total particle velocity Vp is evaluated as

the summation of the two components, and therefore to avoid spurious drift.

The fifth term in (2) is a relaxation to equilibrium term, which brings the instantaneous

particle velocity Up towards its average value on the Lagrangian integral time scale TLp:

TLp =
2(

1 + 3
2
C0p+fs

) kp
εp
. (3)

kp = 1
2
〈up · up〉 is the fluctuating kinetic energy of the correlated particle velocity, and

εp the particle-phase dissipation rate. In particular, the following relation holds for the

fluctuating energy partitioning: κp = kp + 3
2
〈Θp〉, where κp = 1

2
〈vp · vp〉 is the total particle-

phase fluctuating energy, kp = 1
2
〈up · up〉 is the particle-phase turbulent kinetic energy, and

〈Θp〉 = 1
3
〈δvp ·δvp〉 is the particle-phase granular temperature. vp and up are the fluctuations

arising from the Reynolds decomposition of Vp and Up, respectively.

The last term in (2) is an isotropic diffusion term, in which the constant Cp is related to

C0p by the relation

Cp = C0p +
2

3
fs , (4)

in order to obtain the correct correlation at the Reynolds-stress level. Finally, dWp,i is

a Wiener stochastic process. It is worth remarking that the present model lies at the

mesoscale and reintroduces the turbulent fluctuations of the small-scale particle velocity

through the last two terms. This is different from classical two-phase dilute stochastic

models where the particle-phase turbulence due to collisions is not considered, assuming

intrinsically that Vp = Up and that the particle acceleration dVp is driven only by fluid

drag and gravity. Therefore, with the present model, the combined effect of the last two

terms in (2) is analogous to the drift and diffusion terms used in the generalized Langevin

model33 for single-phase turbulent flows. From a modeling point of view this type of closure

yields, in the transport equation of the particle-phase Reynolds stresses, a redistribution

of particle turbulent energy between the Reynolds stresses Rp, and a sink (dissipation) εp

towards the granular component, analogously to the Rotta model for single-phase turbulent

flows38.

The uncorrelated residual particle velocity is modeled through an additional Lagrangian

stochastic equation attached to the same “statistical” particle. It retains mainly the effect

of spatial decorrelation due to inter-particle collisions and particle inertia. In particular, the
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exact form of dδvp coming from the coarse-graining procedure as the difference between the

total and the filtered components is unclosed and requires a model. Such a closure38 has

been guessed to obtain the correct transport equation for the particle granular temperature

〈Θp〉 = 1
3
〈δvp · δvp〉, and resulted in the following model:

d δvp,i = − 1

τp
δvp,i dt+

1

〈αp〉
∂〈αp〉〈Pij〉

∂xj
− δvp,j

∂〈Up,i〉
∂xj

dt+Bδ,ij dWδ,j

− (1 + e)(3− e)
4τc

δvp,i dt+

√
1

2τc
(1 + e)2〈Θp〉 dWc,i. (5)

The first term is the residual uncorrelated part of the drag term, evaluated from the difference

between the total and the correlated particle velocities. The next two terms are the same

as in (2) with opposite sign, as they need to vanish in order to obtain the correct average

particle equation. The diffusion coefficient in the fourth term has instead to be different,

as it represents the fluctuating component. In particular Bδ is a diffusion matrix, whose

expression will be given in the following, and dWδ is a Wiener stochastic process uncorrelated

with dWp.

The last two terms have been introduced to take into account collisions, where e is a

restitution coefficient and dWc is another Wiener process. The collision deterministic term

is driven by a characteristic collision time scale τc:

τc =

√
πdp

6Cc〈αp〉〈Θp〉1/2
, (6)

where Cc is a model parameter43.

The diffusion matrix Bδ,ij (shown in Appendix A) is formulated in order to obtain the

correct closure for second-order moments of the uncorrelated velocity38 〈δvp,iδvp,j〉, resulting

in a dissipation tensor in the transport equation of 〈δvp,iδvp,j〉 as follows:

εp = εp

[
fs
〈up ⊗ up〉

kp
+ (1− fs)

2

3
I

]
(7)

where εp is one-half the trace of εp, and 0 ≤ fs ≤ 1 is a parameter tuning the anisotropy.

In particular, with the present models for Up and δvp, it can be shown that an exchange of

energy is obtained from the correlated turbulent particle-phase energy kp towards the gran-

ular temperature 〈Θp〉, through a sink (dissipation) −εp and a source +εp in the respective

RA transport equations. Thanks to the closure proposed in Innocenti et al.38, such transfer

of energy takes into account the anisotropy of the flow, reflecting the physical mechanism
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of transfer due to the correlation between particle velocity gradients8, as for single-phase

turbulence.

The dissipation rate associated with a particle is modeled through a deterministic Eulerian

equation in analogy to single-phase flows:

dεp
dt

= (Cε1pPSp − Cε2pεp)
εp
kp

+
C3p

τp

(
kfp
kf@p

εf − βp εp
)

(8)

where Cε1p, Cε2p, C3p and βp are model parameters. kfp and kf@p are one half the trace

of the second-order correlations between fluid and particle and the fluid with itself at the

particle position, respectively. They are defined as kfp = 1
2
〈us · up〉, kf@p = 1

2
〈(Us − 〈Uf〉) ·

(Us−〈Uf〉)〉. Equation (8) has been derived empirically in order to obtain the correct decay

in isotropic decaying turbulence and homogeneous shear turbulence with varying particle

inertia. It is worth noting that this expression is different from that proposed by Fox et al.41

because additional information is available in the Lagrangian model (e.g., kfp and kf@p)

that is unavailable in the EE model. Nevertheless, the drag-exchange term in (8) must be

modeled in either formulation. Thus, other closures may be required to obtain the correct

behavior of the ratio kp/kf
41.

B. Stochastic model for fluid seen by particles

The fluid velocity seen by the particles is a key variable in two-phase models and its La-

grangian model offers one of the main advantages with respect to Eulerian RA models9,39,43,

where 〈Us〉 is usually guessed as some empirical function of 〈Uf〉. In the first works20,35,42,

a Lagrangian stochastic model for Us has been developed for dilute flows starting from the

generalized Langevin model for the single-phase turbulent fluid velocity Uf
33, and account-

ing for the fact that inertial particles deviate from fluid trajectories by modifying mainly

the Lagrangian fluid time scale appearing in the drift term and indirectly in the diffusion

coefficient of the fluid model, transforming therefore the variable from Uf to Us.

The present model for the fluid velocity seen by the particles is in some sense a general-

ization of the model for dilute flows20,42 to dense flows. In particular, here we use a modified

pressure gradient weighted by the fluid-phase volume fraction, and a different diffusion co-

efficient, which takes into account a possible velocity difference between the fluid average
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velocity, 〈Uf〉, and the mean fluid velocity seen by particles, 〈Us〉:

dUs,i(t) = −〈αf〉
ρf

∂〈pf〉
∂xi

dt+Gi,j(Us,j − 〈Uf,j〉) dt−
ϕ

τp
(Us,i − Up,i) dt+ gi dt

+
[
εf

(
C0fbi

k̃f
kf

+
2

3

(
bi
k̃f
kf
− 1
))

+
2ϕ

τp
(〈Up,i〉 − 〈Us,i〉)(〈Us,i〉 − 〈Uf,i〉)

−2
〈αp〉
ρf

∂〈pf〉
∂xi

(〈Us,i〉 − 〈Uf,i〉) +
2

3
C2fPSfs

]1/2

dWs,i. (9)

The first term of the RHS is the pressure gradient weighted by the fluid-phase volume

fraction. The second term is a return to equilibrium term, where the coefficient

Gij = − 1

T ∗L,i
δij +Ga

ij. (10)

T ∗L,i is a modified fluid Lagrangian time-scale taking into account the anisotropy of the flow

and particle inertia, defined by

T ∗L,i =
TLf√

1 + ζiβ2 3|〈Ur〉|2
2kf

, TLf =
2(

1 + 3
2
C0f

) kf
εf
. (11)

ζ1 = 1 in the mean-drift direction and ζ2,3 = 4 in the cross directions. β = TLf/TEf is

the ratio of the Lagrangian and the Eulerian timescales, and Ur = Up −Us is the relative

velocity. kf and εf are the fluid turbulent kinetic energy and dissipation. Ga is a traceless

matrix to be added to generalize the model38. In particular, for a correspondence with the

isotropization-of-production (IP) model of Launder–Reece–Rodi44 (LRR-IP), it should be

Ga
ij = C2f

∂〈Uf,i〉
∂xj

, (12)

with C2f being the IP constant. The value of the model constant C0f used in the Lagrangian

time-scale is established by the relation45:

C0f =
2

3
(CRf − 1) , (13)

where CRf is the Rotta constant.

The third term on the right-hand side of (9) accounts for two-way coupling. Therefore,

it is represented by the opposite of the drag force, ϕ being the mean mass loading, defined

as ϕ = ρp〈αp〉
ρf 〈αf 〉

. The fourth term is gravity, and the last term is a stochastic diffusion process

extended to dense flows in which bi = TLf/T
∗
L,i,

k̃f =
3

2

∑3
i=1 bi〈(Us,i − 〈Uf,i〉)2〉∑3

i=1 bi
, (14)
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and PSfs is one-half the trace of the tensor

PSfs = − (〈(Us − 〈Uf〉)⊗ (Us − 〈Uf〉)〉 · ∇〈Uf〉)† . (15)

The Wiener process dWs is uncorrelated with those present in the particle equations.

For the sake of brevity, we do not report here the corresponding Eulerian transport

equations for 〈Us〉, 〈Up〉 and the related Reynolds stresses, which are analyzed in detail in

Innocenti et al.38. Here, we just stress the main differences with respect to single-phase

turbulence models such as the simplified Langevin model (SLM)33:

dUf,i(t) = − 1

ρf

∂〈pf〉
∂xi

dt+
1

TL
(Uf,i − 〈Uf,i〉) dt+ (C0εf )

1/2dWf,i. (16)

Comparing (9) to the SLM, (i) the pressure gradient is weighted with the fluid-phase volume

fraction, (ii) the Lagrangian time-scale in the return-to-equilibrium drift term is modified to

take into account particle inertia and anisotropy with the expression proposed previously20,35,

(iii) the third term is the opposite of fluid drag force and represents the direct effect of

particles on fluid, (iv) the fourth term is gravity which is relevant in two-phase flows with

different densities and is included in the pressure gradient in single-phase flows, and (v)

the last term is a diffusion coefficient corresponding to the last term in (16) with several

modifications in order to take into account the differences in the drift terms and to ensure

a consistent closure for the second-order moments RA transport equations for 〈us ⊗ us〉.

To summarize, the particle phase and fluid seen are described by the following system of

SDEs:

dZp = A dt+ [B] dW , (17)

where A is the drift term, and

Zp =


Up

δvp

Us

 [B] =


C[I] 0 0 0

0 [Bδ] K[I] 0

0 0 0 [Bs]

 dW =


dWp

dWδ

dWc

dWs

 . (18)

C =
√
Cpεp is the diagonal diffusion coefficient in the equation for the correlated veloc-

ity. K =
√

1/(2τc)(1 + e2)〈Θp〉 is the diagonal diffusion coefficient for the collisions in the

uncorrelated-velocity equation. Bs is the diffusion coefficient in the fluid-velocity-seen-by-

particles equation.
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C. Fluid-phase turbulence model

Hereinafter, we assume that 〈αf〉 is time independent. However, as shown in previous

works39, this need not be the case at high mass loading due to the one-dimensional nature

of CIT. The steady-state transport of the RA fluid-phase volume fraction 〈αf〉 reduces to

the wall-normal component
∂〈αf〉〈Uf,y〉

∂y
= 0. (19)

Since the wall-normal velocity is null at the walls, this expression yields 〈Uf,y〉(y) = 0.

The only non-zero components of the fluid-phase momentum equation are given by

0 = − 1

ρf

∂〈pf〉
∂y

− 1

〈αf〉
∂〈αf〉〈uf,yuf,y〉

∂y
− ϕ

τp
〈Us,y〉, (20)

∂〈Uf,z〉
∂t

= − 1

ρf

∂〈pf〉
∂z

− 1

〈αf〉
∂〈αf〉〈uf,yuf,z〉

∂y
+ νf

∂2〈Uf,z〉
∂y2

− g +
ϕ

τp
(〈Up,z〉 − 〈Us,z〉), (21)

where ϕ(y) = ρp〈αp〉/(ρf〈αf〉) is the RA mass loading. From (20), the pressure gradient in

the y direction can be determined for use in the Lagrangian equation for Us. Here we seek

a steady-state solution where the left-hand side of (21) is null.

There are four non-zero components of the Reynolds-stress tensor: xx, yy, zz, yz, which

are governed by

∂〈uf,xuf,x〉
∂t

= Rf,xx − εf,xx +DEf,xx +
1

〈αf〉
∂

∂y

(
〈αf〉(νft + νf )

∂〈uf,xuf,x〉
∂y

)
, (22)

∂〈uf,yuf,y〉
∂t

= Rf,yy − εf,yy +DEf,yy +
1

〈αf〉
∂

∂y

(
〈αf〉(νft + νf )

∂〈uf,yuf,y〉
∂y

)
, (23)

∂〈uf,zuf,z〉
∂t

= Rf,zz − εf,zz − 2〈uf,yuf,z〉
∂〈Uf,z〉
∂y

+DEf,zz +DPf,zz

+
1

〈αf〉
∂

∂y

(
〈αf〉(νft + νf )

∂〈uf,zuf,z〉
∂y

)
, (24)

∂〈uf,yuf,z〉
∂t

= Rf,yz − εf,yz − 〈uf,yuf,y〉
∂〈Uf,z〉
∂y

+DEf,yz

+
1

〈αf〉
∂

∂y

(
〈αf〉(νft + νf )

∂〈uf,yuf,z〉
∂y

)
. (25)

DPf,ij and DE ij are the drag-production and drag-exchange tensors:

DPf,ij =
2ϕ

τp
(〈Us,z〉 − 〈Uf,z〉)(〈Up,z〉 − 〈Uf,z〉)δizδjz, (26)

DEf,ij =
ϕ

τp
(〈us,iup,j〉+ 〈up,ius,j〉 − 2〈(Us,i − 〈Uf,i〉)(Us,j − 〈Uf,j〉)〉). (27)
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For the vertical channel flow, DPf,zz is the only nonzero drag-production term and arises

because the formation of clusters leads to 〈Us,z〉 6= 〈Uf,z〉. It is worth noting that in the

EE Reynolds-stress model of Baker et al.39, a closure must be provided for 〈Us,z〉, which is

the major source of mismatch with EL-DNS. In contrast, quantities involving Up and Us are

available from the Lagrangian particle solver.

The redistribution tensor Rf,ij is modeled using the Rotta model:

Rf,ij = −CR
εf
kf

(
〈uf,iuf,j〉 −

2

3
kfδij

)
− C2f

(
PSf,ij −

2

3
PSfδij

)
(28)

with mean-shear-production tensor

PSf,ij = −〈uf,iuf,k〉
∂〈Uf,j〉
∂xk

− 〈uf,juf,k〉
∂〈Uf,i〉
∂xk

; (29)

and PSf = 1
2
trace(PSf ). For the vertical channel flow, only

∂〈Uf,z〉
∂y

is nonzero.

The wall-normal transport terms for the Reynolds-stress tensors are closed using a

gradient-diffusion model with the following turbulent viscosity:

νft = Cs
kf
εf
〈uf,yuf,y〉. (30)

The standard value for the model constant is Cs = 0.22. At high mass loading in a

vertical channel, |〈uf,yuf,z〉| < 〈uf,yuf,y〉 � 〈uf,zuf,z〉 (i.e., the turbulence is nearly one-

dimensional33) and, hence, wall-normal turbulent transport is relatively small compared to

single-phase flow2. Since wall-normal turbulent transport is the main stabilization mecha-

nism in turbulent channel flows, this situation can result in time-dependent solutions as the

mass loading increases39.

An anisotropic form of the dissipation tensor has been chosen, including a low-Reynolds

model when the wall is approached:

εf,ij = fs
〈uf,iuf,j〉

kf
+ (1− fs)

2

3
εfδij (31)

with

fs = exp

[
−
(ReL

150

)2
]

(32)

and ReL = k2
f/(νfεf ). To completely close the above set of equations describing the fluid

phase, we still need an equation for the fluid-phase turbulent dissipation rate:

∂εf
∂t

= (Cε1fPSf − Cε2fεf )
εf
kf

+ C3f
ϕ

τp

(
kfp
kf@p

εp − βfεf
)

+ C4
εp
kp
DP

+
1

〈αf〉
∂

∂y

[
〈αf〉

(
νft
σε

+ νf

)
∂εf
∂y

]
(33)
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where Cε1f , Cε2f , C3f , βf and C4 are model constants, and DP is one half the trace of

DPf,ij. It should be noted that (33) has some additional terms with respect to single-phase

turbulent dissipation models. In particular the second and third terms on the RHS are due

to the coupling with the particle phase and are modeled in accordance with (8) to obtain

the correct decay regimes in some reference cases (isotropic turbulence, homogeneous shear,

homogeneous CIT)38. To better capture the near-wall behavior, the fluid-phase turbulence

integral time scale is defined as Tf = max(kf/εf , 6
√
νf/εf ) in the RA equations. Let us

note that the time-scale used for the drag-production term in (33) will affect the steady-state

value of the ratio kp/kf . An alternative choice to using kp/εp is to use τp and adjust C4 to

obtain the ratio found for homogeneous CIT.

To simplify the computations, we neglect the spatial variations of the volume fraction,

leading to replace the diffusive terms, in (22)–(25) and (33) with the approximation

1

〈αf〉
∂

∂y

(
〈αf〉(νft + νf )

∂〈uf,iuf,j〉
∂y

)
' ∂

∂y

(
(νft + νf )

∂〈uf,iuf,j〉
∂y

)
. (34)

As discussed in a recent work39, neglecting spatial variations of the volume fraction is con-

sistent with assuming that the mean fluid velocity and volume fraction reach a steady state.

Otherwise, the hyperbolic form of the fluid-phase equations, along with the one-dimensional

nature of the turbulence at high mass loading, results in unsteady solutions for the EE

Reynolds-stress model39.

III. CHANNEL FLOW CONFIGURATION

The present study considers a vertical channel flow of width 2W , with the span-wise

direction denoted by x, the wall-normal direction as y (0 ≤ y ≤ 2W ), and the vertical

stream-wise direction as z. The same flow parameters as in the reference EL-DNS1 have

been chosen and are reported in Table II. The prescribed friction Reynolds number is

Reτ = uτW/νf = 300, where W = 1.8 cm is the channel half-width and uτ is the friction

velocity. The numerical discretization consists in a one-dimensional grid allocated along the

wall-normal direction. Namely, a uniform grid spacing is imposed, with a total number of

points Ny = 200, which leads to a discretization size ∆y+ = 1.5. Here, the superscript +

denotes normalisation with the viscous scales for length νf/uτ and time νf/u
2
τ .

The fluid is subjected to a mean pressure gradient and to the gravity, both in the vertical
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direction. The latter is constant, while the pressure gradient is dynamically adjusted in

order to keep a constant mass flow rate after the injection of particles. Once a steady state

is reached with the desired shear Reynolds number, Reτ , particles are injected randomly

with an initial velocity equal to the mean fluid velocity interpolated at the particle position.

It is worth remarking that we are dealing with statistical particles, which have only the aim

of reconstructing the associated statistical quantities, i.e., mean velocity, root mean square,

etc. This means also that the particle volume fraction is not directly connected to the total

number of particles, i.e., doubling the volume fraction does not require to double the number

of particles. Indeed at the beginning of the computation the average volume fraction 〈αp〉

is fixed, and then the local mean volume fraction 〈αp〉 is scaled to the initial one through a

constant. The mean mass loading of the channel is defined by

Φ =
ρp
ρf

〈αp〉
〈αf〉

. (35)

The mass loading ranges from 0 ≤ Φ ≤ 2 corresponding to 0 ≤ 〈αp〉 ≤ 0.001. The density

ratio is ρp/ρf = 2000. The particle Stokes numbers that have been considered correspond

to the two sets analyzed in the EL-DNS1, namely Stτ = τpuτ/W = 0.21 and Stτ = 2.1,

corresponding to a particle diameter d+
p = 0.74 and 2.35. The particle Reynolds number

for these two classes of particles is Rep = dpτpg/νf = 0.32 and 10. The values used in the

simulations are summarized in Table II. Each simulation has been performed with the same

number of statistical particles Np = 5× 104.

The nominal pressure gradient for the unladen case (which is known once the shear

Reynolds is fixed), is dynamically adjusted in the laden cases, in order to maintain the same

bulk fluid velocity in the vertical direction as in the unladen case,

U f,z =
1

W 〈αf〉

∫ W

0

〈αf〉(y)〈Uf,z〉(y) dy. (36)

The same procedure was used in the time-dependent EL-DNS1 and EE simulations2,39.

IV. NUMERICAL APPROACH

The fluid–particle flow is simulated through an hybrid EL algorithm. Fluid-phase equa-

tions are discretized on the uniform grid, while particle-phase equations are discretized in

time through a numerical scheme suitable for SDEs, which will be described in the following.

The algorithm can be decomposed in several steps:
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• Evaluation of RA quantities of the particle phase (i.e., 〈Up,z〉, 〈Us,z〉, etc.): quantities

attached to single particles are averaged over computational cells (infinite slices parallel

to the wall) by means of an ensemble average and reported on the grid nodes. Calling

a(n) a quantity attached to the nth particle, the ensemble average will be given by

〈aE〉 =
1

NE

∑
n∈∆E

a(n) NE→∞−−−−→
∆E→0

〈a〉 (37)

where NE is the number of particles in the cell and ∆E is the cell size. For reliable

statistics with minimal numerical dispersion, it is desirable to minimize the size of the

averaging domain, namely ∆E → 0, and maximize the number of statistical particles,

namely NE → ∞, but since the Lagrangian equations are coupled with the Eulerian

RA fluid-phase equations, it is not required to use finer discretization than the Eulerian

grid. Indeed, that would not increase the global accuracy, but would probably lead to

misleading spurious effects. Thus, for averaging Lagrangian quantities, we have used

the uniform grid used to discretize the fluid-phase equations.

• Particle and fluid RA quantities that are needed in the SDEs are interpolated at each

particle position with a second-order scheme.

• Equations (17) are advanced in time through a novel Euler first-order scheme for SDEs,

which is inspired by the one proposed by Peirano et al.20, but with the addition of

two-way coupling terms. Namely, two-way coupling prevents from solving the three

equations of Us,i, Up,i and xp,i in cascade as typically done in dilute flows. For this

reason an initial diagonalization of the system of equations is needed to uncouple the

variables Up,i and Us,i.

• Equations (21)–(25) and (33) are advanced in time with a finite-difference, semi-

implicit scheme (viscous terms), with the addition of the two-way coupling terms

with respect to classical Reynolds-stress models for single-phase flows.

• The mean pressure gradient is updated every Npres steps to adjust the mass flow rate.

Too rapid changes of this term may lead to numerical instabilities. Therefore, it is

more suitable to reach the desired mass flow rate by steps where each time a steady

state is reached before changing the pressure gradient.
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Initial conditions for the fluid phase are those obtained at steady state in the dilute case

(without two-way coupling).

A. Fluid phase

The Eulerian equations describing the fluid phase are discretized through a finite-

difference scheme, both in space and time. For the space discretization, we have used

a second-order semi-implicit centered scheme where convective non-linear terms are treated

explicitly, while diffusive terms are implicit. The discretization of the mean momentum

equation in the vertical direction yields:

〈Uf,z〉n+1
i − 〈Uf,z〉ni

∆t
= −Cf −

〈uf,yuf,z〉ni+1 − 〈uf,yuf,z〉ni−1

2∆y

+
νf
〈αf〉ni

〈Uf,z〉n+1
i+1 − 2〈Uf,z〉n+1

i + 〈Uf,z〉n+1
i−1

∆y2
− g +

ϕni
τp

(〈Up,z〉ni − 〈Us,z〉ni ) (38)

where Cf stands for the mean pressure gradient.

For the Reynolds stresses and the fluid dissipation, we apply the same reasoning and we

obtain analogous discretized equations. The six fluid variables are then grouped in a single

vector

X = [〈Uf,z〉 〈uf,xuf,x〉 〈uf,yuf,y〉 〈uf,zuf,z〉 〈uf,yuf,z〉 εf ], (39)

of length 6Ny, and the matrix associated to the system is built. The equations are, thus,

put in the form [A]Xn+1 = b, and the system is solved to find fluid quantities at n+ 1.

No-slip boundary conditions are imposed for the mean velocity and all Reynolds stresses

at the wall. At the channel center, we impose a symmetry condition with the only exception

being 〈uf,yuf,z〉, which must be zero (anti-symmetric). The boundary condition on the fluid

dissipation rate εf is zero flux at the wall and at the channel center.

It is worth remarking that the source terms due to two-way coupling with the particle

phase are obtained by means of ensemble averages of stochastic quantities. Therefore, they

can be noisy and cause numerical issues. Two strategies are used to smooth these quantities:

using a high number of statistical particles (i.e., Np = 5 · 104 corresponds to an average

number of particles per cell Ncell = 250), and time-averaging of the ensemble-averaged

quantities.
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B. Particle phase

SDEs need an ad-hoc numerical scheme for a proper discretisation. Previously, a first-

and a second-order scheme based on analytical solutions with constant coefficients have

been proposed for the dilute regime model20. Yet, as a consequence of the appearance of

Up in the equation of Us, that scheme cannot be used with the present particle model since

two-way coupling modifies the nature of the system of SDEs. This leads to a complete

coupling between the two equations of the particle and fluid velocity seen, which prevents us

from directly finding the analytical solution with constant coefficients of Us. The strategy

adopted in the present work has been to put the system of SDEs in diagonal form in order

to uncouple Us and Up, as proposed for a two-way coupling model20.

We start by considering the sub-system composed by the equations for Up and Us, which

can be put in vector form as follows (the i index stands for the three spatial dimensions):

dXi = Ci dt+ [A]iXi dt+ [B]idWi, (40)

with

Xi =

Up,i
Us,i

 Ci =

〈Up,i〉/TLp − 1
〈αp〉

∂〈αp〉〈Pij〉
∂xj

+ δvp,j
∂〈Up,i〉
∂xj

+ gi

− 1
ρf

∂〈pf 〉
∂xi

+ 〈Uf,i〉/T ∗L,i + gi

 (41)

[A]i =

−(1/τp + 1/TLp) 1/τp

ϕ/τp −(1/T ∗L,i + ϕ/τp)

 [B]i =

C 0

0 Bs,i

 . (42)

Bs,i is the diffusion coefficient of Us,i, C the constant diffusion coefficient of Up, and dWi =

(dWp,i dWs,i)
T . To simplify the derivation of the numerical scheme, we treat explicitly

the production term δvp,j
∂〈Up,i〉
∂xj

. Otherwise, the system would have been fully coupled, not

only in the three variables Up, Us, δvp, but also in the three directional components x, y, z,

yielding a system matrix of size 9× 9 to be diagonalized for each particle. With the explicit

treatment, we have to diagonalize only three 2× 2 matrices.

A diagonalization of the system gives

dYi = [T ]−1
i Ci dt+ [D]iYi dt+ [T ]−1

i [B]idWi, (43)

where [T ]i and [D]i are the eigenvector matrix and the eigenvalues diagonal matrix relative to

[A]i. The transformation is given by Xi = [T ]iYi. Now we can split for the two components
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of Yi, and write the equations in the following form:

dYi,1 = Ki,1 dt− λi,1Yi,1 dt+ Zi,11 dWp,i + Zi,12 dWs,i, (44)

dYi,2 = Ki,2 dt− λi,2Yi,2 dt+ Zi,21 dWp,i + Zi,22 dWs,i, (45)

where λi,j are the negative of the eigenvalues. Each component of the analytic solution with

constant coefficients can be found looking for a solution of the form

Yi,j(t) = Hi,j(t) exp(−tλi,j), (46)

with

dHi,j(t) = exp(tλi,j)[Ki,j dt+ Zi,j1 dWp,i + Zi,j2 dWs,i]. (47)

Integration between t0 and t gives

Yi,j(t) = Yi,j(t0) exp(−∆tλi,j) +
Ki,j

λi,j
[1− exp(−∆tλi,j)]

+ Zi,j1 exp(−tλi,j)
∫ t

t0

exp(sλi,j)dWp,i + Zi,j2 exp(−tλi,j)
∫ t

t0

exp(sλi,j)dWs,i, (48)

where λi,j, Ki,j, Zi,jk are frozen at time t0. The analytical solution of Up and Us can be

found transforming back the solution obtained, and is shown in Table I. Stochastic integrals

appearing in the analytical solution can be discretized using the Cholesky algorithm. The

resulting numerical scheme and the covariance matrices for the evaluation of stochastic

integrals are reported in Appendix A.

The uncorrelated velocity, δvp, can be treated separately, considering it explicitly, since

it has been uncoupled in the Up equation. The production term δvp,j∂〈Up,i〉/∂xj couples the

three components of δvp. Thus, a diagonal decomposition would be in principle necessary

to obtain three independent equations, one for each spatial component. However, as we

dealt with equations (40), we have solved the equation in a explicit way (fixed at time step

n), and therefore no diagonalization is needed. Recall that the stochastic process for the

uncorrelated velocity is described by the following equation:

d δvp,i = −δvp,i
Tδ

dt+Kδ,ij dt+Bδ,ij dWδ,j +Bc dWc,i , (49)

with

1

Tδ
=

1

τp
+

(1 + e)(3− e)
4τc

, Kδ,ij =
1

〈αp〉
∂〈αp〉〈Pij〉

∂xj
− δvp,j

∂〈Up,i〉
∂xj

, Bc =

√
1

2τc
(1 + e)2〈Θp〉 .

(50)
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TABLE I. Analytical solutions to system (17) for time-independent coefficients. Stochastic integrals

(γi,pj , γi,sj , σδ,ij , σc,i,Πip,Πis,Σδ,ij ,Σc,i) are shown in Table IV of Appendix A.

Up,i(t) =
{
Yi,1(t0) exp(−∆tλi,1) +

Ki,1

λi,1
[1− exp(−∆tλi,1)] + γi,p1 + γi,s1

}
[T11]i

+
{
Yi,2(t0) exp(−∆tλi,2) +

Ki,2

λi,p2
[1− exp(−∆tλi,2)] + γi,p2 + γi,s2

}
[T12]i ,

Us,i(t) =
{
Yi,1(t0) exp(−∆tλi,1) +

Ki,1

λi,1
[1− exp(−∆tλi,1)] + γi,p1 + γi,s1

}
[T21]i

+
{
Yi,2(t0) exp(−∆tλi,2) +

Ki,2

λi,2
[1− exp(−∆tλi,2)] + γi,p2 + γi,s2

}
[T22]i ,

δvp,i(t) = δvp,i(t0) exp(−∆t

Tδ
) +Kδ,ij · Tδ

[
1− exp(−∆t

Tδ
)
]
+σδ,ij + σc,i ,

xp,i(t) = xp,i(t0) +
{Yi,k(t0)

λi,k
[1− exp(−∆tλi,k)] +

Ki,k

λi,k
[∆t+

1

λi,k
(exp(−∆tλi,k)− 1)]

}
[T1k]i + Πip + Πis

+ δvp,i(t0)Tδ[1− exp(−∆t/Tδ)] +Kδ,ij · Tδ
[
∆t− Tδ

(
1− exp(−∆t

Tδ
)
)]

+ Σδ,ij + Σc,i

[Bδ] defined in (A1). Equation (49) is formally equal to (44). Therefore, the same derivation

is adopted, leading to the following analytical solution with constant coefficients:

δvp,i(t) = δvp,i(t0) exp(−∆t/Tδ) +Kδ,ijTδ[1− exp(−∆t/Tδ)]

+Bδ,ij exp(−t/Tδ)
∫ t

t0

exp(s/Tδ)dWδ,j +Bc exp(−t/Tδ)
∫ t

t0

exp(s/Tδ)dWc,i. (51)

Finally the equation of the particle position (1) can be solved by integrating it in time

and substituting the expressions for Up and δvp:

xp(t) = xp(t0) +

∫ t

t0

Up ds+

∫ t

t0

δvp ds. (52)

The complete expression is reported in Table I. Particular care must be taken in the dis-

cretization of stochastic integrals to obtain the correct correlations between variables. The

detailed form of the numerical scheme is reported in Appendix A
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V. RESULTS

A. Test of consistency with tracer particles

The numerical scheme proposed to solve the stochastic system of equations for the par-

ticle phase has been validated in the dilute case, i.e., at negligible volume fraction of the

particle phase 〈αp〉 → 0. Specifically, we have tested a dilute channel with tracer particles

of vanishing inertia, i.e., τp → 0. We have compared our results with the ones obtained for

the dilute model of Peirano et al.20. From the results, it is evident that the model for dense

flows recovers the dilute model solution, and that both are consistent with the average fluid

solution. Indeed, from the particle equations, it can be shown that for τp → 0, Up → Us

instantaneously, and that at an average level 〈Us〉 → 〈Uf〉, and the same for higher-order

statistics.

For this test case, the shear Reynolds number is Reτ = 300, and the particle timescale

is τp = 10−6. All other parameters are the same as for the inertial particles test cases, and

are reported in Table II. For both models, we have used the same values of the constants

obtained from the CIT homogeneous study38. Their values are reported in Table III. A side-

by-side comparison is made in Figure 1 between the numerical scheme for one-way coupling20

(left panels) and the numerical scheme for two-way coupling (right panels), at ϕ = 0. From

top to bottom are reported the mean velocity and the three diagonal components of the

Reynolds stresses. Statistics related to particles are obtained averaging locally inside the

cell and in time over a window of Nsteps = 105, so of duration ∆t = Nsteps × dt = 10 s. It

can be seen that the two numerical schemes are fully consistent, and that their solutions

tend to the RA result. Indeed Us and Up are exactly superimposed and empty symbols

corresponding to Us are barely visible.

B. Inertial particles with two-way coupling

Some of the EL-DNS cases1 have been reproduced, namely particles with small and large

Stokes number St = 0.21, 2.1 with different mass loading, starting from zero up to ϕ = 2.

To reach the higher values of the volume fraction, we have continuously increased it starting

from zero in order to avoid numerical instabilities. At each intermediate steps, we had to

wait for the simulation to reach a stationary state. We start by showing results at mass
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Physical parameters

uτ shear velocity 0.3 m s−1

Ub(DNS) bulk velocity 5.02 m s−1

Ub(RANS) bulk velocity 3.35 m s−1

δ channel half width 1.8 cm

dpf
dz pressure gradient 14.81 Pa

g gravity acceleration −9.81 m s−2

ρp particle density 2000 kg m−3

ρf fluid density 1 kg m−3

νf fluid kinematic viscosity 1.8× 10−5 m2 s−1

τp particle relaxation time 10−6 ; 0.0128 ; 0.128 s

dt time step 10−4 s

TABLE II. Fluid and particle parameters used in the simulations, in accordance with the EL-DNS

cases1. The corresponding shear Reynolds number is Reτ = 300.

C0f C0p Cε1 Cε2 C3f C3p C4 fs β C2f

3.5 0.18 1.44 1.92 3.5 7.0 6.81 0.4 1 0

TABLE III. Model constants.

loading zero ϕ = 0 compared to the EL-DNS in order to show the initial bias between

the two solutions. Indeed, it is worth remembering that we are using a relatively simple

Reynolds-stress model (Rotta, since C2f has been set to zero) to describe the fluid phase and

that a perfect recovery of the DNS solution cannot be expected in this case33,39. To obtain

a better agreement, more complex models can be used such as, for instance, the non-local

elliptic relaxation model46. The use of such models is out of the scope of this work, as we

are mainly focused on showing the relative trend with respect to mass loading. Figure 2

shows fluid-phase statistics from RANS and EL-DNS for the average vertical velocity and

Reynolds stresses.
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FIG. 1. Mean velocity and Reynolds stresses with tracer particles (τp = 10−6) in the dilute limit

(ϕ = 0). Left panels are results with the numerical scheme for one-way coupling20, and right panels

are results with the new numerical scheme. All quantities are made dimensionless with the shear

velocity uτ = 0.3m/s. RA fluid velocity (lines), fluid velocity seen by particles (symbols), particle

velocity (filled symbols). 〈uf,yuf,y〉 (red solid line), 〈uf,zuf,z〉 (blue dotted line), 〈uf,yuf,z〉 (black

dash dotted line), 〈us,yus,y〉 (red empty circles), 〈us,zus,z〉 (blue empty squares), 〈us,yus,z〉 (black

empty diamonds), 〈up,yup,y〉 (red filled circles), 〈up,zup,z〉 (blue filled squares), 〈up,yup,z〉 (black

filled diamonds) .

1. Mean velocities

We analyze here the mean velocities of the fluid–particle flow. In Figures 3 and 4, we

compare the average velocities of the fluid and of particles from the model to the respective

ones of the EL-DNS1, at different mass loading. In these figures, velocities are made non-

dimensional with the EL-DNS, and the model bulk velocity, i.e., Ub = 5.02m/s for the DNS,

and Ub = 3.345m/s for the model. It is evident that the model is able to capture the

modulation that the particles exert on the fluid when varying the volume fraction of the

particle phase for both Stokes numbers. Moreover, the model seems to be too sensitive to
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FIG. 2. Mean velocity and Reynolds stresses of the fluid phase at ϕ = 0. Lines corresponds to EL-

DNS1, symbols to the model. Velocities and Reynolds-stresses have been made non-dimensional

with uτ . 〈uf,xuf,x〉 (red solid line, squares), 〈uf,yuf,y〉 (blue dotted line, triangles), 〈uf,zuf,z〉 (black

dashed line, circles), 〈uf,yuf,z〉 (magenta dash dotted line, downward triangles).
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FIG. 3. Mean velocity of the fluid and particle phases at different mass loading for St = 0.21

particles. Lines corresponds to EL-DNS1, symbols to the model. Velocities are divided by the

corresponding fluid bulk velocity, Ub(DNS) and Ub(RANS). 〈Uf,z〉 (black dashed line, circles), 〈Up,z〉

(magenta dotted line, diamonds). ϕ = 0.2 (a), ϕ = 1 (b), ϕ = 2 (c)

mass loading, and yet the particle-phase velocity exhibits a significant slip at the wall, as

expected, and its prediction is good near the wall and at the channel center.

It is known that the drift velocity is sensitive to the model constants39,43, and in particular

to C2, which in the present case has been set to zero. Specifically, constants have been tuned

for a homogeneous CIT case at ϕ = 20. Therefore, it is not surprising that at low-mass-

loading the results are not fully satisfactory. If we look at the relative variations with respect
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FIG. 4. Mean velocity of the fluid and particle phases at different mass loading for St = 2.1

particles. Lines corresponds to EL-DNS1, symbols to the model. Velocities are divided by the

corresponding fluid bulk velocity, Ub(DNS) and Ub(RANS). 〈Uf,z〉 (black dashed line, circles), 〈Up,z〉

(magenta dotted line, diamonds). ϕ = 0.2 (a), ϕ = 1 (b), ϕ = 2 (c)
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FIG. 5. Variations of the mean fluid velocity at ϕ = 2 with respect to the solution at ϕ = 0. Lines

corresponds to EL-DNS1, symbols to the model. St = 0.21 (solid black line, ×), St = 2.1 (dashed

red line, ◦).

to the reference value at ϕ = 0:

Qr =
Q(ϕ)−Q(ϕ = 0)

Q(ϕ = 0)
, (53)

see Figure 5, the trend with mass loading bodes well for further tests at higher values.

2. Energy

The kinetic energies for the fluid and particle phases are compared in Figures 6 and 7.

As discussed earlier for the mean velocity, a quantitative agreement is not expected, and a
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FIG. 6. Energy of the fluid and particle phases at different mass loading for St = 0.21. Lines

corresponds to EL-DNS1, symbols to the model. Energy is divided by u2
τ . kf (black dashed line,

circles), kp (magenta dotted line, diamonds). ϕ = 0.2 (a), ϕ = 1 (b), ϕ = 2 (c)

better optimization of the constants would be needed. Nevertheless, it is interesting how

the model is able to capture the decrease of the fluid kinetic energy when increasing the

volume fraction, for both Stokes number. It has been shown1 that there is a flow transition

at mass loading around ϕ = 2, and that above this value the energy increases again. The

reason is that after a laminarization of the flow due to the presence of particles, clusters

start to become dominant, and their fluctuations induce CIT-like turbulence again in the

fluid phase. Therefore it is encouraging that even if the constants have been optimized for

CIT, the model behaves well qualitatively also at low volume fraction where the mechanism

of energy transfer is qualitatively different.

Concerning the particle-phase energy, for St = 0.21 we see that after an initial increase

from ϕ = 0.2 to ϕ = 1, the model describes consistently the EL-DNS results. At ϕ = 2,

we have a further increase instead of a reduction. Nevertheless, the fact that the kp > kf

is inconsistent, and was not observed in the EE Reynolds-stress model39. This mismatch

is most likely due to the values assigned to the model constants that have been optimized

in the homogeneous CIT for a higher Stokes number. Indeed, for the case at St = 2.1, the

qualitative trend is much closer to the EL-DNS results for both fluid and particle kinetic

energies.

In Figure 8, we show the trend of the average fluid turbulent kinetic energy with respect

to the mass loading. As outlined above, the model predicts well the energy decrease, and

apart from an initial bias, which is present only for the small Stokes number, the relative

variations are in very good agreement with the EL-DNS results.
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FIG. 7. Energy of the fluid and particle phases at different mass loading for St = 2.1. Lines

corresponds to EL-DNS1, symbols to the model. Energy is divided by u2
τ . kf (black dashed line,

circles), kp (magenta dotted line, diamonds). ϕ = 0.2 (a), ϕ = 1 (b), ϕ = 2 (c)
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FIG. 8. Fluid-phase energy variations with respect to the mass loading normalized by the corre-

sponding energy at ϕ = 0. EL-DNS data1 (◦), model (�). St = 0.21 (solid black lines), St = 2.1

(dashed red lines).

Finally, we report the anisotropy of the Reynolds stresses in Figures 9 and 10. In homoge-

neous CIT, the Reynolds stresses are highly anisotropic with the zz component significantly

larger than the other two, and the yz component is zero. In the channel case, we note that

the anisotropy becomes more and more pronounced when increasing the mass loading and

thus moving towards CIT. The agreement with the EL-DNS results is satisfactory and the

zz contribution to kf increase from an initial 50% to above 80% for ϕ = 2 in the inner part

of the channel.

As expected, the fluid-phase turbulence approaches the one-dimensional limit as the mass

fraction increases due to the drag-production term. The same behavior was observed with
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FIG. 9. Fluid-phase Reynolds-stress components at different mass loading at St = 0.21. Lines

corresponds to EL-DNS1, symbols to the model. 〈uf,xuf,x〉 (red solid line, squares), 〈uf,yuf,y〉

(blue dotted line, triangles), 〈uf,zuf,z〉 (black dashed line, circles). ϕ = 0.2 (a), ϕ = 1 (b), ϕ = 2

(c)
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FIG. 10. Fluid-phase Reynolds-stress components at different mass loading at St = 2.1. Lines

corresponds to EL-DNS1, symbols to the model. 〈uf,xuf,x〉 (red solid line, squares), 〈uf,yuf,y〉

(blue dotted line, triangles), 〈uf,zuf,z〉 (black dashed line, circles). ϕ = 0.2 (a), ϕ = 1 (b), ϕ = 2

(c)

the EE Reynolds-stress model39. However, the present EL model reproduces correctly this

mechanism only in the inner part of the channel, while approaching the wall the Reynolds

stresses remain more isotropic than in the EL-DNS. This discrepancy is probably due to the

original bias of the RA fluid model, which is evident at ϕ = 0 in Figure 2.

VI. CONCLUSIONS

In this work, we report on the application of the stochastic model for dense particle-

laden flows proposed for homogeneous CIT38 to turbulent channel flows. We have rewritten
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the model equations for inhomogeneous applications, and then proposed a new numerical

scheme for the solution of these SDEs. In particular, the particle-phase equations have been

solved numerically using a Monte–Carlo approach.

It is worth stressing that these SDEs present new numerical difficulties due to two-way

coupling with respect to already existing models for dilute flows20. The particle and the

fluid-seen velocity equations are fully coupled and, therefore, an initial diagonalization of

the system is needed for each statistical particle. Then, a numerical scheme is derived based

on the analytical solution that the equations admit with constant coefficients. The scheme

includes the additional terms that are present in the particle velocity equations with respect

to the dilute model, as well as the new equations for the uncorrelated component of the

particle velocity δvp.

A turbulent channel flow at shear Reynolds number Reτ = 300 has been simulated,

reproducing the same configuration as in a recent EL-DNS1. The numerical scheme has

been validated in a test of consistency with tracer particles at negligible mass loading,

and the solution has been compared to that obtained with the numerical scheme for dilute

flows for the same flow conditions. Direct comparison shows that the scheme reproduces

exactly the same results as those with the dilute scheme, and that in both cases an excellent

consistency is obtained, i.e., the solution from the Lagrangian tracer particles recovers the

one from the Eulerian fluid-phase RA equations.

Inertial particles with Stokes number St = 0.21 and 2.1 have been simulated at different

mass loading, reproducing some of the EL-DNS cases. Since the purpose of the present work

is to assess the capability of the Lagrangian stochastic model to adapt to inhomogeneous

cases, the values of the model constants have not been changed from those obtained in the

homogeneous CIT case38, which was for high-Stokes-number particles at a mass loading of

ϕ = 20. Thus, the agreement with EL-DNS is expected to be only qualitative, since we have

tested only cases at mass loading 0 ≤ ϕ ≤ 2. The importance of developing a Lagrangian

stochastic approach resides in the fact that some quantities are available in a closed form,

most notably Us, which are difficult to approximate in the EE RANS approach. The present

work is the first step in this direction.

Results have shown that the model is able to capture some modulation due to the particles

on the fluid velocity, even though the variations of the mean velocity profile appear to

be too sensitive to the mass loading for the small Stokes number. However, the constant
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reduction of turbulent kinetic energy is well captured, and the re-partition of energy between

the different Reynolds-stress components is in decent agreement with EL-DNS. It is worth

remarking that the strong anisotropy of the Reynolds-stress tensor in CIT is one of its key

features. Therefore, the trend obtained up to ϕ = 2 is positive and bodes well for higher

mass loading.

Overall, the results are very encouraging. In fact, even with constants optimized for CIT,

the model exhibits good trends with respect to the mass loading. It has been discussed1 how

different regimes are encountered when increasing the volume fraction, from weak interphase

coupling (ϕ ≤ 1) where the dominant mechanism for generating fluid-phase turbulent kinetic

energy is the mean-shear production, to moderate coupling (2 ≤ ϕ ≤ 4) where the flow

relaminarizes, to strong coupling (ϕ ≥ 10) with CIT. Therefore, since different mechanisms

are at play, we can not expect to obtain a quantitative agreement for all cases by keeping the

same values for the constants. Moreover, as shown in a recent work39, the one-dimensional

nature of CIT leads to time-dependent solutions for a EE Reynolds-stress model, which is

likely to also be the case with the Lagrangian model discussed in the work.

Some words are in order on how to improve the predictions of the model. The discrepancy

in the near-wall region, notably in terms of anisotropy, could be improved by adopting a

more refined RANS fluid model. As we have shown in the uncoupled case (ϕ = 0), the fluid

model used in this work lacks for a proper description of the mean fluid velocity and Reynolds

stresses, especially in the boundary layer. This background error is of course present also

at higher mass loading, and therefore a quantitative improvement of the results can only be

obtained starting with a more refined fluid model accounting for a specific treatment of the

near-wall region33. However, since the fluid and particle descriptions are coupled, changing

the fluid model would imply different closures for the particle model, with different model

constants47. We have decided to stick to a version of the model that has already been

validated, at least in a homogeneous case, in order to have a better control of the behavior

of the model and to understand whether the deficiencies are to be implied to the fluid, to the

particle model, or to an improper optimization of the constants. Future works with different

RANS models would help clarify this point.

Then, an exhaustive parametric study used to caliber the model will be needed before

considering new applications. In this analysis, a comparison between the different versions

of the model could be interesting in future work to understand at what point the additional
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physics included in the complete model, notably collisions, starts to be crucial.

As future perspective, it would be of great interest to test the model also at higher

mass loading in the CIT range. Because of the low computational cost of the steady-state

simulations, we can adopt techniques of uncertainty quantification to find a suitable set of

constants capable of reproducing all cases with acceptable accuracy in order to make the

model viable for practical applications.

Data availability

The data that support the findings of this study are available from the corresponding

author upon reasonable request.

Appendix A: Modeling and numerical complements

In this appendix, we briefly report some modeling complements omitted in the main text

and additional details on the numerical scheme that has been developed.

The diffusion matrix Bδ,ij present in Equation (5) has been obtained using a Choleski

decomposition38, and reads as follows:

Bδ,11 =

[
fs
εp
kp
〈up,1up,1〉+ (1− fs)

2

3
εp

]1/2

,

Bδ,i1 =
1

Bδ,11

fs
εp
kp
〈up,iup,1〉, 1 < i ≤ 3

Bδ,ii =

[
fs
εp
kp
〈up,iup,i〉+ (1− fs)

2

3
εp −

i−1∑
j=1

B2
δ,ij

]1/2

, 1 < i ≤ 3

Bδ,ij =
1

Bδ,jj

(
fs
εp
kp
〈up,iup,j〉 −

j−1∑
k=1

Bδ,ikBδ,jk

)
, 1 < j < i ≤ 3

Bδ,ij = 0, i < j ≤ 3 ;

(A1)

The analytical solution with constant coefficients shown in Table I has a few terms that

have been left in implicit form involving time integrals of stochastic processes. Their com-

plete expressions are shown in Table IV.

The following Table V is the discrete version of Tables I and IV. It is worth noting that

the analytical stochastic integrals are simulated with a proper combination of independent
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TABLE IV. Analytical expressions of the stochastic integrals appearing in Table I.

γi,p1(t) = Zi,11 exp(−tλi,1)

∫ t

t0

exp(sλi,1)dWp,i, γi,s1(t) = Zi,12 exp(−tλi,1)

∫ t

t0

exp(sλi,1)dWs,i,

γi,p2(t) = Zi,21 exp(−tλi,2)

∫ t

t0

exp(sλi,2)dWp,i, γi,s2(t) = Zi,22 exp(−tλi,2)

∫ t

t0

exp(sλi,2)dWs,i,

Γi,p1(t) =

∫ t

t0

γi,p1(s) ds, Γi,s1(t) =

∫ t

t0

γi,s1(s) ds,

Γi,p2(t) =

∫ t

t0

γi,p2(s) ds, Γi,s2(t) =

∫ t

t0

γi,s2(s) ds,

Πip(t) = Γi,p1(t)[T11]i + Γi,p2(t)[T12]i, Πis(t) = Γi,s1(t)[T11]i + Γi,s2(t)[T12]i,

σδ,ij(t) = Bδ,ij exp(−t/Tδ)
∫ t

t0

exp(s/Tδ)dWδ,i,

σc,i(t) = Bc exp(−t/Tδ)
∫ t

t0

exp(s/Tδ)dWc,i,

Σδ,ij(t) =

∫ t

t0

σδ,ij(s) ds, Σc,i(t) =

∫ t

t0

σc,i(s) ds.

Gaussian random variables obtained from a Choleski decomposition. The coefficients of such

expressions are obtained from the covariance matrix shown in Table VI.

33



TABLE V. First-order temporal discretization (Euler scheme)

Numerical integration of the system:

Un+1
p,i =

{
Y n
i,1 exp(−∆tλni,1) +

Kn
i,1

λni,1
[1− exp(−∆tλni,1)] + γni,p1 + γni,s1

}
[T11]i

+
{
Y n
i,2 exp(−∆tλni,2) +

Kn
i,2

λni,2
[1− exp(−∆tλni,2)] + γni,p2 + γni,s2

}
[T12]ni ,

Un+1
s,i =

{
Y n
i,1 exp(−∆tλni,1) +

Kn
i,1

λni,1
[1− exp(−∆tλni,1)] + γni,p1 + γni,s1

}
[T21]ni

+
{
Y n
i,2 exp(−∆tλni,2) +

Kn
i,2

λni,2
[1− exp(−∆tλni,2)] + γni,p2 + γni,s2

}
[T22]ni ,

δvn+1
p,i = δvnp,i exp(−∆t

Tnδ
) +Kn

δ,ij · Tnδ
[
1− exp(−∆t

Tnδ
)
]
+σnδ,ij + σnc,i ,

xn+1
p,i = xnp,i +

{Y n
i,k

λni,k
[1− exp(−∆tλni,k)] +

Kn
i,k

λni,k
[∆t+

1

λni,k
(exp(−∆tλni,k)− 1)]

}
[T1k]

n
i + Πn

ip + Πn
is

+ δvnp,iT
n
δ [1− exp(−∆t/Tnδ )] +Kn

δ,ij · Tnδ
[
∆t− Tnδ

(
1− exp(−∆t

Tnδ
)
)]

+ Σn
δ,ij + Σn

c,i,

The stochastic integrals are simulated by (analogously for σnδ,ij and σnc,i):

γni,p1 = P i11p G1,i, γni,s1 = P i11s G4,i

γni,p2 = P i21p G1,i + P i22p G2,i, γni,s2 = P i21s G4,i + P i22s G5,i

Πn
ip = P i31p G1,i + P i32p G2,i + P i33p G3,i, Πn

is = P i31s G4,i + P i32s G5,i + P i33s G6,i

where Gk,i are independent N (0, 1) random variables.

The coefficients P i11p, P
i
21p, P

i
22p, P

i
31p, P

i
32p, P

i
33p, (analogously for Pijs) are defined as

P i11p =
√
〈(γni,p1)2〉,

P i21p =
〈γni,p1γni,p2〉√
〈(γni,p1)2〉

, P i22p =

√
〈(γni,p2)2〉 −

〈γni,1γni,p2〉2

〈(γni,p1)2〉
,

P i31p =
〈γni,p1Πn

ip〉√
〈(γni,p1)2〉

, P i32p =
1

P i22p

(〈γni,p2Πn
i 〉 − P i21pP

i
31p), P i33p =

√
〈(Πn

ip)
2〉 − P i231p − P i

2

32p).
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TABLE VI. Covariance matrix

〈γ2
i,p1〉 =

1

2

Z2
i,11

λi,1

(
1− exp(−2∆tλi,1)

)
〈γ2
i,p2〉 =

1

2

Z2
i,21

λi,2

(
1− exp(−2∆tλi,2)

)
〈γi,p1γi,p2〉 =

1

2

Zi,11Zi,21

(λi,1 + λi,2)

(
1− exp(−∆t(λi,1 + λi,2))

)
〈γi,p1Πip〉 = −T [1, 1]i

2λ2
i,1

Z2
i,11

(
1− exp(−2∆tλi,1)

)
− T [1, 2]i
λi,2(λi,1 + λi,2)

Zi,11Zi,21

(
1− exp(−∆t(λi,1 + λi,2))

)
+
Zi,11

λi,1

(
T [1, 1]i

Zi,11

λi,1
+ T [1, 2]i

Zi,21

λi,2

)(
1− exp(−∆tλi,1)

)
〈γi,p2Πip〉 = −T [1, 2]i

2λ2
i,2

Z2
i,21

(
1− exp(−2∆tλi,2)

)
− T [1, 1]i
λi,1(λi,1 + λi,2)

Zi,11Zi,21

(
1− exp(−∆t(λi,1 + λi,2))

)
+
Zi,21

λi,2

(
T [1, 1]i

Zi,11

λi,1
+ T [1, 2]i

Zi,21

λi,2

)(
1− exp(−∆tλi,2)

)
〈Π2

ip〉 = −T [1, 1]2i
2λ3

i,1

Z2
i,11

(
1− exp(−2∆tλi,1)

)
+
T [1, 2]2i

2λ3
i,2

Z2
i,21

(
1− exp(−2∆tλi,2)

)
+(T [1, 1]iZi,11

λi,1
+
T [1, 2]Zi,21

λi,2

)2
∆t+ 2

T [1, 1]iT [1, 2]i
λi,1λi,2(λi,1 + λi,2)

Zi,11Zi,21

(
1− exp(−∆t(λi,1 + λi,2))

)
− 2T [1, 1]i

Zi,11

λ2
i,1

(
T [1, 1]i

Zi,11

λi,1
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)(
1− exp(−∆tλi,1)

)
− 2T [1, 2]i

Zi,21

λ2
i,2

(
T [1, 1]i

Zi,11

λi,1
+ T [1, 2]i

Zi,21

λi,2

)(
1− exp(−∆tλi,2)

)
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