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Three results on the energy conservation for
the 3D Euler equations

Luigi C. Berselli and Stefanos Georgiadis

Abstract. We consider the 3D Euler equations for incompressible homo-
geneous fluids and we study the problem of energy conservation for weak
solutions in the space-periodic case. First, we prove the energy conserva-
tion for a full scale of Besov spaces, by extending some classical results to
a wider range of exponents. Next, we consider the energy conservation in
the case of conditions on the gradient, recovering some results which were
known, up to now, only for the Navier–Stokes equations and for weak so-
lutions of the Leray-Hopf type. Finally, we make some remarks on the
Onsager singularity problem, identifying conditions which allow to pass
to the limit from solutions of the Navier–Stokes equations to solution of
the Euler ones, producing weak solutions which are energy conserving.
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1. Introduction

The aim of this paper is to extend some nowadays classical results about the
energy conservation for the space-periodic 3D Euler equations (here T

3 :=(
R/2πZ

)3)

∂tv
E + (vE · ∇) vE + ∇pE = 0 in (0, T ) × T

3,

div vE = 0 in (0, T ) × T
3,

vE(0) = vE
0 in T

3,

(1.1)

to embrace a full space-time range of exponents. Recall that it is known since
[10] that weak solutions of the Euler equations such that

vE ∈ Cw(0, T ;L2(T3)) ∩ L3(0, T ;Bα
3,∞(T3)), with α >

1
3
, (1.2)
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conserve the energy, where Bα
3,∞(T3) denotes a standard Besov space and the

motivation for this result is the Onsager conjecture [19] following from Kol-
mogorov K41 theory. The Onsager conjecture (only recently solved also for the
negative part, see Isett [17] and Buckmaster et al. [6]) suggested the thresh-
old value α = 1/3 for energy conservation. Here, we consider a combination
of space-time conditions, identifying families of Besov spaces with the range
(1/3, 1) for the exponent of regularity, balanced by a proper integrability ex-
ponent in time. Next, we consider also the limiting case α = 1, and finally the
connection of energy conservation with the vanishing viscosity limits. We recall
that the first rigorous results about Onsager conjecture are probably those of
Eyink [14,15] in the Fourier setting and Constantin, E, and Titi [10] and we
are mainly inspired by these references; for the vanishing viscosity limit we
follow the same path as in Drivas and Eyink [12].

The original results we prove concern: 1) the extension of (1.2) to a
full scale of exponents 1

3 < α < 1, identifying the sharp conditions on the
parameters, as previously done in the setting of Hölder continuous functions in
[4]; 2) the extension to the case α = 1, which means that we look for conditions
on the gradient of vE in standard Lebesgue spaces; 3) we identify hypotheses,
uniform in the viscosity, on solutions to the Navier-Stokes equations (NSE),
which allow us to pass to the limit as ν → 0 and to construct weak solutions
of the Euler equations satisfying the energy equality.

More precisely, concerning point 1) we extend the result of [10] to a wider
range of exponents proving the following theorem:

Theorem 1. Let 1
3 < α < 1, α < β < 1, and vE be a weak solution to the Euler

equations (1.1) such that

vE ∈ L1/α(0, T ;Bβ
2

1−α ,∞(T3)). (1.3)

Then, vE conserves the energy.

Remark 1. In the sequel by conservation of energy, since we deal with functions
vE which are not strongly continuous with values in L2(T3), we will always
mean that ‖vE(t)‖2 = ‖vE(0)‖2 for almost all t ∈ [0, T ].

Similar results have already been proved in the setting of Hölder con-
tinuous functions (see [3]) and in both cases, one can see that the limiting
case α → 1− leads formally to L1(0, T ;W 1,∞(T3)), which corresponds to the
Beale-Kato-Majda criterion. It is also worth to mention the result in De Rosa,
Inversi, and Stefani [11], which deals with energy conservation in more general
spaces but includes also the case in which just the symmetric part of the gra-
dient matrix belongs to L1(0, T ;L∞(T3)). Nevertheless this improvement can
be also extended in our case and is based on the observation that, for smooth
enough vector fields u, v it holds

∫

T3
(u · ∇) v · u dx =

∫

T3
u · Dv · u dx, with Dv =

1
2
(∇v + ∇T v).

Remark 2. Theorem 1, which identifies families of critical spaces, could be
also modified to extend the results in Cheskidov et al. [9] involving the spaces
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B
1/3
3,cN

and those of Fjordholm and Wiedemann [16] written in terms of iterated
integrals. In our case, similar to Duchon and Robert [13] and Drivas and Eyink
[12] we can prove the same results by using the spaces Bβ

2
1−α ,c0

, which means

to assume that there exists f ∈ L1/α(0, T ) such that

‖vE(· + y) − vE(·)‖ 2
1−α

≤ f(t)|y|βσ(|y|) a.e. t ∈ (0, T ),

for some non-negative σ such that σ(s) → 0 as s → 0+. A similar improvement
is also discussed in [3] in the setting of classical Hölder spaces. Recent related
results appeared also after submission of this paper in the technical report [20]
and they generalize our result in the space Lp(0, T ;B1/p

2p
p−1 ,cN

(T3)), for 1 < p ≤ 3.

Anyway, working directly with the velocity vE in a Sobolev space, we
obtain the following result:

Theorem 2. Let q > 2, r > 5q
5q−6 , and let vE be a weak solution to the Euler

equations (1.1) such that

vE ∈ Lr(0, T ;W 1,q(T3)). (1.4)

Then, vE conserves the energy.

The sharpness of this result comes by observing that we recover for the
Euler equations the same conditions (at least in this range of exponents) which
are known for Leray-Hopf weak solutions to the NSE, see the recent results in
[1,5].

Concerning point 3) we extend results from [4,12] on the emergence of
solutions to the Euler equations satisfying the energy equality as inviscid limits
of Leray-Hopf weak solutions to the NSE (ν > 0)

∂tv
ν + (vν · ∇) vν − νΔvν + ∇pν = 0 in (0, T ) × T

3,

div vν = 0 in (0, T ) × T
3,

vν(0) = vν
0 in T

3.

(1.5)

This result generalizes to a wider range of exponents the result from [12]
which deals with α ∼ 1/3 and also the results in [4], which are in the setting
of Hölder continuous functions, but with a more restrictive time-dependence
in the case α > 1/2. We have the following result:

Theorem 3. Let 1
3 < α < 1, α < β < 1, and let {vν}ν>0 be a family of

weak solutions of the NSE (1.5) with the same initial datum v0 = v(0) ∈
H ∩ Bβ

2
1−α ,∞(T3). Let us also assume that there exists a constant Cα,β > 0,

independent of ν > 0, such that

‖vν‖L1/α(0,T ;Bβ
2

1−α
,∞) ≤ Cα,β , ∀ ν ∈ (0, 1]. (1.6)

Then, in the limit ν → 0 the family {vν} strongly converges in L2((0, T )×T
3)

(up to a sub-sequence) to a weak solution vE in [0, T ] of the Euler equations
satisfying the energy equality and explicit rates on the vanishing of the energy
dissipation are proved.
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Alternatively, the same result holds if for q > 2 and r > 5q
5q−6 we have

v0 ∈ H ∩ W 1,q(T3) and ‖vν‖Lr(0,T ;W 1,q(T3)) ≤ Cr,q, for all ν ∈ (0, 1].

In the above theorem one can also consider a family of initial data uni-
formly bounded H ∩ Bβ

2
1−α ,∞(T3) (or in H ∩ W 1,q(T3) in the second case), in

such a way that –by Sobolev type embeddings– one can infer that vν
0 → v0

strongly in H, and the proof will remain the same. The problem of vanishing
viscosity and construction of distributional (dissipative) solutions to the Euler
equations has a long history and we mainly refer to Duchon and Robert [13] for
similar results. We also wish to mention the Fourier-based approach recently
developed by Chen and Glimm [7,8] where spectral properties are used to de-
duce certain fractional regularity results, suitable to prove the inviscid limit,
see also [11]. Our proof uses standard mollification and handling of the commu-
tation terms. Even though the results use elementary techniques, they are new
and rather sharp. Note also that Theorem 3 implies that “quasi-singularities”
are required in Leray-Hopf weak solutions in order to account for anomalous
energy dissipation, see the discussion and interpretation in [4,12]. Moreover,
due to results in [1,5], weak solutions of the NSE with ∇vν ∈ Lr(0, T ;Lq(T3)),
r > 5q

5q−6 conserve the energy and the same holds for the limiting solutions of
the Euler equations.

Plan of the paper: In Sect. 2 we set up our notation by giving the def-
initions of the spaces and the solutions that we use throughout the paper.
Moreover, we recall the basic properties of the mollification and the commu-
tator formula that will be used extensively in the proofs of the theorems. In
Sect. 3 we give the proofs of Theorem 1 and 2, investigating minimum regularity
conditions for energy conservation, for weak solutions to the Euler equations.
Finally, in Sect. 4, we give the proof of Theorem 3, dealing with the emergence
of weak solutions of Euler in the limiting case ν → 0.

2. Notation

In the sequel we will use the Lebesgue (Lp(T3), ‖. ‖p) and Sobolev (W 1,p(T3),
‖. ‖1,p) spaces, with 1 ≤ p ≤ ∞; for simplicity we denote by ( . , . ) and ‖. ‖
the L2 scalar product and norm, respectively, while the other norms are ex-
plicitly indicated. By H and V we denote the closure of smooth, periodic, and
divergence-free vector fields in L2(T3) or W 1,2(T3), respectively. Moreover, we
will use the Besov spaces Bα

p,∞(T3), which are the same as Nikol’skĭı spaces
Nα,p(T3). They are sub-spaces of Lp(T3) for which there exists c > 0, such
that ‖u(· + h) − u(·)‖p ≤ c|h|α, and the smallest constant is the semi-norm
[. ]Bα

p,∞ .
To properly set the problem we consider, we give the definitions of weak

solutions:

Definition 1. (Weak solution to the Euler equations) Let v0 ∈ H. A measur-
able function vE : (0, T ) × T

3 → R
3 is called a weak solution to the Euler



NoDEA Three results on the energy conservation for the 3D Page 5 of 14    33 

equations (1.1) if vE ∈ Cw(0, T ;H), solves the equations in the following weak
sense: ∫

T3
v(t) · φ(t) dx −

∫

T3
v0 · φ(0) dx

−
∫ t

0

∫

T3

[
vE · ∂tφ + (vE ⊗ vE) : ∇φ

]
dx dt = 0, (2.1)

for all φ ∈ C1([0, T ];C∞(T3)) such that div φ = 0.

We also recall the definition of weak solutions to the Navier–Stokes equa-
tions.

Definition 2. (Space-periodic Leray-Hopf weak solution) Let vν
0 ∈ H. A mea-

surable function vν : (0, T ) × T
3 → R

3 is called a Leray-Hopf weak solution
to the space-periodic NSE (1.5) if vν ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) and the
following hold true:
The function vν solves the equations in the weak sense:
∫ T

0

∫

T3

[
vν · ∂tφ − ν∇vν : ∇φ + (vν ⊗ vν) : ∇φ

]
dxdt = −

∫

T3
vν
0 · φ(0) dx,

(2.2)

for all φ ∈ DT =
{

φ ∈ C∞
0 ([0, T [;C∞(T3)) : div φ = 0

}
;

The (global) energy inequality holds:

1
2
‖vν(t)‖22 + ν

∫ t

0

‖∇vν(τ)‖22 dτ ≤ 1
2
‖vν

0‖22, ∀ t ∈ [0, T ]; (2.3)

The initial datum is strongly attained: limt→0+ ‖vν(t) − vν
0‖ = 0.

Definition 2 is the original definition of weak solutions to the NSE. Note
that the strong L2-continuity from the right at t = 0 is a part of the definition
which could be derived from the energy inequality, after having redefined the
solution a.e. in [0, T ] to identify it with a L2-weakly continuous function, with
the so called “Hopf lemma.” Also with this assumption one can consider a
weak formulation similar to that for the Euler equations with test functions
with support in [0, T ].

2.1. Mollification and Sobolev/Besov spaces

We use the classical tools of mollification to justify calculations and to this
end we fix ρ ∈ C∞

0 (R3) such that ρ(x) = ρ(|x|), ρ ≥ 0, supp ρ ⊂ B(0, 1) ⊂
R

3,
∫
R3 ρ(x) dx = 1, and we define, for ε ∈ (0, 1], the Friedrichs family

ρε(x) := ε−3ρ(ε−1x). Then, for any function f ∈ L1
loc(R

3) we define by the
usual convolution

fε(x) :=
∫

R3
ρε(x − y)f(y) dy =

∫

R3
ρε(y)f(x − y) dy.

If f ∈ L1(T3), then f ∈ L1
loc(R

3), and it turns out that fε ∈ C∞(T3) is 2π-
periodic along the xj-direction, for j = 1, 2, 3. Moreover, if f is a divergence-
free vector field, then fε is a smooth divergence-free vector field. We report
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now the basic properties of the convolution operator we will use in the sequel,
see for instance [2,4,10].

Lemma 4. Let ρ be as above. If u ∈ Lq(T3), then ∃C > 0 (depending only on
ρ) such that

‖uε‖r ≤ C

ε3(
1
q − 1

r )
‖u‖q for all r ≥ q; (2.4)

If u ∈ Bβ
q,∞(T3), then

‖u(· + y) − u(·)‖q ≤ [u]Bβ
q,∞ |y|β , (2.5)

‖u − uε‖q ≤ [u]Bβ
q,∞ εβ , (2.6)

‖∇uε‖q ≤ C[u]Bβ
q,∞ εβ−1, (2.7)

while if u ∈ W 1,q(T3), then

‖u(· + y) − u(·)‖q ≤ ‖∇u‖q|y|, (2.8)

‖u − uε‖q ≤ ‖∇u‖q ε, (2.9)

‖∇uε‖q ≤ C‖u‖q ε−1. (2.10)

In the sequel, the following well-known commutator formula derived in
[10] and known as the “Constantin-E-Titi commutator” will be crucial:

(u ⊗ u)ε = uε ⊗ uε + rε(u, u) − (u − uε) ⊗ (u − uε), (2.11)

with

rε(u, u) :=
∫

T3
ρε(y)(δyu(x) ⊗ δyu(x)) dy, for δyu(x) := u(x − y) − u(x).

3. On the conservation of energy for ideal fluids

We prove Theorem 1 and, for α ∈ ( 13 , 1), we investigate the minimum Besov
regularity that is needed so that weak solutions of the Euler equations conserve
their kinetic energy.

Proof of Theorem 1. We test the Euler equations against ϕ = (vE
ε )ε; the argu-

ment would require a further smoothing with respect to time, which is standard
(cf. [10]) and inessential to the proof. We obtain

1
2
‖vE

ε (t)‖22 =
1
2
‖vE

ε (0)‖22 −
∫ t

0

∫

T3
rε(vE , vE) : ∇vE

ε dxds

+
∫ t

0

∫

T3
(vE − vE

ε ) ⊗ (vE − vE
ε ) : ∇vE

ε dxds,

(3.1)

since
∫ t

0

∫
T3 vE

ε ⊗ vE
ε : ∇vE

ε dxds = 0, due to vE
ε being smooth and divergence-

free. We now estimate the last two terms from the right-hand side, using the
properties of Besov spaces.
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Indeed, for 0 < η < 2 and q > 1, such that q − (1 + η) > 0 we write:

I1 :=
∣
∣
∣
∣

∫ t

0

∫

T3
(vE − vE

ε ) ⊗ (vE − vE
ε ) : ∇vE

ε dxds

∣
∣
∣
∣

≤
∫ T

0

∫

T3
|vE − vE

ε |η|vE − vE
ε |2−η|∇vE

ε |dxds

≤
∫ T

0

‖vE − vE
ε ‖η

q ‖vE − vE
ε ‖2−η

(2−η)q
q−(1+η)

‖∇vE
ε ‖q ds,

and in the second line we used Hölder’s inequality. Since a weak solution vE

is in L∞(0, T ;H), if (2−η)q
q−(1+η) = 2, we can use the energy bound to infer

‖vE(t) − vE
ε (t)‖2 ≤ ‖vE(t)‖2 + ‖vE

ε (t)‖2 ≤ 2‖vE(t)‖2
≤ 2 esssupt∈(0,T )‖vE(t)‖2 ≤ C,

and thus by (2.6)-(2.7)

I1 ≤ C

∫ T

0

‖vE − vE
ε ‖η

q ‖∇vE
ε ‖q ds ≤ Cεβη+β−1

∫ T

0

[vE(t)]η+1

Bβ
q,∞

ds,

where C > 0 does not depend on ε > 0.
Next, we estimate the remainder term in the commutator as follows:

∣
∣rε(vE , vE)

∣
∣ =

∣
∣
∣
∣

∫

T3
ρε(y)(vE(x − y) − vE(x)) ⊗ (vE(x − y) − vE(x)) dy

∣
∣
∣
∣

y=εz
=

∣
∣
∣
∣

∫

T3
ρ(z)(vE(x − εz)) − vE(x)) ⊗ (vE(x − εz)) − vE(x)) dz

∣
∣
∣
∣

≤
∫

T3
|vE(x − εz) − vE(x)|2 dz.

Then, as above, we can write for 0 < η < 2 such that (2−η)q
q−(1+η) = 2:

I2 :=
∣
∣
∣
∣

∫ t

0

∫

T3
rε(vE , vE) : ∇vE

ε dxds

∣
∣
∣
∣

≤
∫ T

0

∫

T3

∫

B(0,1)

|vE(x − εz) − vE(x)|2|∇vE
ε |dzdxds

=
∫ T

0

∫

T3

∫

B(0,1)

|vE(x − εz) − vE(x)|η|vE(x − εz) − vE(x)|2−η|∇vE
ε |dzdxds

≤ C

∫ T

0

∫

T3
‖∇vE

ε ‖q ‖vE(· − εz) − vE(·)‖η
q ‖vE(· − εz) − vE(·)‖2−η

(2−η)q
q−(1+η)

dxds.

and using (2.5)-(2.7) we arrive at

I2 ≤ Cεβη+β−1

∫ T

0

∫

T3
|z|ηβ [vE(t)]η+1

Bβ
q,∞

dzds ≤ Cεβη+β−1

∫ T

0

‖vE(t)‖η+1

Bβ
q,∞

ds,

with C > 0 independent of ε.
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Hence, for fixed β ∈ ( 13 , 1), we want to find (q, η) ∈ (1,+∞) × (0, 2) such
that η + 1 (the exponent of the Besov semi-norm) is the smallest possible,
subject to the following set of constraints:

⎧
⎨

⎩

βη + β − 1 > 0
η < q − 1
(2−η)q

q−(1+η) = 2
.

Hence, we set η = 1−α
α and q = 2

1−α and the third constraint is satisfied. The
second constraint is satisfied for α > 1/3 (leading to q > 3); next, if β > α,
then βη + β − 1 = β−α

α > 0 and consequently

0 ≤ I1 + I2 ≤ Cε
β−α

α

∫ T

0

[vE ]1/α

Bβ
2

1−α
,∞

dt
ε→0−→ 0,

and letting ε → 0 in (3.1) gives

1
2
‖vE(t)‖2L2 =

1
2
‖vE(0)‖2L2 , (3.2)

and this is valid for almost all t ∈ [0, T ]. Therefore, for α ∈ (13 , 1), the “critical”
space for energy conservation is L1/α(0, T ;Bα

2
1−α ,∞). �

We now prove the second theorem, corresponding to conditions on the
gradient of vE , which would, formally, be the same with α = 1, but in fact
the result here is much stronger, since the bound on the gradient allows us to
make sense of the convective term in a more precise manner.

Proof of Theorem 2. In the case of a condition on the gradient the approach
is similar as before and we just need to control the commutator terms, after
testing the equations by (vE

ε )ε (we make explicit computations only for this
one, since the remainder can be handled as we have done before). We get in
fact

I1 : =
∣
∣
∣
∣

∫ t

0

∫

T3
(vE − vE

ε ) ⊗ (vE − vE
ε ) : ∇vE

ε dxds

∣
∣
∣
∣

≤
∫ T

0

∫

T3
|vE − vE

ε |2|∇vE
ε |dxds

≤
∫ T

0

‖vE − vE
ε ‖22p ‖∇vE

ε ‖p′ dxds

≤
∫ T

0

‖vE − vE
ε ‖2θ

2 ‖vE − vE
ε ‖2(1−θ)

q ‖∇vE
ε ‖p′ dxds,

where in the second step we used Hölder’s inequality with conjugate exponents
p and p′ (to be determined), and in the third one convex interpolation such that
1
2p = θ

2 + 1−θ
q , with 2p < q. Now, using the fact that vE ∈ L∞(0, T ;L2(T3))

and inequality (2.4) for the gradient of vE

‖∇vE
ε ‖p′ ≤ Cε

−3
(

1
q − 1

p′
)

‖∇vE‖q, for p′ > q,
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we obtain:

I1 ≤ Cε
−3

(
1
q − 1

p′
) ∫ T

0

‖vE − vE
ε ‖

2q(p−1)
p(q−2)

q ‖∇vE‖q dt

and (2.9)-(2.10) yield:

I1 ≤ Cε
2q(p−1)
p(q−2) −3

(
1
q − 1

p′
) ∫ T

0

‖∇vE(t)‖
2q(p−1)
p(q−2) +1

q dt.

Now, we want to choose p such that the exponent of ε is strictly positive
corresponding to

p >
(5q − 6)q

5q2 − 9q + 6
,

and notice that the expression on the denominator is strictly positive. More-
over, the constraints 2p < q and p′ > q imply that p < min

{
q
2 , q

q−1

}
and thus

the range of allowed p is

(5q − 6)q
5q2 − 9q + 6

< p < min
{

q

2
,

q

q − 1

}
,

which is non-empty since (5q−6)q
5q2−9q+6 is always strictly smaller than min

{
q
2 , q

q−1

}

for q > 2.
The second term on the right-hand side of (3.1) is handled the same way

and yields the same range for p. Then, for the infimum value of p that makes
the exponent of ε strictly positive, we get that the exponent r of the Lq norm
of the gradient becomes r = 5q

5q−6 and thus the “critical” space for energy

conservation is ∇vE ∈ L
5q

5q−6 (0, T ;Lq(T3)). �

4. Inviscid limit from Navier–Stokes to Euler

In this section we prove Theorem 3, dealing with the inviscid (singular) limit
ν → 0 and identifying sufficient conditions to construct weak solutions of the
Euler equations conserving the kinetic energy.

Proof of Theorem 3. We give the proof only in the Besov case, since the other
one is pretty similar. In the weak formulation (2.2) of the NSE we set ϕ = (vν

ε )ε.
Note that since vν

0 ∈ L2(Ω), we deduce, being vν a Leray-Hopf solution, that

‖vν‖L∞(0,T ;L2(T3)) + ‖√
ν∇vν‖L2((0,T )×T3) ≤ C.

Moreover, since vν ∈ L1/α(0, T ;Bβ
2/(1−α),∞), it has a derivative in the sense of

distributions in the space L1/2α(0, T ;Bβ−2
1/(1−α),∞), given by dvν

dt = −Pdiv(vν ⊗
vν) + νΔvν , where P is the Leray projector. Indeed, by comparison
∫ T

0

〈
∂tv

ν , φ
〉
dt =

∫ T

0

〈 − Pdiv(vν ⊗ vν) + νΔuν , φ
〉
dt, ∀φ ∈ C∞(T3),
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where 〈·, ·〉 is the duality pairing between elements of D′(T3) and D(T3) =
C∞(T3). Choosing φ(x, t) = ψ(t)ϕ(x), with ψ ∈ C∞

0 (0, T ) and ϕ ∈ C∞(T3)
we obtain

∫ T

0

〈
∂tv

ν , ψ ϕ
〉
dt =

∫ T

0

ψ(t)
〈
[−Pdiv(vν ⊗ vν) + νΔuν ] , ϕ

〉
dt,

and note that
‖Pdiv(vν ⊗ vν)‖L1/2α(0,T ;Bβ−2

1/(1−α),∞) ≤ C‖vν ⊗ vν‖L1/2α(0,T ;Bβ−1
1/(1−α),∞)

≤ C‖vν‖2
L1/α(0,T ;Bβ−1

2/(1−α),∞)

≤ C‖vν‖2
L1/α(0,T ;Bβ

2/(1−α),∞)
,

where the first estimate is proved in [12] and also in Kozono, Ogawa and
Taniuchi [18], by properties of singular integral operators.

Moreover, since T
3 is bounded and T < +∞, the embeddings

L1/α(0, T ;Bβ−2
2/(1−α),∞) ↪→ L1/2α(0, T ;Bβ−2

2/(1−α),∞) ↪→ L1/2α(0, T ;Bβ−2
1/(1−α),∞),

are continuous, thus

‖Δvν‖L1/2α(0,T ;Bβ−2
1/(1−α),∞) ≤ C‖Δvν‖L1/2α(0,T ;Bβ−2

2/(1−α),∞)

≤ C‖Δvν‖L1/α(0,T ;Bβ−2
2/(1−α),∞)

≤ C‖vν‖L1/α(0,T ;Bβ
2/(1−α),∞),

and we conclude that ∂tv
ν ∈ L1/2α(0, T ;Bβ−2

1/(1−α),∞).
From the uniform bounds and standard pre-compactness arguments we

get (up to a sub-sequence)
√

ν∇vν ⇀ 0 weakly in L2(0, T ;H)

∂tv
ν ⇀ ∂tv weakly in L1/2α(0, T ;Bβ−2

1/(1−α),∞),

Moreover, from the bound in (1.6), the compact embedding of Bβ
2

1−α ,∞(T3)

in L
2

1−α (T3) (which follows by Riesz-Frechet-Kolmogorov theorem), and the
bound proved for the time derivative, we get by the Aubin-Lions’ lemma that
there exists a sub-sequence (not relabeled) such that:

vν → v strongly in Lq(0, T ;H) ∀ q ∈ (1,∞),

which is enough to pass to the limit as ν → 0 in (2.2), proving that v is a
solution of the Euler equations. �

Remark 3. We also observe that since {vν} is bounded uniformly in L1/α(0, T ;
Bβ

2
1−α ,∞), then by lower semicontinuity also v ∈ L1/α(0, T ;Bβ

2
1−α ,∞). This

would be enough to prove that the limit solution of the Euler equations con-
serves the energy. Nevertheless, the proof links in a quantitative way the sub-
grid scale of the regularization parameter with the viscosity to provide explicit
rates in the convergence.
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As a final step, we now show that the dissipation in the energy equation
goes to zero as ν → 0, yielding an energy equation for the limiting solution v,
as well. Indeed, for 1

3 < α ≤ 1
2 we have

ν

∫ t

0

‖∇vν
ε ‖22 ds ≤ Cν

∫ t

0

‖∇vν
ε ‖2 2

1−α
ds ≤ Cνε2(β−1)

∫ T

0

‖vν
ε ‖2

Bβ
2

1−α
,∞

ds

≤ Cνε2(β−1)‖vν‖2
L

1
α (0,T ;Bβ

2
1−α

,∞)
,

where C > 0 does not depend on ε or ν and we need to choose ε2(1−β) going
to zero slower than ν. This is the extension of the result in [4] for the Hölder
case.

In the case 1
2 < α < 1 we prove here a slightly better result, since

ν

∫ t

0

‖∇vν
ε ‖2

2 ds = ν

∫ t

0

‖∇vν
ε ‖2− 1

α
2 ‖∇vν

ε ‖
1
α
2 ds ≤ Cν

∫ T

0

‖∇vν
ε ‖2− 1

α
2 ‖∇vν

ε ‖
1
α
2

1−α

ds

≤ Cν

∫ T

0

(
1

ε
‖vν

ε ‖2

)2− 1
α

(

εβ−1‖vν
ε ‖

B
β

2
1−α

,∞

) 1
α

ds

≤ Cνεβ/α−2‖vν‖1/α

L
1
α

(
0,T ;B

β
2

1−α
,∞

)

≤ Cνε−1‖vν‖1/α

L
1
α

(
0,T ;B

β
2

1−α
,∞

),

since β > α, with C > 0 independent of 0 < ε < 1 and ν > 0. One needs to
choose ε going to zero slower than ν.

So, in the case 1
3 < α ≤ 1

2 we have ν
∫ t

0
‖∇vν

ε ‖22 ds = O(νε2(β−1)), and
thus

1
2
‖vν

ε (t)‖22 − 1
2
‖vε(0)‖22 = O(ε

β−α
α ) + O(νε2(β−1));

on the other hand in the case 1
2 < α < 1 we have ν

∫ t

0
‖∇vν

ε ‖22 ds = O(νε−1),
and thus

1
2
‖vν

ε (t)‖22 − 1
2
‖vε(0)‖22 = O(ε

β−α
α ) + O(νε−1).

Since ε > 0 is arbitrary, we can optimize the upper bound, the same way it
was performed in [12], by balancing the contribution of the nonlinear flux with
the one of the dissipation. Choosing ε ∼ να/(α+β−2αβ) in the first case and
ε ∼ να/β in the second one, yields the upper bounds

1
2
‖vν

ε (t)‖22 − 1
2
‖vε(0)‖22 = O(ν

β−α
α−2αβ+β ),

and
1
2
‖vν

ε (t)‖22 − 1
2
‖vε(0)‖22 = O(ν

β−α
β ),

respectively, hence showing that as ε, ν → 0, linked with the above rates,
the kinetic energy is conserved for almost all t ∈ (0, T ). Note that from the
strong convergence of vν → v in Lq(0, T ;H), also follows, for almost all t ∈
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(0, T ), the strong convergence vν(t) → v(t) in L2(T3), which is enough to
conclude by the properties of the convolution.
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CARE Agreement. LCB acknowledges support by MIUR, within project
PRIN20204NT8W4: Nonlinear evolution PDEs, fluid dynamics and trans-
port equations: theoretical foundations and applications and also by INdAM
GNAMPA. SG acknowledges partial support from the Austrian Science Fund
(FWF), Grants P33010 and F65. This work has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme, ERC Advanced Grant No. 101018153.

Data availability No new data were created or analysed in this study.

Declarations
Conflict of interest The authors state that there are no conflicts interests to
declare.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Beirão da Veiga, H., Yang, J.: On the energy equality for solutions to Newtonian
and non-Newtonian fluids. Nonlinear Anal. 185, 388–402 (2019)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


NoDEA Three results on the energy conservation for the 3D Page 13 of 14    33 

[2] Berselli, L.C.: Three-Dimensional Navier–Stokes Equations for Turbulence.
Mathematics in Science and Engineering, p. 2021. Academic Press, London
(2021)

[3] Berselli, L.C.: Energy conservation for weak solutions of incompressible fluid
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[6] Buckmaster, T., De Lellis, C., Székelyhidi, L., Jr., Vicol, V.: Onsager’s conjecture
for admissible weak solutions. Commun. Pure Appl. Math. 72(2), 229–274 (2019)

[7] Chen, G.-Q., Glimm, J.: Kolmogorov’s theory of turbulence and inviscid limit
of the Navier–Stokes equations in R

3. Commun. Math. Phys. 310(1), 267–283
(2012)

[8] Chen, G.-Q., Glimm, J.: Kolmogorov-type theory of compressible turbulence
and inviscid limit of the Navier–Stokes equations in R

3. Phys. D 400, 132138
(2019)

[9] Cheskidov, A., Constantin, P., Friedlander, S., Shvydkoy, R.: Energy conser-
vation and Onsager’s conjecture for the Euler equations. Nonlinearity 21(6),
1233–1252 (2008)

[10] Constantin, P., W. E., Titi, E.S.: Onsager’s conjecture on the energy conserva-
tion for solutions of Euler’s equation. Commun. Math. Phys. 165(1), 207–209
(1994)

[11] De Rosa, L., Inversi, M., Stefani, G.: Weak-strong uniqueness and vanishing
viscosity for incompressible Euler equations in exponential spaces. J. Differ.
Equ. 366, 833–861 (2023)

[12] Drivas, T.D., Eyink, G.L.: An Onsager singularity theorem for Leray solutions
of incompressible Navier–Stokes. Nonlinearity 32(11), 4465–4482 (2019)

[13] Duchon, J., Robert, R.: Inertial energy dissipation for weak solutions of incom-
pressible Euler and Navier–Stokes equations. Nonlinearity 13(1), 249–255 (2000)

[14] Eyink, G.L.: Energy dissipation without viscosity in ideal hydrodynamics. I.
Fourier analysis and local energy transfer. Phys. D 78(3–4), 222–240 (1994)

[15] Eyink, G.L.: Besov spaces and the multifractal hypothesis. J. Stat. Phys. 78(1-2),
353–375. Papers dedicated to the memory of Lars Onsager (1995)

[16] Fjordholm, U.S., Wiedemann, E.: Statistical solutions and Onsager’s conjecture.
Phys. D 376(377), 259–265 (2018)

[17] Isett, P.: A proof of Onsager’s conjecture. Ann. Math. (2) 188(3), 871–963 (2018)

[18] Kozono, H., Ogawa, T., Taniuchi, Y.: Kyushu J. Math. 57(2), 303–324 (2003)



   33 Page 14 of 14 L. C. Berselli and S. Georgiadis NoDEA

[19] Onsager, L.: Statistical hydrodynamics. Nuovo Cimento (9) 6(Supplemento, 2
(Convegno Internazionale di Meccanica Statistica)), 279–287 (1949)

[20] Wang, Y., Wei, W., Wu, G., Ye, Y.: On the energy and helicity conservation of
the incompressible Euler equations. Preprint, arxiv:2307.08322 (2023)

Luigi C. Berselli
Dipartimento di Matematica
Università di Pisa
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