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1 Introduction

Gauge theories represent a unifying theme of modern theoretical physics, being used to
describe both fundamental processes in high-energy particle theories [1–3] and emerging
phenomena in condensed matter physics [3–5]. In the framework of statistical field theory,
one is typically interested in determining the low-energy spectrum of the theory, the phase
structure (in the context of gauge theories with scalar fields the different phases are related
to different realizations of the Higgs mechanism), and the nature of their critical behavior,
or equivalently their continuum limit. A deep understanding of the interplay between
the global and the local symmetries of the theory is of fundamental importance for all
these topics. In this paper we address such a problem in two-dimensional (2D) lattice
gauge theories, to identify the key features that eventually determine the nature of their
continuum limit and critical behavior.

According to the Mermin-Wagner theorem [6, 7], 2D models with global continuous
symmetries do not show magnetized phases characterized by the condensation of an order
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parameter, and therefore they do not undergo phase transitions associated with the spon-
taneous breaking of the global symmetry. However, 2D systems with global nonabelian
symmetries may develop a critical behavior in the zero-temperature limit. For example,
in the O(N) σ model with N ≥ 3 and in the CPN−1 model with N ≥ 2, correlation
functions in the thermodynamic limit are characterized by a length scale ξ that diverges
as T pec/T for T → 0; see, e.g., refs. [3, 8]. Systems with an Abelian O(2) global symme-
try are peculiar in this respect, since they may undergo a finite-temperature topological
Berezinskii-Kosterlitz-Thouless (BKT) transition [9–11], which separates the high-T dis-
ordered phase from the low-temperature nonmagnetized spin-wave phase characterized by
correlation functions that decay algebraically.

In the case of models characterized by both global and gauge symmetries, the asymp-
totic critical behavior is expected to arise from the interplay between the two different
symmetries. For the purpose of understanding which features are relevant and which con-
tinuum limits are effectively realized, several 2D lattice models presenting both global and
gauge continuous symmetries have been investigated [12–15], such as the lattice Abelian-
Higgs model characterized by a global SU(Nf ) (Nf ≥ 2) and a local U(1) symmetry, the
lattice scalar quantum chromodynamics with a global SU(Nf ) and a local SU(Nc) symme-
try, and a lattice SO(Nc) gauge model with a global O(Nf ) and a local SO(Nc) symmetry.
These studies support the following general conjecture: the universal low-temperature crit-
ical behavior, and therefore the continuum limit, of 2D lattice gauge models with scalar
fields is the same as that of 2D σ models defined on symmetric spaces [3, 16], which have
the same global symmetry.

In this paper we extend the above analyses in two different directions. First, we want to
understand whether the above conjecture also holds when the matter fields transform under
a higher (than the fundamental) representation of the nonabelian gauge group. Second,
we consider general quartic potentials, that allow us to obtain different low-temperature
behaviors. For this purpose we consider a 2D lattice gauge model with a matrix scalar field,
which is invariant under O(Nf ) global transformations and SU(Nc) gauge transformations,
and in which the scalar field transforms according to the adjoint representation of the gauge
group. It is worth mentioning that, for Nc = 2, this model has been recently considered as
an emerging gauge theory for high-Tc superconductors [17, 18].

The above issues are investigated by scrutinizing the nature of the low-energy con-
figurations that are relevant in the zero-temperature limit, and by performing numerical
finite-size scaling (FSS) analyses of Monte Carlo (MC) results. We present results for
Nc = 2, 3 and Nf = 3, 4. As we shall see, our results confirm the aforementioned conjec-
ture. We consider first a scalar model which is maximally symmetric in the absence of the
gauge fields, i.e., it is an O(M) σ model with M = Nf (N2

c − 1). In this case the lattice
gauge model with Nf scalar flavors in the adjoint gauge-group representation shows an
asymptotic zero-temperature critical behavior that belongs to the universality class of the
2D RPNf−1 model, defined on the symmetric space O(Nf )/O(Nf − 1). Then, we general-
ize the model introducing a scalar potential that reduces the symmetry of the ungauged
model to O(Nf )⊗O(N2

c − 1). In this case, different behaviors are observed, depending on
the sign of one of the parameters appearing in the quartic potential. For negative values
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of the parameter, the RPNf−1 behavior is still observed. A different behavior is observed
instead for positive values. If Nf ≤ N2

c − 1, no continuum limit can be defined: corre-
lations are always short-ranged, even in the zero-temperature limit. On the other hand,
for Nf > N2

c − 1, long-range correlations are observed. We conjecture that the continuum
limit is associated with a σ model defined in the symmetric space O(Nf )/O(q)⊗O(Nf − q)
with q = N2

c − 1. Numerical results for Nc = 2 and Nf = 4 are in full agreement with this
conjecture. The different behavior for positive and negative values of the quartic potential
parameter is due to the qualitative differences of the minimum-action configurations that
control the zero-temperature limit.

The paper is organized as follows. In section 2 we define the lattice SU(Nc) gauge
model with scalar fields in the adjoint representation. In section 3 we discuss the expected
low-temperature behavior. We determine the minimum-action configurations and derive
the corresponding effective models. In section 4 we present Monte Carlo results that fully
confirm the predictions of section 3. Finally, in section 5 we summarize our results and
draw our conclusions. In appendix A we study the role that gauge fields play in determining
the relevant low-temperature configurations. In appendix B we report some details of the
MC simulations.

2 2D lattice SU(Nc) gauge models with scalar fields in the adjoint
SU(Nc) representation

We consider multiflavor lattice gauge models defined on a square lattice of linear size L
with periodic boundary conditions, which are invariant under local SU(Nc) and global
O(Nf ) transformations. The fundamental variables are real matrices Φaf

x defined on the
sites of the lattice, with a = 1, . . . , N2

c − 1 (color index) and f = 1, . . . , Nf (flavor index).
They transform under the adjoint representation of the SU(Nc) gauge group and under the
fundamental representation of the O(Nf ) group:

Φaf
x →

∑
b

Ṽ ab
x Φbf

x Φaf
x →

∑
b

W fgΦag
x , (2.1)

where Ṽx is a matrix belonging to the adjoint representation of the SU(Nc) gauge group and
W is an orthogonal matrix. Using the Wilson approach [2], we introduce gauge variables
Ux,µ ∈ SU(Nc) associated with each link (x, µ) of the lattice. The model is defined by the
partition function

Z =
∑
{Φ,U}

e−βS , β = 1/T , S = SK(Φ, U) + SV (Φ) + SG(U) , (2.2)

where the action S is written as a sum of three terms: SK is the kinetic term for the scalar
field, SV is the local scalar potential, and SG is the gauge action.

The kinetic term SK is given by

SK(Φ, U) = −J Nf

2
∑
x,µ

Tr Φt
x Ũx,µ Φx+µ̂ , (2.3)

– 3 –



J
H
E
P
0
5
(
2
0
2
1
)
0
1
8

where Ũabx,µ is the adjoint representation of the link variable Ux,µ. It can be written as

Ũab = 2 TrU †T aUT b , a, b = 1, . . . , N2
c − 1 , (2.4)

where T a are the (N2
c − 1) generators of the SU(Nc) algebra in the fundamental represen-

tation, normalized so that TrT aT b = 1
2δ
ab.1 We set the lattice spacing equal to one, so

that all lengths are measured in units of the lattice spacing. Using eq. (2.4) we can rewrite
the kinetic term as

SK = −JNf

∑
x,µ

∑
f

TrU †x,µφfx Ux,µ φ
f
x+µ̂ , (2.5)

where the trace is taken in the fundamental represention of SU(Nc) and

φfij =
∑
a

ΦafT aij , Φaf = 2 TrφfT a . (2.6)

In the following we set J = 1, so that energies are measured in units of J .
The scalar potential term SV can be written as2

SV (Φ) =
∑

x

V (Φx) , V (Φ) = r

2 Tr ΦtΦ + u

4
(
Tr ΦtΦ

)2
+ v

4 Tr ΦtΦΦtΦ , (2.7)

which is the most general quartic potential that is invariant under O(Nf )⊗O(N2
c − 1)

transformations. Note that, for v = 0, the symmetry of the scalar potential enlarges to
O(M) with M = Nf (N2

c − 1). Finally, we define the gauge action

SG(U) = − γ

Nc

∑
x

Re Tr Πx , Πx = Ux,1 Ux+1̂,2 U
†
x+2̂,1 U

†
x,2 , (2.8)

in which the plaquette parameter γ plays the role of inverse gauge coupling.
The action S defined in eq. (2.2) is invariant under the global O(Nf ) transforma-

tions (2.1) and under local SU(Nc) transformations (the scalar field transforms as in
eq. (2.1), while Ux,µ → VxUx,µV

†
x+µ̂; Ṽ corresponds to V in the adjoint representation).

For γ → ∞ the link variables Ux,µ become equal to the identity, modulo gauge transfor-
mations. Thus, in this limit, one recovers a matrix scalar model. For v 6= 0 the global
symmetry group of this scalar model is O(Nf )⊗O(N2

c − 1). For v = 0 the symmetry group
is O(M) with M = Nf (N2

c − 1).
For γ = 0 it is easily seen from the expression of Ũab in eq. (2.4) (or equivalently from

eq. (2.5)) that each matrix Ux,µ can be multiplied by an arbitrary (x, µ)-dependent element
of the gauge group center without changing the action: for γ = 0 the gauge group is in fact
SU(Nc)/ZNc . This is responsible for the vanishing of the average value of the plaquette,
〈Tr Πx〉 = 0, for γ = 0. Finally, note that for Nc = 2 and again γ = 0, because of the
isomorphism SU(2)/Z2 =SO(3), we are dealing with a theory with SO(3) local symmetry.

1Using the completeness relation
∑

a
T aijT

a
kl = 1

2 (δilδjk − N−1
c δijδkl) it is easily shown that Ũab is a

representation of SU(Nc). Close to the identity, if Uij ≈ δij + iεaT aij , one obtains Ũab ≈ δab + iεc(−ifabc),
where fabc are the structure constants of the SU(Nc) group satisfying [T a, T b] = ifabcT c. This proves that
Ũ belongs to the adjoint representation.

2One can easily express the potential in terms of the variable φ defined in eq. (2.6) using Tr ΦtΦ =
2
∑

f
Trφfφf and Tr ΦtΦΦtΦ = 4

∑
fg

(Trφfφg)2.
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In the following we consider a simplified model, which can be formally obtained by
setting r = −2u, and taking the limit u → ∞. The model has fixed-length fields and a
simpler potential:

Tr Φt
xΦx = 2 , V (Φ) = v

4 Tr ΦtΦΦtΦ . (2.9)

In terms of the variables φfij defined in eq. (2.6) we have∑
f

Trφfxφfx = 1 , V (φ) = v
∑
fg

(Trφfφg)2 . (2.10)

Therefore, we consider the action

S = −Nf

2
∑
x,µ

Tr Φt
x Ũx,µ Φx+µ̂ + v

4
∑

x

Tr Φt
xΦxΦt

xΦx −
γ

Nc

∑
x

Re Tr Πx. (2.11)

We expect this simplified model to show all universal features of the models with generic
values of r and u.

The critical properties in the zero-temperature limit can be monitored by the correla-
tion functions of the gauge-invariant bilinear operators

Bfg
x = 1

2
∑
a

Φaf
x Φag

x , Qfgx = Bfg
x −

1
Nf

δfg , (2.12)

which satisfy TrBx = 1 and TrQx = 0, due to the fixed-length constraint. Assuming
translation invariance, holding for finite-size systems with periodic boundary conditions,
we define the two-point correlation function

G(x− y) = 〈TrQxQy〉 , (2.13)

the corresponding susceptibility χ =
∑

xG(x) and second-moment correlation length

ξ2 = 1
4 sin2(π/L)

G̃(0)− G̃(pm)
G̃(pm)

, (2.14)

where G̃(p) =
∑

x e
ip·xG(x) is the Fourier transform of G(x), and pm = (2π/L, 0). In

addition, we consider universal renormalization-group (RG) invariant quantities, such as
the ratio

Rξ ≡ ξ/L , (2.15)

and the Binder parameter

U = 〈µ2
2〉

〈µ2〉2
, µ2 = 1

V 2

∑
x,y

TrQxQy , V = L2 . (2.16)

3 Zero-temperature limit

Let us now discuss the expected critical behavior. We only consider systems with Nf ≥ 3,
in which the global symmetry is nonabelian. In this case, we do not expect a critical
behavior for finite β, but only in the zero-temperature limit. According to the conjecture
reported in the introduction, the critical behavior should be the same as that of the 2D σ

models defined on the symmetric spaces with the same global symmetry, that is the models
defined on [3, 16] O(Nf )/O(p)⊗O(Nf − p) for different values of p.
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3.1 Zero-temperature relevant configurations

As a first step, we identify the relevant configurations for β → ∞, which are controlled
by the action terms SK(Φ, U) and SV (Φ). As in two dimensions there is no critical pure-
gauge dynamics, we expect, and we will verify numerically, that SG(U) does not play a
relevant role. Although we will be interested in systems with Nf ≥ 3, the results for the
zero-temperature configurations also hold for Nf = 2.

Let us first consider the potential term SV (Φ). For β →∞, the relevant configurations
are those that minimize V (Φ) defined in eq. (2.9). To determine the minima, we use the
singular value decomposition that allows us to rewrite the field Φ as

Φaf =
∑
bg

CabW bgF gf , (3.1)

where C ∈ O(N2
c − 1) and F ∈ O(Nf ) are orthogonal matrices, and W is an (N2

c − 1)×Nf

rectangular matrix with zero nondiagonal elements (Wij = 0 for i 6= j). We set Wii = wi
with i = 1, . . . , q, where

q = Min[Nf , N
2
c − 1] . (3.2)

Without loss of generality, we assume that wi ≥ 0. Substitution in V (Φ) gives

V (Φ) = v

4

q∑
i=1

w4
i . (3.3)

If we minimize V (Φ) subject to the constraint TrΦtΦ =
∑q
i=1w

2
i = 2, it is easy to verify

that there are two solutions that depend on the sign of v:

(I) w1 =
√

2, wi = 0 for i ≥ 2 ,

(II) w1 = . . . = wq = (2/q)1/2 .
(3.4)

Solution (I) is the relevant one for v < 0, while solution (II) is the relevant one for v > 0.
It is interesting to observe that this result also holds for the general potential (2.7), as long
as r < 0. For r > 0, the minimum of the potential corresponds to w1 = . . . wq = 0: no
critical behavior is expected in this case.

For solutions of type (I), we can rewrite the field as

Φaf =
√

2sazf , (3.5)

where s and z are unit real vectors of dimension N2
c −1 and Nf , respectively. For solutions

of type (II), we have instead

Φaf =
√

2
q

q∑
k=1

CakF kf . (3.6)

This expression can be simplified, parametrizing Φ in terms of a single orthogonal matrix.
We should distinguish two cases. If Nf ≥ N2

c − 1 = q, let us define an Nf -dimensional
orthogonal matrix Ĉ = C ⊕ INf−q, where Ip is the p-dimensional identity matrix. We can
rewrite eq. (3.6) as

Φaf =
√

2
q

Nf∑
g=1

ĈagF gf . (3.7)
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Since Ĉ is an orthogonal matrix, we can express Φ in terms of a single orthogonal matrix
F ′ = ĈF , i.e., we can set C = I in eq. (3.6). Of course, because of gauge invariance, see
eq. (2.1), F is not uniquely defined and it is, more properly, an element of O(Nf )/SU(Nc)adj
[SU(Nc)adj is the group of block-diagonal matrices Ṽ ⊕ INf−q, where Ṽ belongs to the
adjoint representation of SU(Nc)]. For Nc = 2 the quotient becomes SO(Nf )/SO(3). If
Nf ≤ N2

c − 1, we can repeat the same argument to prove that one can set F = I and
Φaf = Caf , without loss of generality. Note that, for Nc = 2, we can use the gauge
transformations to further simplify the field. Indeed, the matrix Ṽ appearing in eq. (2.1) is
a generic orthogonal matrix. Thus, choosing Ṽ = Ct, we obtain Φaf = δaf : the minimum-
potential field configuration is completely determined.

In the previous calculation we have assumed that the relevant scalar-field configurations
in the large-β limit are only determined by the potential term SV (Φ). In appendix A, we
discuss the role of the kinetic term SK(Φ, U) and show that this quantity is not relevant
for the determination of the low-temperature behavior of the scalar field for v 6= 0. The
kinetic term is only relevant for v = 0. In this case, we can show that, for Nc = 2, the
model with v = 0 behaves as for v < 0 (see appendix A): the relevant configurations
correspond to solution (I) reported above. We do not have exact results for Nc > 2.
However, the numerical results we will present below indicate that also for Nc > 2, the
relevant configurations for v = 0 are those of type (I).

To distinguish the nature of the zero-temperature configurations, one can use the order
parameter Bx defined in eq. (2.12). If the field is parametrized as in eq. (3.1), we have

TrB2 = 1
4

q∑
i=1

w4
i , (3.8)

so that

(I) TrB2 = 1,

(II) TrB2 = 1
q
, (3.9)

for solutions of type (I) and (II), respectively [see eq. (3.4)].
It is interesting to note that in this discussion the gauge group does not play any role:

the only relevant quantity is the dimension of the gauge representation. In particular, one
would obtain exactly the same results for the minimum configuration and the behavior
of the order parameter Q for a gauge theory in which the fields transform under the
fundamental representation of the O(N2

c − 1) group.
In the previous discussion, we focused on the minimum configurations of the scalar

fields. We wish now to discuss the large-β behavior of the gauge fields. If we minimize the
kinetic term (2.3), we obtain

Φx = Ũx,µΦx+µ̂. (3.10)

Repeated applications of this relation along a plaquette give

Φx = Π̃xΦx Π̃x = Ũx,1 Ũx+1̂,2 Ũ
t
x+2̂,1 Ũ

t
x,2. (3.11)

– 7 –



J
H
E
P
0
5
(
2
0
2
1
)
0
1
8

For minimum configurations of type (I), using eq. (3.5), we have

sa =
∑
b

Π̃absb, (3.12)

i.e., Π̃x has necessarily a unit eigenvalue. A detailed analysis shows that Π̃x can be written
as exp(i

∑
a α

aT̃ a), where T̃ a are the generators in the adjoint representation of a smaller
subgroup isomorphic to U(1) ⊕ U(Nc − 2). Thus, for β → ∞ there is still a residual
dynamics of the gauge fields, i.e., we end up with a U(1) ⊕ U(Nc − 2) pure gauge model
with Hamiltonian HG(U). In two dimensions, however, this dynamics is unable to give rise
to a critical behavior.

Let us now consider the case in which the relevant configurations are those of type (II),
see eq. (3.4). In this case, Π̃ has q unit eigenvalues, which further reduce the dynamics of
the gauge fields. In particular, for Nf ≥ N2

c − 1, Π̃x = 1. Note, however, that this still
leaves open the possibility of a nontrivial dynamics for the fields Ux. Indeed, the condition
Π̃x = 1 implies that Πx belongs to the center ZNc of the group, so that, in the limit β →∞,
we end up with a ZNc pure gauge theory. Again, as we are in two dimensions, this gauge
model is not expected to become critical and therefore it should not be relevant for the
critical dynamics of the model.

3.2 Effective models for the low-temperature behavior

Let us now analyze the effective behavior in the zero-temperature limit. We first assume
that v is negative or vanishes, so that the relevant minimum configurations are those of
type (I). Then, we assume that, for β → ∞, the relevant fluctuations are those that
locally satisfy the minimum potential conditions, i.e., that we can parametrize the field as
in eq. (3.5) with site dependent vectors zx and sx. The field (3.5) satisfies the minimum
condition exactly. Fluctuations are possible as we do not assume translation invariance,
so that zx and sx are site dependent. For this type of field configurations the kinetic term
becomes

SK = −JNf

∑
x,µ

jx,µzx · zx+µ̂, jx,µ =
∑
ab

saxŨ
ab
x,µs

b
x+µ̂. (3.13)

It is trivial to see that the coupling jx,µ satisfies |jx,µ| ≤ 1. For large values of β, SK
should be minimized, which requires either zx = zx+µ̂ and jx,µ = 1 or zx = −zx+µ̂ and
jx,µ = −1. As these two possibilities occur with the same probability, the effective model
for the fluctuations is a gauge RPNf−1 model, in which jx,µ is a gauge field that takes the
values ±1 with equal probability.

At a more intuitive level, the correspondence between the critical behavior of the gauge
model and of the RPNf−1 model can be established by noting that the order parameter Q,
or equivalently B, defined in eq. (2.12), can be written as

Bfg
x = zfxz

g
x = P fgx , (3.14)

which shows that Bx is a local projector P fg onto a one-dimensional space. If we assume
that the dynamics in the gauge model is completely determined by the fluctuations of the
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order parameter Bx, we immediately identify the effective scalar model as the RPNf−1

model. Indeed, the standard nearest-neighbor RPN−1 action is obtained by taking the
simplest action for a local projector P fgx :

SRP = −J
∑
x,µ

TrPxPx+µ̂ , P fgx = ϕfxϕ
g
x , (3.15)

where ϕax is a unit vector and P abx = ϕaxϕ
b
x is a local projector onto a one-dimensional

space, i.e., it satisfies Px = P 2
x and TrPx = 1. The zero-temperature critical behavior

of 2D RPN−1 models is still debated; see, e.g., refs. [19–25]. Although 2D RPN−1 and
O(N) σ models have the same perturbative behavior [21], there is numerical evidence
that their nonperturbative behavior differs. This is due to topological Z2 defects that
are present in the RPN−1 model, which are apparently relevant perturbations of the zero-
temperature 2D O(N) fixed point, leading to a different universal asymptotic behavior in
the nonperturbative regime [25].

Let us now assume v > 0. The relevant solutions are those of type (II). In this case,
we must distinguish two cases. If Nf ≤ N2

c − 1 we find

B = 1
2F

tW tWF = 1
Nf

INf , (3.16)

where INf is the Nf -dimensional unit matrix. Correspondingly, the order parameter Q
vanishes in the limit β →∞. Therefore, correlations of Qx, and also the Binder parameter,
depend on the fluctuations of the field Φaf

x around the minimum configurations. We do not
have predictions for their behavior. However, we will show numerically below that these
fluctuations do not show long-range correlations. Indeed, for T → 0, the Binder parameter
takes the high-temperature value appropriate for disordered configurations:

lim
β→0

U = 1 + 4
(Nf − 1)(Nf + 2) . (3.17)

Note that this result is consistent with what we assumed for v < 0: fluctuations around
the minimum configurations are irrelevant and the critical behavior is only due to the
fluctuations of the fields that locally minimize the quartic potential. In the case we are
discussing now, once the fields minimize the quartic potential, the order parameter Q is
fixed — it vanishes — and therefore no long-range fluctuations of Qx are possible.

Let us finally suppose that Nf > N2
c − 1. In this case, the order parameter is non-

trivial and the system orders. To identify the effective model, note that Π̃ = 1, so that
Ũx,µ = ṼxṼx+µ̂. As in the discussion for v < 0, we assume that the fields locally minimize
the potential, so that Φaf

x can be parametrized as in eq. (3.6) with C = I and a site-
dependent orthogonal matrix Fx. Substituting this parametrization in the kinetic term of
the action we obtain

SK = −Nf

q

∑
xµ

Tr (F txV̂xY
q
Nf
V̂ t

x+µ̂Fx+µ̂), (3.18)

where3 Y q
Nf

= Iq ⊕ 0 is an Nf × Nf diagonal matrix in which the first q elements are 1
and the other (Nf − q) elements are 0 and V̂ = Ṽ ⊕ INf−q. Note that action is invariant

3We indicate with A ⊕ B a block-diagonal matrix, where A and B are square matrices of dimension q
and Nf − q, respectively.
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Nc Nf 〈TrB2〉v=0 〈TrB2〉v=1 Uv=1

2 2 0.9998(4) 0.49981(13) 2.000(2)
2 3 0.9999(5) 0.3331(2) 1.4014(7)
2 4 1.0000(4) 0.3332(2) 0.9997(2)
2 5 0.3333(5) 0.9999(2)
2 6 0.3335(4) 1.0000(1)
3 2 1.0006(12) 0.4999(5) 2.012(5)
3 3 0.9999(12) 0.3327(12) 1.401(2)
3 4 1.0002(14) 0.251(2)
4 2 0.99(2) 0.500(3) 1.991(6)
4 3 1.000(2) 0.330(5) 1.407(3)
4 4 0.999(3) 0.236(8)

Table 1. Results for 〈TrB2
x〉 and the Binder parameter U in the large-β limit. We consider a square

lattice of size L = 4, two values of v, v = 0 and v = 1, and γ = 0. The values of Uv=1 that differ
from 1 are consistent with eq. (3.17), which predicts U = 2 and 7/5 for Nf = 2 and 3, respectively.

under SU(Nc)adj⊗O(Nf − q) transformations defined by F → WFF , V̂ → WV V̂ , where
WF = W1 ⊕ W2, WV = W1 ⊕ I, with W1 ∈ SU(Nc)adj and W2 ∈ O(Nf − q). As we
already mentioned in section 3.1, we expect the same critical behavior if we consider O(q)
gauge fields, leading to an effective enlargement of the symmetry to O(q)⊗O(Nf − q). The
resulting effective model is therefore a lattice σ model defined on the symmetric space
O(Nf )/O(q)⊗O(Nf − q) [3, 16]. For Nf = q + 1 the symmetric space is isomorphic to the
sphere in Nf dimensions, and thus the effective model is simply the O(Nf )-invariant vector
σ model with Hamiltonian

SO(N) = −J
∑
x,µ

ϕx · ϕx+µ̂ , ϕx · ϕx = 1 . (3.19)

3.3 Numerical results

To verify the above-reported predictions, we have performed MC simulations (see ap-
pendix B for details) for large values of β, γ = 0 (the gauge action is not expected to play
an important role), and relatively small systems. The extrapolations of the results provide
information on the nature of the relevant low-temperature configurations. In table 1 we
report the large-β extrapolations of 〈TrB2

x〉 for v = 0 and v = 1. The results should
be compared with the prediction (3.9). For v = 0, the average is always consistent with
1, confirming that the relevant configurations correspond to solution (I). Apparently, for
any Nc, for v = 0 the model behaves as for v < 0, a result that we have only proved for
Nc = 2. For v = 1, results are instead consistent with 1/q, confirming that the relevant
configurations are those of type (II). Note that this result also applies when Nf = 2. In
this case, the flavor symmetry is abelian and therefore a BKT finite-temperature transition
is possible.
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We also computed the Binder parameter U . For v = 0, it always converges to 1 as
β →∞ (data not shown), indicating that long-range correlations set in the limit. Results
for v = 1 are reported in table 1. For Nf ≤ N2

c −1 (all results we report for Nc = 3, 4 satisfy
this condition) we observe that U is always approximately equal to the high-temperature
value (3.17), U = 2 and 7/5 for Nf = 2 and 3, respectively. This indicates the absence
of long-range correlations. In the opposite case Nf > N2

c − 1, we find instead U = 1,
consistent with the presence of critical fluctuations.

3.4 Summary

To conclude the section, let us summarize the expected low-temperature behavior of the
model for Nf ≥ 3:

(i) For v ≤ 0, the model has a zero-temperature critical (continuum) limit independent
of Nc, analogous to that of the RPNf−1 σ model.

(ii) For v > 0 and Nf ≤ N2
c − 1, Q correlations are always short-ranged, even in the limit

T → 0.

(iii) For v > 0 and Nf > N2
c − 1 the model has a zero-temperature critical (continuum)

limit that depends both on Nf and Nc. It is the same as that of the σ model
defined on the symmetric space [3, 16] O(Nf )/O(q)⊗O(Nf − q): correlations of the
order parameter Q have the same critical behavior, i.e., continuum limit, in the two
models. For Nf = N2

c , we obtain the same behavior as that of the O(Nf ) vector
σ model.

Note that these effective behaviors have been obtained by making very simple assump-
tions. Essentially, we have assumed that the relevant configurations correspond to scalar
fields {Φmin} that locally, —i.e., at each site — minimize the potential SV (Φ). Gauge fields
are only relevant for the identification of the dynamic degrees of freedom and for restricting
the focus on gauge-invariant observables. As a consequence, we expect that the model pre-
sented here has the same continuum limits of the model with fields that transform under
the fundamental representation of the O(N2

c − 1) gauge group.

4 Numerical results

In this section we present some numerical results that confirm the predictions of section 3.
Results for v = 0 and Nc = 2 have been already discussed in refs. [14] (Nf = 3, 4) and [15]
(where Nf = 2, so that a finite-temperature BKT transition was observed). Indeed, for
Nc = 2 the model can be rewritten as an SO(3) gauge theory with fields in the fundamental
representation of the gauge group. The results presented in ref. [14] are in full agreement
with the analysis presented here. In the following, we will present results for Nc = 3, v = 0
and for Nc = 2, 3, v > 0. They fully confirm the conclusions of section 3.
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Figure 1. Estimates of ξ versus β for Nc = 3, Nf = 3, v = 0, and γ = 0. Results for several values
of L up to 256.

4.1 Finite-size scaling analysis

To identify the nature of the zero-temperature critical behavior, we perform a FSS analysis
of the MC data. We follow the strategy already employed in refs. [12–15]. In the FSS
limit L → ∞ at L/ξ fixed, the RG invariant quantities Rξ and U , defined in eqs. (2.15)
and (2.16), respectively, are expected to scale as

U(β, L) ≈ FU(Rξ) , (4.1)

where FU(x) is a universal function that completely characterizes the universality class of
the transition. Because of the universality of relation (4.1), one may use plots of U versus
Rξ to identify the models that have the same universal behavior. If the estimates of U
for two different systems approach the same curve as L→∞ when plotted versus Rξ, the
transitions in the two models belong to the same universality class. We will apply this
approach below to several different models.

4.2 Universal RPNf −1 behavior for v = 0

Let us start by considering the model for v = 0. The model should have an asymptotic
zero-temperature behavior analogous to that of the RPNf−1 model. In ref. [14], this was
verified for Nc = 2. We consider here Nc = 3 and Nf = 3. Numerical results for γ = 0 are
reported in figures 1 and 2. The correlation length ξ rapidly increases with increasing β,
see figure 1, consistently with an asymptotic exponential behavior ξ ∼ exp(cβ). The plot
of U versus Rξ reported in figure 2 shows that the data approach the universal curve of
RP2 model with increasing L, as expected. Scaling corrections are visible in figure 2, but
they rapidly decay to zero (apparently as 1/L, in the range of values of L we consider).
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L=160

L=320
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2

Figure 2. Plot of U versus Rξ for Nc = 3, Nf = 3, v = 0, and γ = 0. Data are compared with
analogous data on large lattices computed in the RP2 model [25].
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L=160

L=320
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RP
2

Figure 3. Plot of U versus Rξ for Nc = 3, Nf = 3, v = 0, and γ = 1. Data are compared with
analogous data on large lattices computed in the RP2 model [25].

As we mentioned in section 3, the inclusion of the plaquette action should not change the
asymptotic behavior. To verify this point, we performed simulations with γ = 1. Results
are shown in figure 3. Also in this case, the estimates of U versus Rξ converge towards the
RP2 universal curve.
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Figure 4. Plot of ξ versus β for Nc = 3, Nf = 3, γ = 0, and v = 1.

4.3 Behavior for v > 0 and Nf ≤ N2
c − 1

As discussed in section 3, for v > 0 and Nf ≤ N2
c − 1, we do not expect the correlations

of the order parameter Q to become critical for β →∞. Therefore, the correlation length
should be bounded in the limit. To verify this prediction, we performed simulations for
Nf = 3, Nc = 3, γ = 0, and v = 1. In figure 4 we report the correlation length as a function
of β. It does not increase with β and apparently ξ ≈ 1.5 in the asymptotic regime. The
data confirm that the modes associated with the scalar fields are disordered. This is also
confirmed by the data of U , which is close to the high-temperature value 7/5, see eq. (3.17).

4.4 Behavior for v > 0 and Nf > N2
c − 1

We finally consider the model for v > 0 and Nf > N2
c − 1. The analysis reported in

section 3 predicts that the asymptotic zero-temperature behavior is the same as that of the
σ model defined on the symmetric space O(Nf )/O(q)⊗O(Nf − q) with q = N2

c − 1. For
Nf = N2

c this is equivalent to the standard O(Nf ) σ model.
To verify these predictions, we performed simulations for Nf = 4, Nc = 2, v = 10, and

γ = 0. In figure 5 we show the correlation length ξ versus β. It increases with increasing
β, exponentially in the region in which ξ � L. To identify the universality class, we again
consider U versus Rξ. The data are reported in figure 6. They appear to approach the
corresponding ones computed in the O(4) vector σ-model. Note that in the O(4) model one
should consider the same operator as in the gauge theory. Thus, the correlation length and
the Binder parameter were computed considering the correlation functions of the spin-2
operator ϕfxϕgx − δfg/Nf with periodic boundary conditions.
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Figure 5. Correlation length ξ versus β for Nc = 2, Nf = 4, γ = 0, and v = 10.
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Figure 6. Plot of U versus Rξ for Nc = 2, Nf = 4, γ = 0, and v = 10. Data are compared with
analogous results for the spin-2 operator computed in the lattice O(4) σ model with action (3.19).
For comparison, we also report data for the 2D RP3 model [25].
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4.5 Crossover from the v = 0 to large-v regimes

In section 3 we have shown that, at T = 0, the relevant configurations depend on the sign
of v, so that v = 0 is a singular point for the large-scale behavior. The presence of this
singularity at β = ∞ may, in principle, give rise to singularities and discontinuities also
at finite β. For instance, there might be a first-order transition line β = fFO(v) in the
(β, v) plane that starts at β = ∞, v = 0 and ends at a finite value of β, with a critical
endpoint where an Ising critical behavior is realized. Alternatively, it is possible that, for
finite β only crossover phenomena occur without transitions. We do not have performed a
thorough analysis of this issue. However, in the few cases we have considered and that we
discuss below, we have no evidence of finite-β transition lines but only of crossover effects.

In the simulations at fixed v > 0 we have observed that the specific heat, defined as
C = 1

V (〈S2〉−〈S〉2), has a strongly nonmonotonic behavior as β increases, with a maximum
at a finite value βmax of the inverse temperature. Two examples, corresponding to Nc = 2,
Nf = 4 andNc = Nf = 3, are reported in figure 7. At a first-order transition, the maximum
of the specific heat should increase with the lattice size, as L2 in two dimensions. In both
cases shown in figure 7, this does not occur: the maximum of C approaches a constant as L
increases, indicating that only a crossover with no infinite-volume singularity occurs. The
crossover is obviously present in all quantities. In figure 5 we have already reported the
correlation length for Nc = Nf = 3. It varies quite abruptly for β ≈ βmax. The crossover
is more evident in the behavior of ξ for Nc = 2, Nf = 4, see figure 8. At β ≈ βmax ≈ 3.8,
the behavior of ξ changes abruptly, providing a clear indication of a sudden change of the
nature of the relevant configurations. The presence of this crossover region for v . 1, makes
it difficult to determine the asymptotic behavior of the model for these values of v. This
is the reason why, in section 4.4, we considered the model at v = 10, a value of v that is
very far from the crossover region.

5 Conclusions

We have considered a class of 2D lattice non-Abelian gauge models with Nf scalar fields
in the adjoint representation. They are defined by the action (2.2) and are invariant under
global O(Nf ) and local SU(Nc) transformations. For Nf ≥ 3, the global symmetry is
nonabelian and thus, a critical (continuum) limit is only possible in the limit T → 0.
We have therefore investigated the zero-temperature behavior, to understand whether a
continuum limit exists and, if it does, to identify the corresponding 2D quantum field
theory. This work extend previous results [12–15], discussing the role played by the gauge
representations and by the quartic scalar potential. For this purpose, we have identified
the low-energy configurations, that are relevant in the zero-temperature limit, and we have
derived effective models that are expected to describe the large-scale behavior of the system.
The predictions have then been checked numerically. We have performed MC simulations
and determined the universal features of the low-temperature behavior using FSS methods.

We find that the continuum limit depends on the sign of the parameter v appearing
in the scalar potential, see eq. (2.7). For v ≤ 0 the lattice gauge model has the same
continuum limit as the RPNf−1 model, for any value of Nc. For positive v instead, the
critical behavior depends on both Nc and Nf . For Nf ≤ N2

c − 1, there is no continuum
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Figure 7. Plot of the specific heat C versus β for Nc = 2, Nf = 4 (top) and Nc = 3, Nf = 3
(bottom). In both cases γ = 0 and v = 1.

limit: correlation functions are always short ranged. On the other hand, for Nf > N2
c − 1

there are long-range correlations for T → 0. The corresponding continuum limit is the
same as that of the σ model defined on the symmetric space O(Nf )/O(q)⊗O(Nf − q) with
q = N2

c −1. In particular, for Nf = N2
c , the gauge model is equivalent to the O(Nf ) vector

σ model. Numerical data support these predictions. In particular, a FSS analysis of the
MC data for Nf = 4 and Nc = 2 at v = 10 clearly supports the prediction that the critical
behavior belongs to the universality class of the O(4) σ model.
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Figure 8. Plot of ξ versus β for Nc = 2, Nf = 4, γ = 0, and v = 1.

The results of this work provide additional support to the conjecture that the critical
behavior of any 2D lattice gauge model, defined using the Wilson approach [2], belongs to
the universality class of a field theory associated with one of the symmetric spaces that
have the same global symmetry.

We finally mention that it is worth extending this study to analogous three-dimensional
systems, whose phase diagram is expected to be more complicated, presenting various
phases associated with the different Higgs mechanisms that can be realized [17, 18]. The
nature of transition lines separating the various phases are expected to be crucially related
to the interplay between global and local gauge symmetries [33, 34].

A Role of the gauge fields for the minima

In section 3 we showed that, in the absence of gauge fields, there are two minima whose
relevance depends on the sign of the coupling v. We wish now to include the effects of the
gauge fields. As suggested in refs. [17, 18], in the absence of the plaquette term, i.e., for
γ = 0, we can integrate out the gauge fields, defining a local effective potential:

e−βṼ (Dx,µ) =
∫
dŨ exp[Tr (ŨDx,µ)] Dab

x,µ = βNf

2
∑
f

Φaf
x+µ̂Φbf

x . (A.1)

If we assume translation invariance (and therefore drop the link dependence) and parame-
trize the field Φaf as in eq. (3.1), the matrix D is given by

D = βNf

2 CWW tCt. (A.2)
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We are now interested in computing the integral in the limit β → ∞ with the purpose of
understanding whether the effective term Ṽ changes the conclusions obtained considering
only V (Φ). Note that, for Nc = 2, Ũ is a generic orthogonal matrix and therefore we can
easily check that the effective potential is independent of C (it is enough to perform the
change of variable Ũ ′ = CtUC). Such an independence is not a priori expected for Nc > 2
and thus the integral might depend both on C and WW t.

The integral reported here has been the object of several investigations, but there is
at present no exact general result, except for Nc = 2, where one can take advantage of
the results for the O(N) link integrals [26, 27] (some results for specific matrices D are
reported in refs. [28, 29]). For Nc = 2 the result only depends on the eigenvalues of the
matrix WW t. If Nf ≥ 3, these eigenvalues coincide with w2

1, w2
2 and w2

3, while for Nf = 2
one should consider w2

1, w2
2 and 0. The results reported in ref. [26] allow us to obtain

Ṽ = −Nf

2 (w2
1 +w2

2 +w2
3) + 3

2β ln βNf

2 + 1
2β ln

[
(w2

1 + w2
2)(w2

1 + w2
3)(w2

2 + w2
3)
]

+O(β−2),
(A.3)

provided that at least two eigenvalues are not zero. If only one eigenvalue is different from
zero, one obtains [26]

Ṽ = −Nf

2 w2
1 + 1

β
ln βNf

2 + 1
β

lnw2
1 +O(β−2). (A.4)

Since w2
1 + w2

2 + w2
3 = 2 as a consequence of the constraint TrΦtΦ = 2, the leading

contribution for β →∞ is independent of the field configuration. Thus, the gauge fields do
not change the conclusions on the relevant minimum configurations for v > 0 and v < 0.
The calculation, however, allows us to determine the expected behavior for v = 0. Indeed,
for the solution of type (I) (see eq. (3.4)), the subleading correction in Ṽ is ln β/β, which
is smaller than the subleading correction, 3

2 ln β/β, that appears in Ṽ for configurations
of type (II), for which w2

1 = w2
2 = w2

3 = 2/3 (this is the relevant case for Nf ≥ 3) or
w2

1 = w2
2 = 1, w2

3 = 0 (this is the relevant case for Nf = 2). This implies that, for v = 0,
the asymptotic behavior is the same as for v < 0, i.e., in the RPNf universality class.

Let us now consider the case Nc > 2. In this case there is no general formula for
the integral. We will therefore assume that the relevant minima are those that we have
determined in section 3 and, for each of them, we will determine the asymptotic behavior
of the one-link integral.

We start by considering (WW t)ab = 2δa1δb1, i.e. type (I) configurations. If we set
va = Ca1 (since C is orthogonal, va is a unit vector), we have

Dab = βNfv
avb (A.5)

The integral can then be written as

e−βṼ =
∫
dU exp[Tr(U †MUM)] M = (2βNf )1/2∑

a

vaT
a . (A.6)

The matrix M is hermitean and traceless. If λa are its eigenvalues, we have∑
a

λ2
a = TrM2 = βNf

∑
a

v2
a = βNf . (A.7)
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Integral (A.6) has been computed in ref. [29]. The leading term can be rewritten in terms
of the determinant of the matrix Λ, whose elements are Λab = eλaλb :

Ṽ = − ln det Λ
β

+O(ln β/β) . (A.8)

Now, det Λ is a sum of terms of the form

exp[λ1λi1 + λ2λi2 + . . .+ λNλiN ], (A.9)

where (i1, . . . , iN ) is a permutation of (1, . . . N = N2
c −1). As a consequence of the Schwartz

inequality
λ1λi1 + λ2λi2 + . . .+ λNλiN ≤

∑
a

λ2
a = βNf , (A.10)

the equality being obtained for i1 = 1, i2 = 2, . . . iN = N . This implies that det Λ ∼ eβNf
for β →∞. We thus obtain for Nc > 2

Ṽ = −Nf +O(ln β/β). (A.11)

Let us now consider the configurations of type (II). We have not been able to obtain
results for Nf < N2

c − 1, in which WW t is a diagonal matrix that has both zero and
unit eigenvalues. The case Nf ≥ N2

c − 1, is instead easily discussed. The matrix WW t is
proportional to 1

q I and thus we obtain

e−βṼ =
∫
dŨ exp

(
βNf

q
Tr Ũ

)
= e−βNf/q

∫
dU exp

(
βNf

q
|Tr U |2

)
. (A.12)

The large β behavior of the integral is obtained by expanding around U = I (a few terms of
the expansion are obtained in ref. [28]). The leading term for the integral is exp(βNfN

2
c /q),

which gives again eq. (A.11). As it happens for Nc = 2, the gauge contribution to the
potential is the same for both types of minimum configurations.

To conclude the appendix, let us note that the gauge effective potential Ṽ would play
a different role if one considers a different approach to T = 0. Indeed, let us define (again
for γ = 0)

Z =
∑
{Φ,U}

exp[−βSK(U) + f(β)SV (Φ)] (A.13)

where f(β) is a function of β. In our work we have considered f(β) = β, but one can
also consider functions with a different large-β behavior. One possibility consists in taking
f(β) finite for β → 0. In this case the potential would play no role and the dominant term
would be the gauge potential Ṽ . Therefore, the critical behavior would be independent of
v, the same as that we observe for v = 0. A nontrivial behavior would only be obtained
by selecting a function f(β) that behaves as ln β as β → ∞. In this case both the gauge
contribution and the scalar potential would play a role. One would expect a critical vc,
such that different phases are realized for v > vc and v < vc.
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B Monte Carlo simulations: technical details

We performed MC simulations on square lattices with periodic boundary conditions. The
gauge link variables U were updated using a standard Metropolis algorithm [30]. The
new link variable was chosen close to the old one, in order to guarantee an acceptance
rate of approximately 30%. The scalar fields were updated using two different Metropolis
algorithms, again tuning the proposal to obtain an acceptance rate of 30%. The first update
performs a rotation in flavor space

φf 7→ (Oφ)f , O ∈ SO(Nf ), (B.1)

while the second one rotates the colors of a single flavor

φf 7→ (HφH†)f , H ∈ SU(Nc). (B.2)

In the simulations with v = 0, since the action is linear in the scalar fields, we also con-
sidered microcanonical steps [31] implemented à la Cabibbo-Marinari [32] (the relative
frequency of Metropolis and microcanonical updates was chosen equal to 3/7). Micro-
canonical updates could not be used for v 6= 0, since the action is not linear in the scalar
fields. Typical statistics of our runs, for a given value of the parameters and of the size of
the lattice, were of order of 107-108 lattice sweeps (in a sweep we update all lattice variables
once), with the largest number associated to runs performed without the microcanonical
update. Errors were estimated using a standard blocking and jackknife procedure, with a
maximum blocking size of the order of 105 updates.
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