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Abstract

We consider an abstract linear wave equation with a time-dependent dissipation that decays at infinity 
with the so-called scale invariant rate, which represents the critical case. We do not assume that the coeffi-
cient of the dissipation term is smooth, and we investigate the effect of its oscillations on the decay rate of 
solutions.

We prove a decay estimate that holds true regardless of the oscillations. Then we show that oscillations 
that are too fast have no effect on the decay rate, while oscillations that are in resonance with one of the 
frequencies of the elastic part can alter the decay rate.

In the proof we first reduce ourselves to estimating the decay of solutions to a family of ordinary differ-
ential equations, then by using polar coordinates we obtain explicit formulae for the energy decay of these 
solutions, so that in the end the problem is reduced to the analysis of the asymptotic behavior of suitable 
oscillating integrals.
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1. Introduction

Let H be a real Hilbert space, and let A be a non-negative self-adjoint operator on H with 
dense domain D(A). Let t0 be a positive real number, and let b : [t0, +∞) → [0, +∞) be a 
function that we call damping coefficient. In this paper we consider the abstract damped wave 
equation

u′′(t) + b(t)u′(t) + Au(t) = 0 t ≥ t0, (1.1)

with initial data

u(t0) = u0 ∈ D(A1/2), u′(t0) = u1 ∈ H, (1.2)

and we investigate the effect of the damping coefficient b(t) on the decay rate as t → +∞ of the 
classical energy of solutions

Eu(t) = |u′(t)|2 + |A1/2u(t)|2.

Some heuristics Thanks to the usual Fourier analysis, it is well-known that equation (1.1) is 
equivalent to the family of ordinary differential equations

u′′
λ(t) + b(t)u′

λ(t) + λ2uλ(t) = 0, (1.3)

where λ is a positive real parameter.
Let us assume for a while that b(t) ≡ b0 is a positive real constant. In this case solutions to 

(1.3) can be explicitly computed, and two regimes appear.

• If λ is large with respect to b0, and more precisely if b2
0 − 4λ2 < 0, then solutions can be 

written in the form

uλ(t) = c0 exp

(
−b0

2
t

)
sin

(
1

2

√
4λ2 − b2

0 · t + ϕ0

)
for suitable constants c0 and ϕ0 that depend on initial data. In particular, solutions oscillate, 
and the decay of their energy is given by

u′
λ(t)

2 + λ2uλ(t)
2 ∼ exp(−b0t) as t → +∞. (1.4)

This is the oscillatory regime or hyperbolic regime, sometimes referred to as non-effective 
regime after the classification introduced in [17,18].

• If λ is small with respect to b0, and more precisely if b2
0 − 4λ2 > 0, then solutions can be 

written in the form

uλ(t) = c1 exp(−μ1t) + c2 exp(−μ2t)

where the constants c1 and c2 depend on initial data, while
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μ1 :=
b0 +

√
b2

0 − 4λ2

2
and μ2 :=

b0 −
√

b2
0 − 4λ2

2
.

In particular, solutions do not oscillate. Concerning decay rates, we observe that the second 
term is slower, and therefore the generic solution satisfies

λ2uλ(t)
2 ∼ λ2 exp(−2μ2t) ≤ λ2 exp

(
−2λ2

b0
t

)
≤ b0

t
=
[

1

b0
· t
]−1

, (1.5)

and

u′
λ(t)

2 ∼ μ2
2 exp(−2μ2t) ≤ 4λ4

b2
0

exp

(
−2λ2

b0
t

)
≤ 2

t2 . (1.6)

We observe that the two terms in the energy have different decay rates, a feature that is 
typical of parabolic problems.
This is the non-oscillatory regime or parabolic regime, sometimes referred to as effective 
regime after the classification introduced in [17,18].

We observe also that the decay rate in (1.4) is optimal in the sense that all solutions decay 
with exactly that rate, while the decay rates in (1.5) and (1.6) are optimal only when we consider 
the generic solution and we make the supremum with respect to λ.

When the damping coefficient depends on t , it is reasonable to expect that something similar 
happens. In particular, when λ is large with respect to b(t) one expects an oscillatory regime 
where the energy of solutions decays as

exp

⎛⎝−
t∫

t0

b(s) ds

⎞⎠ , (1.7)

while when λ is small with respect to b(t) one expects a non-oscillatory regime where the energy 
of solutions decays as

⎡⎣ t∫
t0

1

b(s)
ds

⎤⎦−1

. (1.8)

Note that (1.7) is decreasing with respect to b, namely more damping yields more decay, 
while (1.8) is increasing, namely more damping yields less decay. The two expressions coincide 
when b(t) = 2/t , in which case they provide the maximal decay rate of order 1/t2. More pre-
cisely, when b(t) decays as m/t , then the value of the constant m becomes essential, with m = 2
being the threshold between the hyperbolic regime in which the decay is given by (1.7) and the 
parabolic regime in which the decay is given by (1.8). For this reason, the case where b(t) ∼ m/t

represents the critical case.
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Table 1
Decay rates corresponding to some model damping coefficients (here “d.c.” stands for 
“dominant component”).

Damping coefficient Decay rate of solutions
O

sc
ill

at
or

y
d.

c.

+∞∫
t0

b(s) ds < +∞ No decay

exp

⎛⎜⎝−
t∫

t0

b(s) ds

⎞⎟⎠
1

t log t

1

log t

m

t
(with m ∈ (0,2))

1

tm

N
on

-o
sc

ill
at

or
y

d.
c.

m

t
(with m ≥ 2)

1

t2
⎡⎢⎣ t∫

t0

1

b(s)
ds

⎤⎥⎦
−1

1

tp
(with p ∈ (−1,1))

1

tp+1

t
1

log t
+∞∫
t0

1

b(s)
ds < +∞ No decay

Previous literature When considering the wave equation of the form (1.1), it is reasonable to 
expect that the decay rate of the energy of its solutions is the worst among the decay rates of its 
components, namely the minimum between (1.7) and (1.8).

Results of this type have been proved since the 70s, starting with some of the model cases 
shown in Table 1. Here we just mention the papers [10,14,16] where the case b(t) = m/t was 
considered, and the case in which b(t) is a positive constant and the parabolic behavior is related 
to the so-called diffusion phenomenon (see [9,11,12]).

In the oscillatory regime the decay rates of Table 1 are optimal in the sense that all solutions 
decay with that rate, and there is also a scattering theory to solutions of the undamped equation 
(see [16,17]). In the non-oscillatory regime, the decay rates are determined at the low frequencies 
of the spectrum of A, and they are optimal in the sense that the square of the norm of the “energy 
operator”, namely the quantity

E(t) := sup
{
Eu(t) : (u0, u1) ∈ D(A1/2) × H, |u1|2 + |A1/2u0|2 + |u0|2 ≤ 1

}
, (1.9)

decays as prescribed, up to multiplicative constants.
In the last 20 years, starting with the papers [17,18], the results for the model cases have been 

progressively extended to more general classes of damping coefficients. This extension turned 
out to be a difficult problem, on which the progress is rather slow (see for example [19,8,20,15,
21,1,13]).

As far as we know, almost all the results so far involve the following two types of assumptions 
on the damping coefficient.

• Assumptions that control the effective or non-effective nature of the damping, namely pre-
scribing on which side of the threshold 2/t the damping coefficient lies, so that it is clear 
which is smaller between (1.7) and (1.8). These assumptions usually involve the behavior of 
t · b(t) as t → +∞, the typical example being requiring that the limit is +∞ for the effec-
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tive regime, or that the limsup is strictly less than 2 (and sometimes even less than 1) for the 
non-effective regime.

• Assumptions that control the oscillations of the damping coefficient. These assumptions usu-
ally require that b(t) is monotone and/or that its first derivative (and sometimes also some 
higher order derivatives) decays fast enough, or more generally that b(t) = b1(t) + b2(t), 
where b1(t) is “well-behaved” in the previous sense, and b2(t), which carries the oscilla-
tions, is a lower order term with suitable integrability or stabilization properties.

Roughly speaking, the leitmotiv is that the result becomes more and more difficult both when 
the damping coefficient approaches the threshold 2/t , and when large or fast oscillations are 
allowed. We refer to the introduction of the recent paper [1] for a good summary of the previous 
literature. Here we limit ourselves to quoting four examples that have been considered in the 
past, and that could be useful for a better comparison with our results.

1. ([8, Example 3.1]) Solutions decay as prescribed by (1.7), namely as 1/tm, when

b(t) := m(1 + sin(tα))

t
m ∈ (0,1/2), α ∈ (0,1). (1.10)

In this case the damping coefficient falls into the non-effective and scale invariant regime 
(and actually it is far from the threshold 2/t). Its oscillations have the same order as the 
principal part, but they are “slow” because α < 1.

2. ([1, Example 1]) Solutions decay as prescribed by (1.7), namely as 1/tm, when

m

t
− 1

t logγ t
≤ b(t) ≤ m

t
+ 1

t logγ t
m ∈ (0,2), γ > 1. (1.11)

Also in this case the damping coefficient falls into the non-effective and scale invariant 
regime. Oscillations can be very fast, but they are a lower order term and, more important, 
this term is absolutely integrable at infinity because of the condition γ > 1.

3. ([1, Example 3]) Solutions decay as prescribed by (1.8), namely as 1/t2, when

m − r

t
≤ b(t) ≤ m + r

t
m > 2, r � m − 2.

In this case the damping coefficient falls into the effective and scale invariant regime. Fast 
oscillations of the same order are allowed, but their amplitude is required to be small.

4. ([15, Theorem 2.1]) Solutions decay as prescribed by (1.8), namely as 1/tp+1, when

m

tp
≤ b(t) ≤ M

tp
0 < m ≤ M, p ∈ (−1,1).

In this case oscillations are allowed to be fast and large, but t · b(t) → +∞ and therefore we 
are not in the scale invariant regime.
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Our contribution The aim of this paper is to consider equation (1.1) with damping coefficients 
that decay at infinity with a scale invariant rate proportional to 1/t , but neither lie on one precise 
side of the threshold 2/t between the effective and non-effective regime, nor satisfy regularity 
assumptions that limit their oscillations.

In the first result (see Theorem 2.1) we consider any measurable damping coefficient that lies 
in between m/t and M/t for suitable constants M ≥ m > 0. We prove that the decay rate of 
solutions is at least the worst between the rates prescribed by Table 1 in the two extreme cases 
m/t and M/t , despite the potentially wild oscillations. We stress that we do not assume that M
and m are on the same side with respect to 2. However, even in the special case where b(t) lies 
in the effective regime, this result improves what was previously known (see Remark 2.6). We 
suspect that a similar paradigm applies to larger ranges of oscillation, in the sense that whenever 
b1(t) ≤ b(t) ≤ b2(t), where b1(t) and b2(t) are two well-behaved coefficients (for example those 
in Table 1), then the decay rate of the energy of solutions to (1.1) is at least the worst between 
the decay rates corresponding to b1(t) and b2(t) (see Open Problem 2.3).

Then we focus on two examples that shed some light on the role of oscillations. In the second 
result (see Theorem 2.4) we consider a damping coefficient of the form

b(t) := a + r sin(tα)

t
∀t > 0, (1.12)

with a ≥ r > 0 and α > 1, and we show that the decay rate of solutions coincides with the one 
prescribed by Table 1 for b(t) = a/t . Roughly speaking, this suggests that the oscillations of 
the coefficient are too fast, so that some homogenization effect takes place in such a way that 
solutions do not see these oscillations. We recall that a similar phenomenon had already been 
observed in the case where α < 1, but in that case the oscillations were ineffective because they 
were too slow.

Finally, in the third result (see Theorem 2.5) we show the existence of a damping coefficient 
with a scale invariant behavior for which equation (1.1) admits solutions that do not decay ac-
cording to (1.7) or (1.8), but more slowly. The construction of this damping coefficient is rather 
implicit, but a careful inspection of the argument reveals that it has a form similar to (1.12) with 
α = 1. The key point is that the oscillations of this damping coefficient have the same “period” 
as the solutions of the undamped version of (1.3) with a specific value of λ. This induces a reso-
nance effect between the free oscillations and the damping coefficient, and this resonance effect 
deteriorates the decay rate of the components of the solution corresponding to frequencies close 
to that specific value of λ.

As far as we know, this is the first example were solutions do not decay according to (1.7)
or (1.8). A posteriori it justifies the difficulty in extending the results of Table 1 to less regular 
damping coefficients. Now we know that the extension is in general false, and for example the 
absolute integrability condition that appears in (1.11) can not be replaced by simple integrability.

Overview of the technique First of all, using Fourier analysis we reduce ourselves to prov-
ing λ-independent decay estimates for solutions to (1.3). To this end, we observe that the pair 
(uλ(t), u′

λ(t)) can be written in the form

uλ(t) = 1
ρλ(t) cos(θλ(t)), u′

λ(t) = −ρλ(t) sin(θλ(t)), (1.13)

λ
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where ρλ : [t0, +∞) → (0, +∞) and θλ : [t0, +∞) → R are solutions to the system of ordinary 
differential equations

ρ′
λ(t) = −ρλ(t)b(t) sin2(θλ(t)) (1.14)

θ ′
λ(t) = λ − 1

2
b(t) sin(2θλ(t)). (1.15)

We observe that, once that initial data are fixed, the system admits a unique solution defined 
for every t ≥ t0. From the first equation it follows that the energy of the solution, namely the 
quantity

ρλ(t)
2 = u′

λ(t)
2 + λ2uλ(t)

2, (1.16)

is given by

ρλ(t)
2 = ρλ(t0)

2 exp

⎛⎝−2

t∫
t0

b(s) sin2(θλ(s)) ds

⎞⎠ ∀t ≥ t0. (1.17)

Now assume that λ is large with respect to b(t), which is always the case, at least for t large 
enough, whenever b(t) → 0 as t → +∞. In this hyperbolic regime, from equation (1.15) we 
can expect that θλ(t) ∼ λt and therefore it is reasonable to approximate the argument of the 
exponential in (1.17) as

−2

t∫
t0

b(s) sin2(θλ(s)) ds ∼ −2

t∫
t0

b(s) sin2(λs) ds.

In this way the problem is reduced to estimating an oscillating integral, in which the oscilla-
tions of b(s) might interact with the oscillations of sin2(λs). At this point three possible scenarios 
appear.

• If the oscillations of b(s) are “slow” compared with the oscillations of sin2(λs), then it is 
reasonable to replace the trigonometric term by its time-average, which is equal to 1/2. In 
this way we obtain that

−2

t∫
t0

b(s) sin2(θλ(s)) ds ∼ −
t∫

t0

b(s) ds,

and therefore from (1.17) we deduce that solutions decay as prescribed by (1.7).
• If b(s) contains terms whose oscillations are “fast” compared with the ones of sin2(λs), then 

these fast oscillations can be replaced by their time-average. For example, when b(t) is given 
by (1.12), the term sin(sα) oscillates faster because of the condition α > 1, and therefore it 
can be replaced by its time-average, which is equal to 0. Therefore, in this case we obtain 
that
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−2

t∫
t0

b(s) sin2(θλ(s)) ds ∼ a log

(
t0

t

)
∼ −

t∫
t0

b(s) ds,

up to lower order terms, which again justifies an energy decay of the form (1.7).
• If b(s) contains terms that oscillate as sin2(λs), then things are different. For example, in the 

proof of Theorem 2.5 we construct a damping coefficient similar to (1.12), but with the term 
sin(tα) replaced by something that behaves as cos(2λt) = 1 − 2 sin2(λt). With this choice 
we obtain that

−
t∫

t0

b(s) ds ∼ −
t∫

t0

a + r cos(2λs)

s
ds ∼ a log

(
t0

t

)
, (1.18)

and

−2

t∫
t0

b(s) sin2(θλ(s)) ds ∼ a log

(
t0

t

)
− 2r

t∫
t0

(1 − 2 sin2(λs)) sin2(λs)

s
ds, (1.19)

but now the last integral diverges with the same order of the first term, and therefore it can no 
longer be neglected. As a consequence, the exponentials of (1.18) and (1.19) have different 
orders, and hence the decay rate given by (1.17) does not coincide with (1.7).

Replacing oscillating integrals with their time-averages is the rough idea behind the proof of 
our main results. Of course, a formal proof has to justify rigorously all the approximations, which 
we do in Propositions 4.3 and 4.4. More important, we need to consider also the parabolic regime 
in which b(t) is large with respect to λ. We deal with this regime in Proposition 4.1, where we 
use different (and somewhat more elementary) energy estimates, the main idea being that the 
parabolic regime applies just in a “short” time interval.

Resonance effects in different models We conclude by mentioning some analogies with appar-
ently different problems.

In [5] we considered again equation (1.1), with an operator A whose spectrum is either a finite 
set or an increasing sequence of positive real numbers (this assumption rules out the issue of low 
frequencies). Our aim was designing the damping coefficient b(t) in such a way that all solutions 
to (1.1) decay as fast as possible. We discovered that the best choice is a “pulsating coefficient” 
that alternates small and large values with a frequency that depends on the eigenvalues of A. In 
that model the resonance was exploited in order to produce a fast decay; here we exploit it in 
order to produce a decay that is slower than expected.

In [6] we considered a wave equation with a non-linear non-local damping, and we studied 
the asymptotic behavior of solutions. Again the key tool was the polar representation of solutions 
in the form (1.13), which again led to the study of oscillating integrals, similar to the ones that 
appear in this paper, where some terms could be approximated by their time-averages.

Finally, we can not conclude without mentioning the related problem where the time-
dependent coefficient is in front of the elastic term, namely the abstract wave equation

w′′(t) + c(t)Aw(t) = 0,
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and the corresponding family of ordinary differential equations

w′′
λ(t) + λ2c(t)wλ(t) = 0. (1.20)

It is well-known that, when c(t) is a positive constant, the energy of solutions remains constant 
in time. On the contrary, when c(t) is allowed to oscillate between two positive constants, then 
(1.20) admits solutions that grow exponentially in time, the classical example being the case 
where

c(t) := 1 − 8ε sin(2λt) − 16ε2 sin4(λt), wλ(t) := sin(λt) exp
(
2ελt − ε sin(2λt)

)
for some small enough ε > 0. The existence of this anomalous growth was discovered in the 
seminal paper [2], and it has a lot of consequences both in terms of non-existence of solutions 
when the propagation speed and/or initial data are not regular enough (this problem has been 
intensively studied after [2], for more details we refer to the recent paper [4] and to the references 
quoted therein), and in terms of lack of the so-called generalized energy conservation when 
everything is smooth (see for example [7,3] and the references quoted therein).

Here we just point out that in the example mentioned above the time-dependent coefficient 
c(t) and the solution wλ(t) oscillate with the same period, and it is again a resonance effect that 
triggers the exponential growth of the energy.

Structure of the paper This paper is organized as follows. In section 2 we fix the functional 
setting, and we state our results concerning the decay rate of solutions to (1.1) and (1.3). In 
section 3, which is the technical core of this paper, we study the convergence of some oscil-
lating integrals. In section 4 we prove the key estimates for solutions of the family of ordinary 
differential equations (1.3). Finally, in section 5 we prove the main results.

2. Statements

Functional setting In this paper we assume that H is a real Hilbert space and A is a linear 
operator on H with domain D(A). We always assume that A is unitary equivalent to a non-
negative multiplication operator in some L2 space. More precisely, we assume that there exist 
a measure space (M, μ), a measurable function λ : M → [0, +∞), and a linear isometry F :
H → L2(M, μ) with the property that for every u ∈ H it turns out that

u ∈ D(A) ⇐⇒ λ(ξ)2[Fu](ξ) ∈ L2(M,μ),

and for every u ∈ D(A) it turns out that

[F (Au)] (ξ) = λ(ξ)2[Fu](ξ) ∀ξ ∈ M.

Roughly speaking, F is a sort of generalized Fourier transform that allows to identify every 
element u ∈ H with a function û ∈ L2(M, μ), and under this identification the operator A be-
comes the multiplication operator by λ(ξ)2 in L2(M, μ). In particular, under this identification 
it turns out that
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|u|2H = ‖û‖2
L2(M,μ)

=
∫
M

û(ξ)2 dξ, (2.1)

and more generally

|Aαu|2H =
∫
M

λ(ξ)4α · û(ξ)2 dξ ∀α > 0, ∀u ∈ D(Aα), (2.2)

where D(Aα) is defined as the set of vectors u ∈ H for which the integral in the right-hand side 
is finite. From now on, we denote the norm of u by |u| instead of |u|H .

At this point problem (1.1)–(1.2) can be solved by considering, for every ξ ∈ M, the function 
û(t, ξ) that solves the ordinary differential equation

û ′′(t, ξ) + b(t )̂u ′(t, ξ) + λ(ξ)2û(t, ξ) = 0 (2.3)

(here “primes” denote derivatives with respect to time), with initial data

û(t0, ξ) = [Fu0](ξ), û ′(t0, ξ) = [Fu1](ξ), (2.4)

and finally setting u(t) := F−1û(t, ξ). In this way one obtains that, if b ∈ L1((t0, T )) for every 
T > t0, then for every pair of initial data (1.2) equation (1.1) has a unique solution

u ∈ C0
(
[t0,+∞),D(A1/2)

)
∩ C1 ([t0,+∞),H

)
.

Main results Our first result concerns a non-regular damping coefficient that oscillates between 
two “well-behaved” scale invariant coefficients.

Theorem 2.1 (General oscillations). Let H and A be as in the functional setting described at 
the beginning of this section. Let t0 be a positive real number, and let b : [t0, +∞) → R be a 
measurable function.

Let us assume that there exist two real numbers M ≥ m > 0 such that

m

t
≤ b(t) ≤ M

t
∀t ≥ t0, (2.5)

and let us set

μ := min{m,2}. (2.6)

Then every solution to problem (1.1)–(1.2) satisfies the decay estimate

|u′(t)|2 + |A1/2u(t)|2 ≤ em(M+8)

(
4|u1|2 + |A1/2u0|2 + 2

t2
0

|u0|2
)(

t0

t

)μ

(2.7)

for every t ≥ t0.
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Remark 2.2 (Better decay for coercive operators). The decay estimate (2.7) is optimal because 
it is optimal when b(t) = m/t . However, we recall that in the effective regime, namely when 
m > 2, the optimality is determined only at low frequencies, and what actually decays as 1/t2 is 
the quantity defined in (1.9).

Things are different if the operator A is coercive, namely if there exists λ0 > 0 such that 
|Au| ≥ λ2

0|u| for every u ∈ D(A). In this case, under the same assumptions of Theorem 2.1, all 
solutions satisfy

|u′(t)|2 + |A1/2u(t)|2 ≤ exp

(
m(M + 8)

λ0t0

)(
|u1|2 + |A1/2u0|2

)( t0

t

)m

∀t ≥ t0,

namely all solutions decay with at least the hyperbolic rate 1/tm, even if m > 2 (see Proposi-
tion 4.3).

We suspect that, in the case m < 2, estimate (2.7) might be true even if we allow much larger 
oscillations. More precisely, for the time being we have no counterexamples to the following 
question (note that in (2.8) the damping coefficient is allowed to oscillate between two coeffi-
cients that yield the same decay rate of solutions according to Table 1).

Open problem 2.3. Let t0, m, M be positive real numbers, with m ∈ (0, 2) and M ≥ mtm−2
0 . Let 

b : [t0, +∞) → R be a measurable function such that

m

t
≤ b(t) ≤ M

tm−1 ∀t ≥ t0. (2.8)

Determine whether there exists a constant 
1, possibly depending on t0, m, M , such that every 
solution to problem (1.1)–(1.2) satisfies

|u′(t)|2 + |A1/2u(t)|2 ≤ 
1

(
|u1|2 + |A1/2u0|2 + |u0|2

)( t0

t

)m

∀t ≥ t0.

Our second main result concerns a damping coefficient with very fast oscillations.

Theorem 2.4 (Fast oscillations). Let H and A be as in the functional setting described at the 
beginning of this section. Let us consider the damping coefficient b(t) defined by (1.12), where 
a, r , α are three real numbers such that

a > 0, 0 ≤ r ≤ a, α > 1, (2.9)

and let us set

μ := min{a,2}, B := 3r

αtα0
, (2.10)


2 := exp

(
a(a + r + 8) + 5r(a + r + 4)

2
+ 3r

αtα0
+ r log 3

α − 1

)
. (2.11)
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Then every solution to problem (1.1)–(1.2) satisfies the decay estimate

|u′(t)|2 + |A1/2u(t)|2 ≤ 
2

(
4e2B |u1|2 + |A1/2u0|2 + 2

t2
0

|u0|2
)(

t0

t

)μ

for every t ≥ t0.

Our third result is an example in which the oscillations of the damping coefficient may change 
the expected decay rate of solutions, for models with the decay rate determined from the oscilla-
tory component of the solutions.

Theorem 2.5 (Resonant oscillations). Let H and A be as in the functional setting described at 
the beginning of this section, with A not identically zero.

Then for every pair of real numbers a ≥ r > 0 there exists a damping coefficient b :
[t0, +∞) → R of class C∞ with the following properties.

(1) (Scale invariant behavior). The damping coefficient b satisfies

a − r

t
≤ b(t) ≤ a + r

t
∀t ≥ t0. (2.12)

(2) (Integrability of oscillations). The limit

lim
t→+∞

(
t0

t

)a

exp

⎛⎝ t∫
t0

b(s) ds

⎞⎠ (2.13)

exists and is a real number.
(3) (Slower decay of solutions). There exists a positive real number 
3, that depends on t0, a, r

and on the operator A, such that the function defined by (1.9) satisfies

E(t) ≥ 
3

ta−r/2 ∀t ≥ t0. (2.14)

We conclude by comparing our results with the previous examples that we mentioned in the 
introduction.

Remark 2.6. When m ≥ 2, Theorem 2.1 shows that solutions decay at least as 1/t2. In this 
special case our result improves [1, Theorem 2], both because m can be equal to 2, and because 
the difference M − m is not required to be small with respect to m − 2. In other words, in this 
case solutions always decay as prescribed by (1.8), even if oscillations are large in size and are 
allowed to touch the critical threshold 2/t .

Theorem 2.4 is the counterpart of example (1.10) in the range α > 1. Now we know that both 
slow and fast oscillations are ineffective, but for opposite reasons. In addition, in our result we 
do not need that oscillations remain within the non-effective regime.

Finally, let us consider Theorem 2.5. In the case where a ∈ (0, 2), it provides an example 
where (1.8) decays as 1/t2, (1.7) decays as 1/ta , but there are solutions to (1.1) that decay at 
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most as 1/ta−r/2. In particular, these solutions are slower than what prescribed and expected by 
(1.8) and (1.7). This shows that in [1, Theorem 1] an absolute integrability condition of the form 
(1.11) can not be replaced by simple integrability.

Remark 2.7 (The classic model case). Let us consider the very special case where

b(t) = a + r sin t

t
∀t > 0,

for example with a = 1 and r = 1/2. This damping coefficient oscillates within the non-effective 
regime.

Theorem 2.1 applies with m = 1/2 and M = 3/2, yielding that solutions decay at least as 
t−1/2. A refinement of our arguments, applied to this very special case, would give that actually 
solutions decay at least as t−3/4, where 3/4 = a − r/2. For the sake of shortness, we do not 
include this computation in this paper.

On the contrary, Theorem 2.5 does not apply to this example. What we actually prove is the 
existence of a damping coefficient of the form

b(t) = a + r sin(η(t))

t
∀t > 0,

even with a = 1 and r = 1/2, for which the decay rate is not better than t−3/4, where again 
3/4 = a − r/2. A careful inspection of the proof (where we have cos(2η(t)) instead of sin(η(t)), 
but the difference is not relevant) reveals that we can choose η(t) such that η(t) = t +O(log t) as 
t → +∞, but we can not guarantee that η(t) can be chosen to be exactly equal to t . This would 
require sharper estimates on some oscillating integrals.

The key tool The proof of our main results relies on some estimates for the decay of the energy 
of solutions to the family of ordinary differential equations (1.3). We collect these estimates in 
the following proposition, whose three statements correspond to our three main results.

Proposition 2.8. Let t0 be a positive real number.

(1) Let λ ≥ 0 be a real number, and let b : [t0, +∞) → R be a measurable function that satisfies 
(2.5) for suitable constants M ≥ m > 0.
Then every solution to equation (1.3) satisfies the decay estimate

u′
λ(t)

2 + λ2uλ(t)
2 ≤ em(M+8)

{
4u′

λ(t0)
2 +

(
λ2 + 2

t2
0

)
uλ(t0)

2

}(
t0

t

)μ

(2.15)

for every t ≥ t0, where μ is defined by (2.6).
(2) Let λ ≥ 0 be a real number, and let b(t) be given by (1.12) for suitable parameters a, r , α

satisfying (2.9). Let us define μ, B , 
2 as in (2.10) and (2.11).
Then every solution to equation (1.3) satisfies the decay estimate

u′
λ(t)

2 + λ2uλ(t)
2 ≤ 
2

{
4e2Bu′

λ(t0)
2 +

(
λ2 + 2

t2

)
uλ(t0)

2

}(
t0

t

)μ

(2.16)

0
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for every t ≥ t0.
(3) For every pair of real numbers a ≥ r > 0, and for every λ > 0, there exist a damping coef-

ficient b : [t0, +∞) → R and a positive real number 
3, that depends on t0, a, r , λ, such 
that
• the damping coefficient b is of class C∞ and satisfies (2.12) and (2.13),
• the solution to (1.3) with initial data u(t0) = 0 and u′(t0) = 1 satisfies

u′
λ(t)

2 + λ2uλ(t)
2 ≥ 
3

(
t0

t

)a−r/2

∀t ≥ t0. (2.17)

Remark 2.9. If the operator A admits at least one positive eigenvalue, then from statement (3) of 
Proposition 2.8 it is immediate that Theorem 2.5 holds true with a stronger conclusion, namely 
existence of a solution (and not just a supremum over all solutions) that decays less than the 
right-hand side of (2.14).

3. Oscillating integrals

In this section we collect all the result concerning integrals of real functions that we need in 
the sequel. The first one is a general tool for proving boundedness or convergence of oscillating 
integrals.

Lemma 3.1. Let t0 be a positive real number, let ϕ : [t0, +∞) → R be a function of class C2, 
and let ψ : [t0, +∞) → R be a function of class C1.

Let us assume that ϕ′′(t) ≥ 0 for every t ≥ t0, and that there exist two positive real numbers 
ϕ0 and 0 such that

|ϕ′(t)| ≥ ϕ0 and |ψ ′(t)| ≤ 0

t
∀t ≥ t0. (3.1)

Then it turns out that∣∣∣∣∣∣
t∫

t0

cos(ϕ(s)) sin(ψ(s))

s
ds

∣∣∣∣∣∣≤ 4 + 0

ϕ0t0
∀t ≥ t0, (3.2)

and the following limit

lim
t→+∞

t∫
t0

cos(ϕ(s)) sin(ψ(s))

s
ds (3.3)

exists and is a real number.

Proof. Let us write the integral in the form

t∫
cos(ϕ(s)) sin(ψ(s))

s
ds =

t∫
ϕ′(s) cos(ϕ(s)) · sin(ψ(s))

sϕ′(s)
ds.
t0 t0
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Integrating by parts we obtain that

t∫
t0

cos(ϕ(s)) sin(ψ(s))

s
ds = I1(t) + I2(t) + I3(t) + I4(t), (3.4)

where

I1(t) := sin(ϕ(t)) sin(ψ(t))

tϕ′(t)
− sin(ϕ(t0)) sin(ψ(t0))

t0ϕ′(t0)
,

I2(t) := −
t∫

t0

sin(ϕ(s)) · cos(ψ(s))ψ ′(s)
sϕ′(s)

ds,

I3(t) :=
t∫

t0

sin(ϕ(s)) · sin(ψ(s))

s2ϕ′(s)
ds,

I4(t) :=
t∫

t0

sin(ϕ(s)) · sin(ψ(s))

s
· ϕ′′(s)
[ϕ′(s)]2 ds.

Thanks to our assumption (3.1) we can estimate the first three terns as

|I1(t)| ≤ 1

ϕ0

(
1

t
+ 1

t0

)
≤ 2

ϕ0t0
,

|I2(t)| ≤ 0

ϕ0

t∫
t0

ds

s2 ≤ 0

ϕ0t0
, |I3(t)| ≤ 1

ϕ0

t∫
t0

ds

s2 ≤ 1

ϕ0t0
,

and, since ϕ′′ is nonnegative, we can estimate the last term as

|I4(t)| ≤ 1

t0

t∫
t0

ϕ′′(s)
[ϕ′(s)]2 ds = 1

t0

(
1

ϕ′(t0)
− 1

ϕ′(t)

)
≤ 1

ϕ0t0
.

Plugging all these inequalities into (3.4) we deduce (3.2).
The same estimates show that I1(t) has a finite limit as t → +∞, and that the integrals I2(t), 

I3(t) and I4(t) are absolutely convergent, which is enough to prove that the limit in (3.3) exists 
and is a real number. �
Remark 3.2. Let us mention two variants of Lemma 3.1 that we exploit in the sequel (the proof 
is the same).

• The same conclusions hold true with any combination of cos/sin in the numerator of the 
fractions that we integrate in (3.2) and (3.3).
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• If we assume that both the inequality ϕ′′(t) ≥ 0, and the two inequalities in (3.1), hold true 
only in some finite interval [t0, T0], then we can conclude that the inequality in (3.2) holds 
true for every t in the same interval [t0, T0].

In the following two results we apply Lemma 3.1 to the oscillating integrals that appear when 
we compute the decay rate of solutions to (1.3).

Lemma 3.3. Let H0, λ, t0 be three positive real numbers, and let h : [t0, +∞) → R be a function 
of class C1 such that

|h′(t)| ≤ H0

t
∀t ≥ t0. (3.5)

Then for every positive integer n it turns out that∣∣∣∣∣∣
t∫

t0

cos(nλs + nh(s))

s
ds

∣∣∣∣∣∣≤ 2(H0 + 4)

λt0
∀t ≥ t0, (3.6)

and the following limit

lim
t→+∞

t∫
t0

cos(nλs + nh(s))

s
ds

exists and is a real number.

Proof. Let us set

ψ1(t) := cos(nλt) · cos(nh(t)) and ψ2(t) := sin(nλt) · sin(nh(t)),

so that

t∫
t0

cos(nλs + nh(s))

s
ds =

t∫
t0

ψ1(s)

s
ds −

t∫
t0

ψ2(s)

s
ds. (3.7)

Both integrals in the right-hand side fit into the framework of Lemma 3.1 and Remark 3.2
with

ϕ(t) := nλt, ψ(t) := nh(t), ϕ0 := nλ, 0 := nH0.

Therefore, from Lemma 3.1 we deduce both the estimates∣∣∣∣∣∣
t∫
ψi(s)

s
ds

∣∣∣∣∣∣≤ 4 + nH0

nλt0
≤ H0 + 4

λt0
∀t ≥ t0, ∀i = 1,2,
t0
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and the existence of the limit as t → +∞ of the two integrals in the right-hand side of (3.7). This 
completes the proof. �
Lemma 3.4. Let H0, λ, t0 be three positive real numbers, and let h : [t0, +∞) → R be a function 
of class C1 satisfying (3.5).

Then it turns out that∣∣∣∣∣∣
t∫

t0

sin(sα) · cos(2λs + 2h(s))

s
ds

∣∣∣∣∣∣≤ 5(H0 + 2)

λt0
+ log 3

α − 1
∀t ≥ t0.

Proof. Thanks to the classical product-to-sum and sum-to-product identities, we can write the 
numerator of the integrand in the form

sin(sα) cos(2λs + 2h(s)) = 1

2
{g1(s) − g2(s) + g3(s) + g4(s)} ,

where

g1(s) := cos(sα + 2λs) sin(2h(s)), g2(s) := cos(sα − 2λs) sin(2h(s)),

g3(s) := sin(sα + 2λs) cos(2h(s)), g4(s) := sin(sα − 2λs) cos(2h(s)).

Therefore, it is enough to show that

∣∣∣∣∣∣
t∫

t0

gi(s)

s
ds

∣∣∣∣∣∣≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

H0 + 2

λt0
if i = 1,3,

4(H0 + 2)

λt0
+ log 3

α − 1
if i = 2,4.

(3.8)

In the cases i = 1 and i = 3 we apply Lemma 3.1 and Remark 3.2 with

ϕ(s) := sα + 2λs, ψ(s) := 2h(s), ϕ0 := 2λ, 0 := 2H0,

and we deduce that ∣∣∣∣∣∣
t∫

t0

gi(s)

s
ds

∣∣∣∣∣∣≤ 2H0 + 4

2λt0
= H0 + 2

λt0
∀i = 1,3.

In the cases i = 2 and i = 4 we would like to apply Lemma 3.1 and Remark 3.2 with

ϕ(s) := sα − 2λs, ψ(s) := 2h(s), ϕ0 := λ, 0 := 2H0. (3.9)

The problem is that the first inequality in (3.1) is not necessarily satisfied for every t ≥ t0. In 
order to overcome this difficulty, we consider the two times 0 < t1 < t2 such that

αtα−1 = λ and αtα−1 = 3λ,
1 2
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and we observe that

ϕ′(s) ≤ −λ ∀s ∈ (0, t1] and ϕ′(s) ≥ λ ∀s ≥ t2.

Let us consider now any interval [t3, t4] ⊆ [t0, +∞). If either [t3, t4] ⊆ [t0, t1] or [t3, t4] ⊆
[t2, +∞), then we can apply Lemma 3.1 in the interval [t3, t4] with the choices (3.9), and deduce 
that ∣∣∣∣∣∣

t4∫
t3

gi(s)

s
ds

∣∣∣∣∣∣≤ 2(H0 + 2)

λt3
≤ 2(H0 + 2)

λt0
∀i = 2,4. (3.10)

If [t3, t4] ⊆ [t1, t2], then we obtain that∣∣∣∣∣∣
t4∫

t3

gi(s)

s
ds

∣∣∣∣∣∣≤
t4∫

t3

ds

s
≤

t2∫
t1

ds

s
= log

(
t2

t1

)
= log 3

α − 1
∀i = 2,4. (3.11)

Finally we set

J1 := [t0, t] ∩ [t0, t1], J2 := [t0, t] ∩ [t1, t2], J3 := [t0, t] ∩ [t2,+∞),

and we write the integral of gi(s)/s over [t0, t] as the sum of the integrals over J1, J2, J3 (de-
pending on the position of t0 and t with respect to t1 and t2, one or two of the Jk’s might be 
empty or just a singleton). We observe that the integrals over J1 and J3 satisfy (3.10), while the 
integral over J2 satisfies (3.11). Summing the three estimates we obtain exactly (3.8) for i = 2
and i = 4. �

The last result that we need is an estimate from above for the function

γ (m, t0, t) :=
t∫

t0

(
t0

s

)m

ds ∀t ≥ t0. (3.12)

Lemma 3.5. Let m and t0 be positive real numbers, and let μ be defined as in (2.6).
Then the function defined by (3.12) satisfies

(
t0

t

)2

γ (m, t0, t)
2 ≤ t2

0

(
t0

t

)μ

∀t ≥ t0. (3.13)

Proof. In the case m ≥ 2 the required inequality reduces to γ (m, t0, t) ≤ t0, which is true because 
in this case

γ (m, t0, t) =
t∫ (

t0

s

)m

ds ≤
t∫ (

t0

s

)2

ds = t2
0

(
1

t0
− 1

t

)
≤ t0.
t0 t0
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In the case m ∈ (0, 2), with the change of variable σ := t0/s we obtain that

γ (m, t0, t) = t0

1∫
t0/t

1

σ 2−m
dσ,

so that (3.13) reduces to

(
t0

t

)2−m

⎡⎢⎣ 1∫
t0/t

1

σ 2−m
dσ

⎤⎥⎦
2

≤ 1 ∀m ∈ (0,2), ∀t ≥ t0.

Setting x := t0/t and b := 1 − m/2, this is equivalent to proving that

1∫
x

( x

σ 2

)b

dσ ≤ 1 ∀b ∈ (0,1), ∀x ∈ (0,1).

For every fixed x ∈ (0, 1), the left-hand side is a convex function of b, and hence it attains its 
maximum either in the limit as b → 0+, or in the limit as b → 1−. Since both limits are equal to 
1 − x, the inequality is proved. �
4. Estimates for a family of ODEs

In the following two subsections we prove different types of estimates for solutions to the 
family of ordinary differential equations (1.3). These estimates hold true under rather general 
assumption on the damping coefficient, and are satisfied for all admissible values of λ and t . The 
proof of Proposition 2.8 follows in the third subsection from a combination of these estimates, 
the main idea being that we exploit the “parabolic” version when b(t) is large with respect to 
λ, namely when t is small, and the “hyperbolic” version when b(t) is small with respect to λ, 
namely when t is large enough.

4.1. Estimates in the “parabolic” regime

Proposition 4.1 (“Parabolic” regime). Let t0 be a positive real number, and let b1 : [t0, +∞) →
R and b2 : [t0, +∞) → R be two measurable functions.

Let us set b(t) := b1(t) + b2(t), and let us assume that

(i) b(t) ≥ 0 for every t ≥ t0,
(ii) there exists a positive real number m such that

b1(t) ≥ m ∀t ≥ t0, (4.1)

t
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(iii) there exists a real number B such that∣∣∣∣∣∣
t∫

t0

b2(s) ds

∣∣∣∣∣∣≤ B ∀t ≥ t0. (4.2)

Then for every λ > 0, and for every solution to equation (1.3), there exists t1 ≥ t0 (that depends 
on λ and on initial data) such that (we recall that γ (m, t0, t) is the function defined by (3.12))

• for every t ∈ [t0, t1] the solution satisfies the estimate

u′
λ(t)

2 + λ2uλ(t)
2 ≤ 2λ2uλ(t0)

2 + 2e2Bu′
λ(t0)

2

{(
t0

t

)2m

+ λ2γ (m, t0, t)
2

}
, (4.3)

• for every t ≥ t1 the solution satisfies the estimate

u′
λ(t)

2 + λ2uλ(t)
2 ≤ 2λ2uλ(t0)

2 + 2e2Bu′
λ(t0)

2λ2γ (m, t0, t1)
2. (4.4)

Proof. Let us write uλ(t) in the form

uλ(t) := uλ,1(t) + uλ,2(t),

where uλ,1 is the solution to equation (1.3) with initial data uλ,1(t0) = uλ(t0) and u′
λ,1(t0) = 0, 

while uλ,2 is the solution to equation (1.3) with initial data uλ,2(t0) = 0 and u′
λ,2(t0) = u′

λ(t0). 
We observe that

u′
λ(t)

2 + λ2uλ(t)
2 ≤ 2

(
u′

λ,1(t)
2 + λ2uλ,1(t)

2
)

+ 2
(
u′

λ,2(t)
2 + λ2uλ,2(t)

2
)

, (4.5)

so that in the sequel it is enough to estimate the energy of uλ,1 and uλ,2 separately. To this end, 
for i = 1, 2 we consider the energy

Ei(t) := u′
λ,i(t)

2 + λ2uλ,i(t)
2,

and we observe that

E′
i (t) = −2b(t)u′

λ,i(t)
2 ≤ 0, ∀t ≥ t0 ∀i = 1,2. (4.6)

In the case of uλ,1, this is enough to conclude that

u′
λ,1(t)

2 + λ2uλ,1(t)
2 = E1(t) ≤ E1(t0) = λ2uλ(t0)

2 ∀t ≥ t0. (4.7)

In the case of uλ,2 we assume, without loss of generality, that u′
λ(t0) > 0, and we define t1

as the smallest real number t ≥ t0 such that u′
λ,2(t) = 0. In the interval [t0, t1) we know that 

u′
λ,2(t) > 0, and hence also uλ,2(t) > 0. In particular, from (1.3) we obtain that

u′′ (t) + b(t)u′ (t) = −λ2uλ,2(t) ≤ 0 ∀t ∈ [t0, t1].
λ,2 λ,2
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Integrating this differential inequality we deduce that

0 ≤ u′
λ,2(t) ≤ u′

λ(t0) exp

⎛⎝−
t∫

t0

b(s) ds

⎞⎠ ∀t ∈ [t0, t1].

Now from assumptions (4.1) and (4.2) we obtain that

−
t∫

t0

b(s) ds = −
t∫

t0

b1(s) ds −
t∫

t0

b2(s) ds ≤ m log

(
t0

t

)
+ B,

and therefore

0 ≤ u′
λ,2(t) ≤ u′

λ(t0)

(
t0

t

)m

eB ∀t ∈ [t0, t1]. (4.8)

Recalling that uλ,2(t0) = 0, this implies also that

0 ≤ uλ,2(t) =
t∫

t0

u′
λ,2(s) ds ≤ u′

λ(t0)γ (m, t0, t)e
B ∀t ∈ [t0, t1]. (4.9)

Plugging (4.8), (4.9) and (4.7) into (4.5) we obtain (4.3) for every t ∈ [t0, t1].
For t ≥ t1 we consider the energy E2(t), and from (4.6) and (4.9) with t = t1 we conclude that

u′
λ,2(t)

2 + λ2uλ,2(t)
2 = E2(t) ≤ E2(t1) = λ2uλ,2(t1)

2 ≤ λ2e2Bu′
λ(t0)

2γ (m, t0, t1)
2

for every t ≥ t1. Plugging this inequality and (4.7) into (4.5) we obtain (4.4) for every t ≥ t1. �
4.2. Estimates in the “hyperbolic” regime

As announced in the introduction, the key tool is the polar representation of solutions to (1.3), 
which can be stated as follows (we omit the standard proof).

Lemma 4.2 (Polar representation of solutions). Let t0 be a positive real number, and let b :
[t0, +∞) → R be a continuous function.

Then every solution to equation (1.3) has the following properties.

(1) The pair (uλ(t), u′
λ(t)) can be written in the form (1.13), where ρλ : [t0, +∞) → (0, +∞)

and θλ : [t0, +∞) → R are solutions to the system of ordinary differential equations 
(1.14)–(1.15).

(2) The function θλ(t) can be written in the form

θλ(t) = λt + hλ(t) (4.10)

for a suitable function hλ : [t0, +∞) → R of class C1 such that
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|h′
λ(t)| ≤

1

2
|b(t)| ∀t ≥ t0.

(3) The energy of the solution, namely the quantity (1.16), is given by (1.17).

Proposition 4.3 (“Hyperbolic” regime – General oscillations). Let t0 be a positive real number, 
and let b : [t0, +∞) → R be a measurable function that satisfies (2.5) for suitable constants 
M ≥ m > 0.

Then for every λ > 0 all solutions to equation (1.3) satisfy the decay estimate

u′
λ(t)

2 + λ2uλ(t)
2 ≤ exp

(
m(M + 8)

λt0

)(
u′

λ(t0)
2 + λ2uλ(t0)

2
)( t0

t

)m

∀t ≥ t0. (4.11)

Proof. With a classical approximation procedure, we can assume that the damping coefficient 
is continuous. In this case we write uλ(t) and u′

λ(t) as in (1.13), and we reduce ourselves to 
estimating from above the exponential in (1.17).

To this end, from the bound from below in (2.5) we deduce that

−
t∫

t0

2b(s) sin2(θλ(s)) ds ≤ −
t∫

t0

2m sin2(θλ(s))

s
ds = −

t∫
t0

m

s
ds +

t∫
t0

m cos(2θλ(s))

s
ds.

In order to estimate the last integral, from statement (2) of Lemma 4.2 we know that θλ(t) can 
be written in the form (4.10) for a suitable C1 function hλ(t) that in this case satisfies

|h′
λ(t)| ≤

M

2t
∀t ≥ t0,

because of the bound from above in (2.5). Therefore, the integral fits into the framework of 
Lemma 3.3 with H0 := M/2 and n = 2, from which we conclude that

−
t∫

t0

2b(s) sin2(θλ(s)) ds ≤ m log

(
t0

t

)
+ m(M + 8)

λt0
.

Plugging this estimate into (1.17), and recalling (1.16), we obtain exactly (4.11). �
Proposition 4.4 (“Hyperbolic” regime – Fast oscillations). Let t0 be a positive real number, and 
let b : [t0, +∞) → R be the damping coefficient defined by (1.12) for suitable parameters a, r , 
α satisfying (2.9).

Then for every λ > 0 all solutions to equation (1.3) satisfy the decay estimate

u′
λ(t)

2 + λ2uλ(t)
2 ≤ 
4

(
u′

λ(t0)
2 + λ2uλ(t0)

2
)( t0

t

)a

∀t ≥ t0, (4.12)

where


4 := exp

(
2a(a + r + 8) + 5r(a + r + 4)

2λt
+ 3r

αtα
+ r log 3

α − 1

)
. (4.13)
0 0
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Proof. As in the proof of Proposition 4.3 we write the solution in the form (1.13), and we reduce 
ourselves to estimating from above the exponential in (1.17). Moreover, again we obtain that 
θλ(t) can be written in the form (4.10) with hλ(t) that in this case satisfies

|h′
λ(t)| ≤

a + r

2t
∀t ≥ t0.

Now we observe that

−2

t∫
t0

b(s) sin2(θλ(s)) ds = I1(t) + I2(t) + I3(t) + I4(4), (4.14)

where

I1(t) := −
t∫

t0

a

s
ds = a log

(
t0

t

)
, I2(t) := −r

t∫
t0

sin(sα)

s
ds,

I3(t) := a

t∫
t0

cos(2θλ(s))

s
ds, I4(t) := r

t∫
t0

sin(sα) cos(2θλ(s))

s
ds.

Let us estimate the last three integrals. As for I2, a classical integration by parts shows that

t∫
t0

sin(sα)

s
ds = cos(tα0 )

αtα0
− cos(tα)

αtα
−

t∫
t0

cos(sα)

sα+1 ds,

from which we deduce that

|I2(t)| ≤ 3r

αtα0
∀t ≥ t0. (4.15)

As for I3, we apply Lemma 3.3 with H0 := (a + r)/2 and n = 2, and we deduce that

|I3(t)| ≤ a(a + r + 8)

λt0
.

As for I4, we apply Lemma 3.4 with H0 := (a + r)/2, and we deduce that

|I4(t)| ≤ r

(
5(a + r + 4)

2λt0
+ log 3

α − 1

)
.

Plugging all these estimates into (4.14), and recalling (1.17) and (1.16), we obtain exactly 
(4.12). �
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4.3. Proof of Proposition 2.8

Statement (1)
If λ = 0 equation (1.3) can be explicitly integrated, and the result follows from the explicit 

formula for solutions. Therefore, in the sequel we assume that λ is positive.
If λ ≥ 1/t0 we apply Proposition 4.3, and from (4.11) we obtain that

u′
λ(t)

2 + λ2uλ(t)
2 ≤ em(M+8)

{
u′

λ(t0)
2 + λ2uλ(t0)

2
}( t0

t

)m

for every t ≥ t0, which is enough to establish (2.15) in this case.
If λ < 1/t0 we start by applying Proposition 4.1 with

b1(t) := b(t), b2(t) ≡ 0, B := 0.

To this end we divide the half-line t ≥ t0 into the three subsets[
t0,min

{
t1,

1

λ

}]
,

[
min

{
t1,

1

λ

}
,

1

λ

]
,

[
1

λ
,+∞

)
, (4.16)

where t1 is the time provided by Proposition 4.1.
In the first interval it turns out that t0 ≤ t ≤ t1, and hence we can exploit estimate (4.3), from 

which we obtain that

u′
λ(t)

2 + λ2uλ(t)
2 ≤ 2λ2uλ(t0)

2 + 2u′
λ(t0)

2

{(
t0

t

)2m

+ λ2γ (m, t0, t)
2

}
.

Now in this first interval we know that t ≤ 1/λ, namely λ ≤ 1/t , and hence

u′
λ(t)

2 + λ2uλ(t)
2 ≤ 2

t2
0

(
t0

t

)2

uλ(t0)
2 + 2u′

λ(t0)
2
(

t0

t

)2m

+ 2

t2
0

u′
λ(t0)

2
(

t0

t

)2

γ (m, t0, t)
2.

Recalling (3.13), this implies that

u′
λ(t)

2 + λ2uλ(t)
2 ≤

{
2

t2
0

uλ(t0)
2 + 4u′

λ(t0)
2

}(
t0

t

)μ

,

which is enough to establish (2.15) in the first time-interval.
Let us consider now the second interval, in the case where it is non-degenerate, namely t1 <

1/λ. In this case we can exploit estimate (4.4), from which we deduce that

u′
λ(t)

2 + λ2uλ(t)
2 ≤ 2λ2uλ(t0)

2 + 2u′
λ(t0)

2λ2γ (m, t0, t1)
2

≤ 2λ2uλ(t0)
2 + 2u′

λ(t0)
2λ2γ (m, t0, t)

2.

Since also in this interval we know that t ≤ 1/λ, namely λ ≤ 1/t , recalling (3.13) we deduce 
that
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u′
λ(t)

2 + λ2uλ(t)
2 ≤ 2

t2
0

(
t0

t

)2

uλ(t0)
2 + 2u′

λ(t0)
2 1

t2
0

(
t0

t

)2

γ (m, t0, t)
2

≤ 2

t2
0

(
t0

t

)2

uλ(t0)
2 + 2u′

λ(t0)
2
(

t0

t

)μ

≤
{

2

t2
0

uλ(t0)
2 + 2u′

λ(t0)
2

}(
t0

t

)μ

,

which proves (2.15) also in the second time-interval.
Finally, let us consider the half-line t ≥ 1/λ. When t = 1/λ the last estimate tells us that

u′
λ

(
1

λ

)2

+ λ2uλ

(
1

λ

)2

≤
{

2

t2
0

uλ(t0)
2 + 2u′

λ(t0)
2

}
(λt0)

μ.

For t ≥ 1/λ we apply again Proposition 4.3, but now with initial time 1/λ instead of t0, and 
from estimate (4.11) (with 1/λ instead of t0) we deduce that

u′
λ(t)

2 + λ2uλ(t)
2 ≤ em(M+8)

{
u′

λ

(
1

λ

)2

+ λ2uλ

(
1

λ

)2
}(

1

λt

)m

≤ em(M+8)

{
2

t2
0

uλ(t0)
2 + 2u′

λ(t0)
2

}
(λt0)

μ

(
1

λt

)m

≤ em(M+8)

{
2

t2
0

uλ(t0)
2 + 2u′

λ(t0)
2

}(
t0

t

)μ

,

which proves (2.15) also in the last half-line. �
Statement (2)

To begin with, we observe that the coefficient b(t) defined by (1.12) satisfies both the assump-
tions of Proposition 4.4, and the assumption of Proposition 4.1 with

b1(t) := a

t
, b2(t) := r sin(tα)

t
, m := a, B := 3r

αtα0

(the verification of assumption (4.2) is the same elementary computation that leads to (4.15) in 
the proof of Proposition 4.4).

From now on we proceed exactly as in the proof of statement (1), with the only difference that 
now B > 0. If λ ≥ 1/t0 we apply Proposition 4.4, and from (4.12) we obtain that

u′
λ(t)

2 + λ2uλ(t)
2 ≤ 
4

{
u′

λ(t0)
2 + λ2uλ(t0)

2
}( t0

t

)m

∀t ≥ t0,

which implies (2.16) because when λ ≥ 1/t0 the constant 
4 defined by (4.13) is less than the 
constant 
2 defined by (2.11).
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If λ < 1/t0 we divide the half-line t ≥ t0 into the three subsets (4.16). In the first one we 
obtain that

u′
λ(t)

2 + λ2uλ(t)
2 ≤

{
2

t2
0

uλ(t0)
2 + 4e2Bu′

λ(t0)
2

}(
t0

t

)μ

,

which is enough to establish (2.16) in the first time-interval.
In the second interval we obtain that

u′
λ(t)

2 + λ2uλ(t)
2 ≤

{
2

t2
0

uλ(t0)
2 + 2e2Bu′

λ(t0)
2

}(
t0

t

)μ

,

which proves (2.16) also in the second time-interval.
Finally, in the half-line t ≥ 1/λ we apply again Proposition 4.4, but now with initial time 1/λ

instead of t0, and from estimate (4.12) (with 1/λ instead of t0) we deduce that

u′
λ(t)

2 + λ2uλ(t)
2 ≤ 
2

{
2

t2
0

uλ(t0)
2 + 2e2Bu′

λ(t0)
2

}(
t0

t

)μ

,

which proves (2.16) also in the last half-line. �
Statement (3)
Definition of the damping coefficient Let ηλ : (0, +∞) → R denote the solution to the ordinary 
differential equation

η′
λ(t) = λ − a + r cos(2ηλ(t))

2t
sin(2ηλ(t)) ∀t > 0, (4.17)

with “initial” condition

ηλ(t0) = π

2
.

We claim that the conclusions hold true if we set

b(t) := a + r cos(2ηλ(t))

t
∀t > 0. (4.18)

To this end, we observe first that ηλ(t) can be written in the form

ηλ(t) = λt + hλ(t), (4.19)

for a suitable function hλ : (0, +∞) → R that satisfies

|h′
λ(t)| ≤

a + r ∀t > 0. (4.20)

2t
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Scale invariant behavior and integrability of oscillations The pointwise bounds (2.12) are au-
tomatic from definition (4.18).

In order to prove (2.13) we observe that

t∫
t0

b(s) ds = a log

(
t

t0

)
+ r

t∫
t0

cos(2ηλ(s))

s
ds.

Thanks to (4.19) and (4.20), we can apply Lemma 3.3 with n = 2 and conclude that

lim
t→+∞

(
t0

t

)a

exp

⎛⎝ t∫
t0

b(s) ds

⎞⎠= lim
t→+∞ exp

⎛⎝r

t∫
t0

cos(2ηλ(s))

s
ds

⎞⎠
exists and is a positive real number.

Slower decay of one solution Let us consider the solution to equation (1.3) with initial data

uλ(t0) = 0, u′
λ(t0) = 1, (4.21)

and let us write it in the form (1.13). In this way we reduce ourselves to estimating from below 
the exponential in (1.17). To this end, we observe that now equation (1.15) for θλ reads as

θ ′
λ(t) = λ − 1

2

a + r cos(2ηλ(t))

t
sin(2θλ(t)), θλ(t0) = π

2
.

Comparing with (4.17), by uniqueness we deduce that θλ(t) = ηλ(t) for every t > 0. Now 
from (4.18) with some trigonometry we deduce that

−2b(s) sin2(θλ(s)) = −
(
a − r

2

) 1

s
+ (a − r)

cos(2ηλ(s))

s
+ r

2
· cos(4ηλ(s))

s
,

and therefore

− 2

t∫
t0

b(s) sin2(θλ(s)) ds =
(
a − r

2

)
log

(
t0

t

)

+ (a − r)

t∫
t0

cos(2ηλ(s))

s
ds + r

2

t∫
t0

cos(4ηλ(s))

s
ds.

Thanks again to (4.19) and (4.20), we can apply Lemma 3.3 with n = 2 and n = 4, and 
conclude from (3.6) that the last two integrals are bounded from below (and also from above). 
This completes the proof of (2.17). �
90



M. Ghisi and M. Gobbino Journal of Differential Equations 408 (2024) 64–93
5. From ODEs to PDEs (proof of main results)

Proof of Theorem 2.1. The argument is rather standard. We identify A with the multiplication 
operator by λ(ξ)2 in L2(M, μ), then for every ξ ∈ M we consider the generalized Fourier 
transform ̂u(t, ξ) := [Fu(t)](ξ) of the solution to (1.1)–(1.2), and we recall that for every ξ ∈ M
it is a solution to problem (2.3)–(2.4).

Now we apply statement (1) of Proposition 2.8 with λ := λ(ξ), and we deduce that

û ′(t, ξ)2 + λ(ξ)2û(t, ξ)2 ≤ em(M+8)

{
4û ′(t0, ξ)2 +

(
λ2(ξ) + 2

t2
0

)
û(t0, ξ)2

}(
t0

t

)μ

for every ξ ∈ M and every t ≥ t0. Recalling (2.1) and (2.2), when we integrate with respect to ξ
we obtain exactly (2.7). �
Proof of Theorem 2.4. The argument is analogous to the proof of Theorem 2.1, just with state-
ment (2) of Proposition 2.8 instead of statement (1). �
Proof of Theorem 2.5. For every pair of positive real numbers λ and s we consider the set

Mλ,s := {ξ ∈ M : |λ(ξ) − λ| ≤ s}.
Since A is not identically zero, there exists a positive real number λ0 such that

μ(Mλ0,s) > 0 ∀s > 0,

and we consider the damping coefficient b(t) provided by statement (3) of Proposition 2.8 with 
λ := λ0. For every λ > 0 we consider the solution to (1.3) with this choice of b(t) and initial data 
(4.21). For every fixed t ≥ t0 we know from (2.17) that

u′
λ0

(t)2 + λ2
0uλ0(t)

2 ≥ 
3

(
t0

t

)a−r/2

,

where 
3 is the constant that appears in statement (3) of Proposition 2.8, and depends only on t0, 
a, r , λ0. Since solutions to (1.3)–(4.21) depend continuously on λ, we deduce that there exists 
s > 0 (that depends on t) such that

u′
λ(t)

2 + λ2uλ(t)
2 ≥ 
3

2

(
t0

t

)a−r/2

∀λ ∈ [λ0 − s, λ0 + s],

and in particular the solution to (2.3) with initial data

û(t0, ξ) = 0, û ′(t0, ξ) = 1

satisfies

û ′(t, ξ)2 + λ(ξ)2û(t, ξ)2 ≥ 
3
(

t0
)a−r/2

∀ξ ∈ Mλ0,s .
2 t
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At this point we can set

û1(ξ) :=

⎧⎪⎨⎪⎩
1

μ(Mλ,s)
if ξ ∈Mλ,s,

0 otherwise,

and conclude that the solution to (1.1) with initial data u(t0) = 0 and u′(t0) = F−1û1 satisfies

|u′(t0)|2 + |A1/2u(t0)|2 = 1 and |u′(t)|2 + |A1/2u(t)|2 ≥ 
3

2

(
t0

t

)a−r/2

.

This is enough to conclude that (2.14) holds true for this fixed value of t . �
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