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Abstract. The ring-core method allows the determination of residual stresses at high depth from the 

surface. The numerical calculation integral method, commonly used for the hole-drilling, can also 

be applied to the ring-core. The integral method coefficients were obtained for several depth steps 

after axial-symmetric FE simulations with harmonic load. These coefficients were then validated 

with a 3D finite element model. Finally, an application was reported, showing the performance of 

the Tikhonov regularization on experimental data. 

Introduction 

Hole-drilling and ring-core are both mechanical methods based on axial-symmetric material 

removal. The material is cut at the center and the relieved strain measured at the periphery for the 

hole-drilling, while the opposite for the ring-core. The hole-drilling is more widespread being 

dedicated to superficial stresses [1-6]. The ring-core, introduced many years ago [7,8], has diameters 

and also depth much larger (Fig. 1 shows the dimension comparison) so this technique is usually 

dedicated to large size structures [9,10,11]. 
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Figure 1. Hole-drilling and ring-core methods, typical dimensions. 
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The calculation of the residual stresses, after incremental depth drilling and relieved strain 

recording, can be performed with the ASTM standard E837 - 13a [1] that introduces the so called 

"Integral Method". This numerical technique can also be applied to the ring-core [12,13], since the 

axial-symmetry of the problem, though other techniques are also available, such as the differential 

method [14,15]. The present paper shows an accurate FE model and integral method coefficients 

derivation for the ring-core, with diameters and grid dimensions as reported in Fig. 1. These 

coefficients were derived for different depth stepping and different Poisson's ratios. The integral 

method procedure and the correctness of the proposed coefficients were then validated with a 3D 

model, completely independent from the axial-symmetric model that was used for the coefficient 

derivation. Finally, the Tikhonov regularization, as proposed by the ASTM E837 standard was also 

applied to the ring-core, for an experimental case, showing the effectiveness of this numerical 

procedure. 

FE model for integral method coefficients 

The ring-core method, similarly to the more traditional hole-drilling method, requires a database 

of computed strains from which the elasticity coefficients can be obtained. Given the linearity of the 

problem, the generic state of tension can be represented by a basis of solutions, whose terms are 

simple stress states. The choice of the basis is not unique, however stepped uniform stress 

distribution is simple, effective and then usual. The state of tension is defined by three components: 

normal stresses in two orthogonal directions and a component of shear stress. Typically the 

principal stresses are alternatively used, but in the present problem is preferable to refer to an equi-

biaxial tension and a pure shear. In the FE model these two components are the loads applied to 

obtain the database solutions, Fig. 2. 
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Figure 2. Basis loading conditions to be applied to the FE model. 

 

From a geometrical point of view, the ring-core problem, similarly to the hole-drilling, is axi-

symmetric, while the load condition is generic (except in special cases). Given the axi-symmetric 

geometry and the linearity of the problem, the FE plane harmonic can be used (ANSYS Plane 25 

element type) in which the model is restricted to the section, Fig. 3, with out of plane load and 

harmonic angular dependency. The equi-biaxial stress can be modeled with axi-symmetric harmonic 

order 0 (no angular dependency), while the pure shear stress is the result of the superposition of two 

components both with harmonic order 2 ( cos(2 ) dependency), Fig. 2. The resolution of the model 
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has been set equal to 0.1 mm, so the load was applied on a discrete number of elements, and then 

the total number of simulations was 2 (50 (50 1) / 2) 2550    . In this way it was possible to 

simulate a drilling step of 0.1 mm, or even multiples such as 0.2 mm, 0.5 mm, etc. As usual for this 

kind of simulations, the model was residual stress free, with the groove material already removed 

and the load applied to both the internal cylindrical surfaces of the groove. Actually, the physical 

problem is the opposite. Residual stresses are pre-existing, so the material removal relaxes to zero 

the stresses at the internal surfaces of the groove. Obviously, this need to be taken into account for 

data processing. It suffices to introduce a minus sign in the relation between stresses and strains. 
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Figure 3. FE plane axi-symmetric harmonic model. 

 

Grid deformations from displacement field. The simulated average strain measured by the 

grids can be evaluated just by computing the displacement (along each grid direction) at the edge 

segments, and divide the displacement differences by the grid length, without retrieving any 

displacement information at intermediate positions of the grids. The whole procedure is detailed 

summarized below: 

(1) Set parameters according to the FE model: 

load, groove diameters and grid geometry. 

(2) Define the vertices A, B, C, D of each strain 

gauge and a large enough number of integration 

points on sides AB and CD both in cartesian and 

polar coordinates, Fig. 4. 

(3) Introduce the components of the unit vectors 

transverse t̂  and normal n̂  (external) to the 

segments AB  and CD , at each integration point. 

(4) Calculate the displacements along the x  and 

y  directions by linear interpolation, at each 

integration point on sides AB and CD. 

(5) Deduce the displacement components along 

the transverse and normal directions at the 

integration points. 

(6) Being the grid only sensitive to the normal 

direction (transverse sensitivity is very small, 

though not zero) the displacements along t̂ , at integration points, were only considered. Otherwise 

transverse displacements would be taken into account on lateral sides BC and DA. 

t̂
n̂

t̂

n̂

 
Figure 4. Superposition of strain-gauges to 

the deformation field. 
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(7) Numerically integrate, on the active sides AB and CD, by averaging the integration point normal 

displacements. 

(8) Compute the difference between AB and CD integrations and divide by the grid length to obtain 

the average strain. 

After the calculation of the simulated strains, the vectors p  and q , as defined according to ASTM 

standard [1], were obtained for stepped loads as the grid strains difference between the load at a 

certain depth and the load to the previous depth. This calculation was performed for 0.1 mm depth 

step and also for 0.2 mm and other multiples. The relation between stresses and strains, as reported 

in the ASTM standard [1] were then inverted and finally the values ,ij ija b  obtained. These 

coefficients are listed in Tab. 1, for 1 mm depth step, and Poisson's ratio 0.3  . Other coefficients, 

for different step sizes and Poisson's ratios were derived but not reported here for brevity. 

Table 1. Calibration coefficients for depth step 1 mm, 0.3  , groove and grid dimensions as 

reported in Fig. 1. 

Calibration coefficients matrix a  Calibration coefficients matrix b  

depth, mm

1.0 0.1145 0 0 0 0

2.0 0.1966 0.1139 0 0 0

3.0 0.2362 0.1658 0.0815 0 0

4.0 0.2523 0.1847 0.1114 0.0451 0

5.0 0.2575 0.1908 0.1197 0.0598 0.0176  

depth, mm

1.0 0.1382 0 0 0 0

2.0 0.2668 0.1529 0 0 0

3.0 0.3710 0.2519 0.1279 0 0

4.0 0.4462 0.3159 0.1952 0.0872 0

5.0 0.4945 0.3559 0.2317 0.1286 0.0487  
 

Validation of calibration coefficients 

A 3D model was used to validate the procedure, Fig. 5 (a). Though coarser as discretization, this 

model is more simple in terms of applied load and boundary conditions and grid simulated strain 

calculations. Thus a successful comparison for a generic residual stress, between this 3D model and 

the results of the procedure shown above, allowed confidence about coefficients correctness and 

proper application of the integral method. After the 3D model solution, the grid measurements were 

simulated. The relieved strain were obtained as difference from the applied load condition and the 

strains generated by the (uniform) residual stress field, easily computed with the Hooke's law, or 

even calculated with the same FE model without any material removal. Then the integral method, 

with the coefficients reported in Tab. 1, was implemented and the calculated stresses were finally 

compared to the imposes stresses. A successful comparison is evident from Fig. 5 (b). 
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Figure 5. (a) FE 3D model for validation, (b) comparison: imposed vs. back-calculated stresses. 
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Tikhonov regularization 

Spurious oscillations caused by the unavoidable experimentally uncertainties, on the measured 

strains, can be smoothened with different techniques. More specifically, the E837 [1] standard 

introduced the Tikhonov regularization, Eq. 1, where c  is the tri-diagonal “second derivative” 

matrix and P Q T, ,    are the regularization factors, for each stress (coupled) component. 

Obviously, if these factors are set to zero, Eq. 1 just reduces to the unsmoothed integral method. 
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An example is provided hereafter. The ring-core was applied on a steel component and the 

integral method implemented.  Fig. 6 shows the comparison for the intermediate (and typical) step 

resolution: 0.5 mm, and it is evident the effect of the regularization. The factor search was 

performed with the procedure suggested in the E837 standard, and convergence was reached at 

iteration steps 21, 5, 11 for , ,P Q T  stress components respectively, and the obtained regularization 

factors were: 4

P 2.131 10   , 3

Q 2.233 10   , 2

T 1.800 10   . 
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Figure 6. Components of residual stresses: (a) integral method, (b) Tikhonov regularization. 

Conclusions 

This paper shows the application of the integral method to the ring-core technique for measuring 

the residual stress distribution up to (relatively) higher depths. A harmonic axi-symmetric finite 

element model was described along with the procedure to numerically deduce the grid average 

strains and then the calibration matrices were obtained and reported. Validation of the procedure 

was also provided, by means of a 3D FE model. Finally, an application with experimental data was 

used to show the performance of the Tikhonov regularization, as proposed in the ASTM standard 

for the hole-drilling method, with the here derived ring-core coefficients. 
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