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Abstract
Inversion of time-lapse electrical resistivity tomography is an extension of the con-

ventional electrical resistivity tomography inversion that aims to reconstruct resistivity

variations in time. This method is widely used in monitoring subsurface processes such

as groundwater evolution. The inverse problem is usually solved through deterministic

algorithms, which usually guarantee a fast solution convergence. However, the electri-

cal resistivity tomography inverse problem is ill-posed and non-linear, and it could exist

more than one resistivity model that explains the observed data. This paper explores a

Bayesian approach based on data assimilation, the ensemble smoother multiple data

assimilation. In particular, we apply an adaptive approach in which the inflation coeffi-

cient is chosen based on the error function, that is the ensemble smoother multiple data

assimilation restricted step. Our inversion approach aims to invert the data acquired at

two different times simultaneously, estimating the resistivity model and its variation. In

addition, the Bayesian approach allows for the assessment of the posterior probability

density function needed for quantifying the uncertainties associated with the results. To

test the method, we first apply the algorithm to synthetic data generated from realis-

tic resistivity models; then, we invert field data from the Pillemark landfill monitoring

station (Samsø, Denmark). Inversion results show that the ensemble smoother multiple

data assimilation restricted step can correctly detect the resistivity variation both in the

synthetic and in the field case, with an affordable computational burden. In addition,

assessing the uncertainties allows us to interpret the reconstructed resistivity model

correctly. This paper demonstrates the potential of the data assimilation approach in

Bayesian time-lapse electrical resistivity tomography inversion.
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INTRODUCTION

Electrical resistivity tomography (ERT) is a well-known

active geophysical method widely practiced in near-surface

geophysics, such as in groundwater exploration, landfill char-

acterization and slope stability investigations (e.g. Chambers

et al., 2009; Crawford et al., 2018; Hojat et al., 2019; White-

ley et al., 2017). This method is based on injecting an electric

current into the ground through pairs of electrodes; the elec-

tric potential difference is recorded between other pairs of

electrodes placed on the surface. The subsurface resistivity

image is reconstructed by knowing the injected current level,

the acquisition geometry and applying inversion algorithms.

Nowadays, the development of multielectrode instruments

and user-friendly inversion software has increased the feasi-

bility of the method allowing its usage in different contexts

(Batista-Rodríguez & Pérez-Flores, 2021; Gaël et al., 2017;

Rubio-Melendi et al., 2018).

ERT is also increasingly becoming a common technique

for monitoring purposes, for example in preventing water pol-

lution from landfills (Audebert et al., 2014; Clément et al.,

2011), assessing the levees’ integrity (Arosio et al., 2017;

Tresoldi et al., 2019) and inspecting the permafrost condi-

tions (Hilbich et al., 2011). For Example, in recent years,

autonomous systems for long-term permanent monitoring

have been developed (Gunn et al., 2018; Tresoldi et al., 2019)

for continuously tracking the subsurface resistivity variations.

A simple approach to obtaining information about subsur-

face resistivity evolution is acquiring data at different time

steps. Then, inverting each time step independently and com-

puting the difference between estimated resistivity models.

However, this approach can only prevent artefacts from the

result by employing heavy regularization techniques (Hayley

et al., 2011). For this reason, more sophisticated time-lapse

ERT (TL-ERT) inversion algorithms exist to mitigate these

issues. Examples of TL algorithms are as follows:

∙ the cascade inversion that exploits a reference model as a

starting point for inverting a second dataset (Miller et al.,

2008);

∙ the difference inversion in which the difference between

background and subsequent data is inverted (Labreque &

Yang, 2001);

∙ inversion employing special mathematical norms such as

𝐿𝑝 norm (Kim et al., 2013, Fiandaca et al., 2015).

All the mentioned deterministic algorithms are based

on the iterative linearization of the error function around

a current solution. The main advantage of this approach

is that it requires a few forward calculations to converge

towards the solution, resulting in a low computational bur-

den. However, the result is a single model which usually

explains the observed data without any uncertainty assess-

ment. Theoretically, the uncertainties, in terms of posterior

model covariance matrix, can be estimated from deterministic

algorithms through the Hessian matrix, which defines the cur-

vature of the error function in the vicinity of the current model

(Liu et al., 2021). Specifically, Tarantola (2005) demonstrated

that the posterior model covariance matrix can be approxi-

mated by the inverse of the linearized Hessian matrix. This

strategy has been already followed by Auken et al. (2005)

to retrieve at list a qualitative estimation of the uncertainties

associated with the solution of 1D ERT inversion under the

assumption of mildly non-linear problem.

However, as the topography of the error function obtained

provides only a local information about the curvature of the

error function, this approximation can hinder an accurate

assessment of the model uncertainty (Fernández-Martínez

et al., 2013).

In addition, the non-linearity and the ill-posedness can lead

to an error function characterized by local minima and/or

with a wide equivalence region of the solution. Consequently,

depending on the starting model, deterministic algorithms

can remain stuck in a local minimum or a minimum elon-

gated valley, resulting in a misleading reconstructed resistivity

model.

To overcome these issues, an alternative approach is to set

the inverse problem in a probabilistic framework in which the

posterior probability density function (pdf) associated with

the model space is estimated. In this setting, the Markov

Chain Monte Carlo algorithms (Mosegaard & Tarantola,

1995; Tarantola, 2005) approximate the posterior pdf through

an iterative sampling but with an unfeasible computational

time for large mode

l space dimensions. To reduce the computational work-

load maintaining the Bayesian framework, we should reduce

the dimension of parameter space (e.g. Aleardi et al.,

2021a; Grana et al., 2019; Vinciguerra et al., 2021). In

this work, we follow a different strategy that employs an

ensemble-based data-assimilation method, which guarantees

uncertainty assessment with a moderate number of forward

calculations (Aleardi et al., 2021b). The data-assimilation

approach was initially proposed in the context of ocean

dynamics (Evensen, 1994) and, more recently, in petroleum

engineering for reservoir characterization (Chen & Oliver,

2013; Le et al., 2016). In the ensemble-based method, the

ensemble kalman filter and the ensemble smoother (ES) are

the most popular (Emerick & Reynolds, 2013). The first

method sequentially assimilates data in time, whereas the ES

assimilates all the data available to update the ensemble glob-

ally. It can be demonstrated that a single data assimilation step

of the ES algorithm is equivalent to a single Gauss–Newton

one with sensitivity assessed from the ensemble (Reynolds

et al., 2006). In 2012, Emerick and Reynolds introduced the

multiple data assimilation methods (MDA), which were inte-

grated with ES to give the ES-MDA. In this way, the MDAs’
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STOCHASTIC INVERSION 3

steps correspond to sequential small Gauss–Newton correc-

tions, which ease the convergence, especially in the case of

the non-linear problem. In this paper, we apply an adaptive

ES-MDA algorithm, the ES-MDA restricted step (ES-MDA-

RS, Le et al., 2016), that adapts the inflation coefficient across

the iterations. In particular, this approach allows comput-

ing the inflation coefficient according to the error function

automatically.

The aim is to limit the effect of overshooting issues, which

occur when the data predicted from the initial guess are far

from the observed one, thus resulting in a large data mis-

match. The final model will present unrealistic high and/or

low value of some model parameters (Gao & Reynolds, 2006;

Li et al., 2003). In that context, we implement the ES-MDA-

RS algorithm for the TL-ERT simultaneous inversion. We

invert two datasets together for simultaneous inversion to

assess the reference model and its resistivity variation. In this

work, we employ finite elements forward modelling extracted

from the BERT software package (Gunther & Rucker, 2012)

to calculate the predicted data from the subsurface resis-

tivity. We first apply the ES-MDA-RS to invert apparent

resistivity data simulated by building two synthetic mod-

els to test the approach. Then, we inverted field data from

the Pillemark landfill monitoring station (Samsø, Denmark)

to identify near-surface resistivity variation and the associ-

ated uncertainties. Finally, we compare the result of the field

inversion with the deterministic TL algorithm.

METHODS

The Bayesian inversion aims to estimate the posterior prob-

ability density function (pdf) of the model knowing the data

and some prior knowledge of the model parameters. In this

work, we define the model as the subsurface resistivity 𝛒,

whereas the data as the observed apparent resistivity 𝛒a.
Assuming that we know the prior distribution of the model

parameters 𝑝(𝛒) and the data-likelihood distribution 𝑝(𝛒a|𝛒),
the data-assimilation problem can be formulated through the

Bayes theorem (Evensen et al., 2022):

𝑝
(
𝛒|𝛒a) = 𝑝 (𝛒) 𝑝(𝛒a|𝛒)

𝑝
(
𝛒a
) , (1)

where 𝑝(𝛒a) is the marginal pdf of the observed data that is

usually a normalizing coefficient that makes the integral of

the posterior pdf equal to 1 over the entire model space. In

this context, the 𝑝(𝛒|𝛒a) is the solution of the data-assimilation

problem. The Bayes theorem shows that the pdf is equal to the

product between prior and likelihood distribution. However,

for non-linear forward operators, the target 𝑝(𝛒|𝛒a) can be only

numerically evaluated, for example one method that can be

used is the data-assimilation technique.

We implement the ensemble smoother (ES) multiple data

assimilation (MDA) with restricted step (ES-MDA-RS, Le

et al., 2016) an adaptive version of the ES-MDA algorithm

(Emerick et al., 2013, Aleardi et al., 2021; Grana et al., 2019)

that we modified for time-lapse (TL) purposes. Under the

assumptions of Gaussian distributed model parameters and

data noise, the algorithm starts with an ensemble of mod-

els drawn from the prior distribution in which we impose

spatial continuity through a Gaussian variogram. The ES-

MDA-RS performs iterative Bayesian updating of the current

ensemble of models through multiple assimilation steps (iter-

ations). At the end of the entire procedure, the posterior pdf

can be numerically estimated from the ensemble of mod-

els at the last iteration. The updating equation is defined as

follows:

𝛒𝑘+1
𝑖

= 𝛒𝑘
𝑖
+𝐊

(
𝛒a + 𝐫𝑘

𝑖
− 𝑓 (𝛒𝑘

𝑖
)
)
, (2)

with 𝑖 = 1,… , 𝑁e with 𝑁e the number of the ensemble

members, k is the index of the assimilation step, 𝛒𝑘+1
𝑖

is the

updated resistivity model, 𝛒𝑘
𝑖

is the resistivity model at the

previous iteration, 𝛒a𝑖 is the observed apparent resistivity data

vector perturbated through a random vector r𝑘
𝑖

drawn from√
𝛼𝑘𝐂𝜌a𝑁(0, 𝐼), where 𝐂𝜌a

is the data covariance, 𝛼 is the

inflation coefficient, and f is the forward operator. The 𝐊
represents the Kalman gain filter which is expressed by

𝐊 = 𝐂𝜌𝜌a

(
𝐂𝜌a𝜌a

+ 𝛼𝐂𝜌a

)−1
, (3)

where 𝐂𝜌𝜌a
is the cross-covariance matrix between models

and predicted data, 𝐂𝜌a𝜌a
is the covariance matrix of the data

predicted by the ensemble of models, and 𝐂𝜌a
denotes the

covariance of the observed data. Different types of noises and

errors can affect the dataset, and their correct characterization

can improve the imaging of the subsurface (Tso et al., 2017).

For instance, Ramirez et al. (2005) stated that the multi elec-

trodes system can increase the probability that the data errors

are correlated. Moreover, the forward modelling error can

introduce uncorrelated and correlated errors that should be

taken into the account. However, the adopted inversion algo-

rithm assumes Gaussian distribution of the errors (Evensen

et al., 2022), and for simplicity, we assume uncorrelated noise

and negligible errors generated by the forward modelling.

In this work, we apply the adaptive ES-MDA-RS (Le et al.,

2016) in which 𝛼 factor varies across the iterations. In par-

ticular, it has been suggested (Oliver et al., 2008, Emerick

& Reynolds, 2013; Le et al., 2016; Emerick, 2019) that set-

ting a large initial inflation factor and decreasing it during the

assimilation steps can provide better results. The meaning is

that at the first iterations, the difference between observed and

predicted data is large, and it could result in an overcorrec-

tion of the current model. Thus, we can consider the inflation
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4 VINCIGUERRA et al.

coefficient as a sort of damping factor which reduces the

model updating.

Defining the average (𝐸M) and normalized error function

(𝐸̄M) as (Le et al., 2016)

𝐸̄M = 1
𝑁e

∑𝑁e

𝑖=1
𝐸M,𝑖, (4)

𝐸M = 1
2𝑀

∑𝑁e

𝑖=1

(
𝑓
(
𝛒𝑖
)
− 𝛒𝑎

)𝑇𝐂−1
𝜌𝑎

(
𝑓
(
𝛒𝑖
)
− 𝛒𝑎

)
,

(5)

where M is the size of data vector, 𝑁e the dimension of the

ensemble, 𝑖 is the index of the ith ensemble member, and the

inflation factor is set as 𝛼𝑘 = 0.25×𝐸̄M (Le et al., 2016).

The algorithm steps of ES-MDA-RS are the following:

1. Generate the ensembles of prior realizations and for each

kth assimilation step.

2. Compute the predicted data for each ensemble member

through the forward operator 𝑓 .

3. Calculate the average normalized error function 𝐸̄M,

Equations (4) and (5).

4. Perturb the observed data through the relation 𝛒̃a = 𝛒a +√
𝛼𝑘𝐂𝜌𝑎

1
2 𝐧, with 𝐧 = 𝑁(0, 𝐈) and 𝛼𝑘 = 0.25×𝐸̄M.

5. Update the ensemble with Equations (2) and (3).

∙ If the average updating is higher than two times the prior

standard deviation, the 𝛼𝑘 is doubled and steps 3 and 4

are repeated.

6. Calculate the sum of the inverse of the inflation coefficient

up to the current iteration:

𝛾 =
∑𝑁

𝑘 = 1
1
𝛼𝑘

, (6)

∙ if 𝛾 = 1.0 the algorithm stops;

∙ if 𝛾< 1.0 the algorithm continues;

∙ if 𝛾 > 1.0 the algorithm repeats steps 3–4 and adjusts 𝛼𝑘
to fulfil the condition 𝛾 = 1.

In the common ES-MDA algorithm, 𝛼𝑘 is selected such that∑Nit
𝑘 = 1

1
𝛼𝑘

= 1 and for simplicity, it is kept constant at each

iteration (Aleardi et al., 2021). Due to the analogy between ES

and the Gauss–Newton approach (Reynolds et al., 2006), the

role of the inflation coefficient can be seen as a regularizing

factor that prevents the overshooting issue which may happen

at the first iteration steps (Reynolds et al., 2006). Theoreti-

cally, from step 3 of the algorithm, we expect a decrease of

the regularization factor during the assimilation process that

should improve the quality of the estimated models (Emerick

& Reynolds, 2013).

To correctly assess the posterior pdf, the ensemble dimen-

sion 𝑁e must be large enough to avoid an underestimation of

the model uncertainty and small enough to maintain a reason-

able computational cost. At the end of the minimization, the

outcome is an ensemble of posterior realization which approx-

imates the posterior pdf and from which we can compute the

uncertainties associated with each cell of the model.

From the TL point of view, the goal is to map the resistivity

variation in time. The simplest approach is to perform two sep-

arate inversions and then compute the difference between the

estimated models. However, this strategy produces an ampli-

fication of the inversion artefacts (Kim et al., 2009). For these

purposes, we apply a simultaneous inversion in which the

resistivity models at two-time instants (𝑡0 and 𝑡1), and the cor-

responding uncertainties are evaluated in a single inversion

run. We define the total apparent resistivity vector 𝛒a as

𝛒a =
[
𝛒a0
𝛒a1

]
=
[
𝑓
(
𝛒0
)

𝑓
(
𝛒1
)] =

[
𝑓
(
𝛒0
)

𝑓
(
𝛒0 ⋅ 𝛌 𝜌

)] , (7)

where 𝛒a0 is the apparent resistivity vector observed at 𝑡0,

𝛒a1 is the apparent resistivity vector at the time 𝑡1, and 𝛌𝜌 =
𝛒1 ∕𝛒0 is the resistivity variation defined as the ratio between

the subsurface resistivity at the second time step 𝛒1, and at

the first-time step 𝛒0. Consequently, we expect the following

range of variations:

𝛌𝜌 = 𝛒1∕𝛒0 =
⎧⎪⎨⎪⎩

> 1 if 𝛒0 < 𝛒1 positive variation

1 if 𝛒0 = 𝛒1 no variation
< 1 if 𝛒0 > 𝛒1 negative variation

. (8)

In the TL context, we can rewrite updated Equation (2) as

𝛒̄𝑘+1
𝑖

= 𝛒̄𝑘
𝑖
+𝐊

(
𝛒̄a + 𝐫𝑘

𝑖
− 𝑓

(
𝛒̄𝑘
𝑖

))
, (9)

where 𝛒̄𝑘
𝑖

is the total resistivity vector containing both 𝛒0 and

𝛌𝜌, and 𝛒̄a is the total apparent resistivity vector composed

by 𝛒a0 and 𝛒a1. The covariance matrices of the Kalman Gain

Filter, Equation (3), become

𝐂𝜌𝜌a
=

[
𝐂𝜌0𝜌a0

0
0 𝐂𝜆𝜌𝜌a1

]
, (10)

𝐂𝜌a
=
[
𝐂𝜌a0

0
0 𝐂𝜌a1

]
, (11)

𝐂𝜌a𝜌a
=
[
𝐂𝜌a0𝜌a0

0
0 𝐂𝜌a1𝜌a1

]
. (12)

In Equation (10), 𝐂𝜌0𝜌a0
represents the cross-covariance

between the model ensemble of resistivity model (P) and
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STOCHASTIC INVERSION 5

F I G U R E 1 Flow chart of the ensemble smoother (ES-)multiple

data assimilation (MDA)-restricted step (RS) algorithm. ite represents

the current iteration, max ite the maximum number of iterations

allowed, Pprior and 𝚲prior are the two ensembles of prior realizations and

Ppost and 𝚲post the two ensembles of posterior realizations.

the data ensemble of the first-time step; 𝐂𝜆𝜌𝜌a1
the cross-

covariance between the ensemble of variation (𝚲) of resistiv-

ity and the ensemble of data of the second time step.

In Equation (11), 𝐂𝜌a0
and 𝐂𝜌a1

are diagonal matrices

containing the covariance of the data 𝛒a0 and 𝛒a1, respectively.

In Equation (12), 𝐂𝜌a0𝜌a0
is the covariance matrix of the

ensemble of predicted data at the time-step 𝑡0, whereas

𝐂𝜌a1𝜌a1
is the covariance matrix of the ensemble of predicted

data at the time-step 𝑡1.

Evensen et al. (2022) explained the link between ES- MDA

and Gauss–Newton algorithm. The cross-covariance matrix

𝐂𝜌𝜌a
and the matrix 𝐂𝜌a𝜌a

in Equations (10) and (12) con-

tain information about the sensitivity of the forward operator.

In particular, the two matrices approximate the following

relations (Reynolds et al., 2006):

𝐂𝜌𝜌a
≈ 𝐂m𝐇T, (13)

F I G U R E 2 (a) Resistivity model 𝛒0 at the simulated acquisition

time 𝑡0. (b) Resistivity model 𝛒1 at the second time 𝑡1. (c) Resistivity

variation in terms of the ratio between 𝛒1 and 𝛒0.

𝐂𝜌𝑎𝜌𝑎
≈ 𝐇𝐂m𝐇T, (14)

𝐇 = ∇𝑚 𝑓 (𝑚̄) , (15)

where 𝐇 is the sensitivity kernel defined as the sensitivity

of the predicted data computed on the mean model 𝑚̄ and

𝐂m is the covariance matrix of the model parameters. Note

that the matrices are calculated from the entire ensemble of

current models. In other words, the sensitivity information

carried out by the covariance and cross-covariance matrices

are computed considering the entire ensemble of models.

The merging between the ES-MDA-RS and the described

TL approach allows to invert simultaneously the resistivity 𝛒0
and its variation 𝛌𝜌; the flow chart of the algorithm is shown

in Figure 1.

From the ensembles of posterior realizations, we can quan-

tify the uncertainties associated with the estimated model

by computing the standard deviation of each marginal dis-

tribution. An alternative to interpret the uncertainty is the

coefficient of variation (cv) which is widely used in differ-

ent fields, and it is a measure of the variability in relation

to the mean (Everitt, 1998). It is computed by normalizing

the standard deviations by the mean value of each resistivity

cell to avoid misleading interpretations affected by large range

of resistivity values. Thus, the cv is defined as follows (Liu,

2012):

c v𝑖 =
𝜎𝑖

𝜇𝑖
, (16)
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6 VINCIGUERRA et al.

F I G U R E 3 (a) Prior marginal distribution associated with each

cell of 𝛒0. (b) Spatial correlation associated with the 2D Gaussian

variogram and assumed for 𝛒0; the lateral and the vertical correlations

are represented in blue and orange, respectively. (c) Prior marginal

distribution associated with each cell of 𝛌𝜌. (d) Spatial correlation

associated with the 2D Gaussian variogram and assumed for 𝛌𝜌.

where i is the index of the model cell. Usually, the cv is

multiplied by 100 obtaining the percentage of variation. This

relation allows an easier interpretation of the posterior uncer-

tainties by expressing the dispersion of the resistivity value

around the mean.

To compare the results of the ES-MDA-RS inversion algo-

rithm, we employ the cascaded inversion approach described

T A B L E 1 Parameters of prior distributions and Gaussian

variograms (note that the mean and the standard deviations are

expressed in logarithmic domain).

Prior mean Prior std 𝜶
𝒙

𝜶
𝒚

𝛒0 5.41 0.38 8 6

𝛌𝜌 0.18 0.6 8 4

by Miller et al. (2008), a deterministic strategy that employs

the estimated model at 𝑡0 as the starting point for inverting

the data at 𝑡1. This approach properly reconstructs the sub-

surface resistivity cells that are well-illuminated by the data,

whereas the other values should remain equal to the reference

model (Hayley et al., 2011). To perform the cascade inversion,

we exploit the BERT software package (Gunther & Rucker,

2012).

SYNTHETIC TESTS

To check the effectiveness of the ensemble smoother (ES)-

multiple data assimilation (MDA) restricted step (ES-MDA-

RS) for time-lapse (TL) inversion, we decide to build a simple

resistivity model that simulates an advancing low resistivity

plume and a seasonal shallow resistivity variation. Specifi-

cally, we create a plume of 30 Ω m reproducing a water flow

within a homogeneous background of 200 Ω m and a shal-

low layer of 300 Ω m (Figure 2a). To build the variation, we

mimic a regression of a water or contaminant plume from

the first acquisition time 𝑡0 and the second one 𝑡1, and we

F I G U R E 4 (a–d) Realizations drawn from the prior ensemble Pprior . (e–h) Realizations drawn from the ensemble 𝚲prior .
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STOCHASTIC INVERSION 7

also simulate an increase of resistivity of the shallow layer

from 300 to 500 Ω m (Figure 2b). The resulting variation,

defined as the ratio between 𝛒1 and 𝛒0, is represented in

Figure 2c.

The goal of the TL synthetic test is to reconstruct the resis-

tivity changes that we impose at a distance between about 40

and 60 m and the shallow one. After generating the synthetic

data, the first step is to define the two probability density

function which should contain our prior knowledge about

the model 𝛒0 and the variation 𝛌𝜌. We calculate the mean

and the standard deviation of the prior model from the first

synthetic data 𝛒a0 and from the ratio between 𝛒a1 and 𝛒a0.

The marginal prior distributions are shown in Figure 3a,c.

In addition, we define a Gaussian variogram to add a spatial

correlation between the model parameters. Considering the

vertical direction y, the correlation is expressed by

𝛕𝑦 = exp

(
−
ℎ2
𝑦

𝑎2
𝑦

)
, (17)

where ℎ
𝑦

is the distance of the spatial correlation function
along the y direction, and 𝑎𝑦 is the effective range of the vari-

ogram along the same direction. In this test, we set 𝑎𝑥 equal to

8 m and 𝑎𝑦 equal to 6 m for 𝛒0 and 𝑎𝑥 equal to 8 m and 𝑎𝑦 equal

to 4 m for 𝛌𝜌 (Figure 3b–d, Table 1). Practically, this choice

can be inferred from previous information about the subsur-

face. In this case, the correlation guarantees a higher lateral

than vertical continuity of the resistivity anomalies (Figure 4).

After defining the marginal prior distributions and the model

covariance, we draw two ensembles of 2000 prior realizations

(Pprior and 𝚲prior associated with 𝛒0 and the 𝛌𝜌, respec-

tively). Figure 4 shows examples of four prior realizations

drawn from each ensemble; note that the prior realizations

contain resistivity values that are constrained by the prior dis-

tributions in Figure 3a,c and the imposed spatial correlation

pattern.

We generated the observed data using a combination of

multiple gradient array and dipole–dipole composed of 406

quadrupoles on 22 electrodes with 4 m spacing. Without a

quantitative study of the statistics of the noise affected the TL

dataset, and under the assumption of Gaussian error required

by the data assimilation algorithm, we contaminate the data

with uncorrelated Gaussian noise with standard deviation

equal to 2% of the apparent resistivity values.

To solve the 2.5D forward problem, we exploit the BERT

software package that employs a finite elements discretization

(Gunther & Rucker, 2012). As expected, the calculated syn-

thetic pseudo sections (Figure 5) show an apparent resistivity

decrease at the shallow pseudo depth and at the left side of the

pseudo section.

We use the ES-MDA-RS algorithm to automatically stop

the inversion process after the maximum iteration number;

in this synthetic test, we set the maximum iteration number

F I G U R E 5 (a) Synthetic pseudo section representing the

resistivity data at the time zero 𝑡0, 𝜌a0. (b) Synthetic pseudo section

representing the resistivity data at the time 𝑡1, 𝜌a1.

equal to 5. The inversion takes approximately 85 min to run

on an Intel Xenon CPU E5-2420 v2 @ 2.20 GHz, and the

computational cost is about 85 min. The algorithm returns

two ensembles of models, Ppost and 𝚲post , approximating the

posterior distributions 𝑝(𝛒0|𝛒a0) and 𝑝(𝛌𝜌|𝛒a1) from which we

compute the mean models and the uncertainty (see Figure 1).

The cross-plot and the root mean square error (RMSE) sug-

gest that the means of the ensembles; are able to predict the

data satisfactorily (Figure 6a,b). In particular, the RMSE is

0.62% for 𝛒a0 and 0.69% for 𝛒a1 and it constantly decreases

across the iterations (Figure 6c). The inflation coefficient,

which we define as a function of the error function accord-

ing to Equation (4), is represented in Figure 6d. We observe

that it abruptly decreases from iteration 0 to 1 and it continues

to decrease until the last iteration.

The mean models of the ensembles Ppost and 𝚲post are rep-

resented in Figure 7d–f in comparison with the synthetic true

models (Figure 7a–c). The mean model 𝛒0 (Figure 7d) sug-

gests that the algorithm is able to well reconstruct the shallow

high resistivity layer and the low resistivity plume as well.

Moreover, the shallow resistivity variation and the central

large one (caused by the regressing plume) are recovered with

a good spatial resolution (Figure 7e). The resulting resistivity

model at the time 𝑡1, estimated through Equation (8), is rep-

resented in Figure 7f. It exhibits an increment of resistivity of

the shallow layer, and good reconstruction of the regressing

plume. The estimated mean models exhibit few artefacts that

do not compromise the data fitting quality. We observe that

they are mainly located at the bottom and at the edge of the

model where we expect poor data illumination.
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8 VINCIGUERRA et al.

The evaluation of the uncertainty is performed computing

the standard deviation cell by cell from the ensembles Ppost
and 𝚲post . However, we also evaluate the uncertainties com-

puting the coefficient of variation (cv% (Equation 16), which

can be viewed as a normalized standard deviation for the mean

value. The standard deviation in Figure 8b indicates that the

left bottom and bottom right edge resistivity are not reliable

due to high uncertainty values. Moreover, the cv (Figure 8c)

confirms the model ambiguity at the bottom and lateral edges

of the study area. The quantification of uncertainties helps us

to interpret the TL resistivity variation in Figure 8d. In par-

ticular, high values of standard deviation are located at the

bottom left and right but also in correspondence with the cen-

tral well-predicted resistivity variation (Figure 8e). However,

the coefficients of variation in Figure 8f exhibit that the vari-

ability of the resistivity values is relevant only at the bottom

and at the lateral edges (cv of about 25%), similar to Figure 8c.

This similarity can be motivated by the fact that, being a TL

inversion, the survey configuration is maintained the same

between the acquisition steps; therefore, assuming that the

resistivity of the subsurface is not dramatically changed the

sensitivity patter is similar.

F I G U R E 6 (a) Data misfit and apparent resistivity 𝛒a0 cross-plot. (b) Data misfit and apparent resistivity 𝛒a1 cross-plot. (c) Evolution of root

mean square error (RMSE) during the iterations. (d) Inflation factors values of each iteration.

F I G U R E 7 (a–c) Synthetic reference model. (d) Predicted mean model 𝛒0. (e) Predicted mean variation of resistivity 𝜆𝜌. (f) Predicted model

𝛒1 computed as the product between 𝛒0 and 𝛌𝜌.
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STOCHASTIC INVERSION 9

F I G U R E 8 (a) Mean ensemble model 𝛒0. (b) Uncertainties associated with 𝛒0. (c) Coefficients of variation associated with 𝛒0. (d) Mean

ensemble variation 𝛌𝜌. (e) Standard deviation associated with 𝛒1. (f) Coefficients of variation associated with 𝛌𝜌 .

F I G U R E 9 Aerial view of the Pillemark landfill, the electrical

resistivity tomography (ERT) profile is indicated by the red dots.

FIELD DATA INVERSION

We now discuss the inversion of 2D data acquired by the Pille-

mark landfill monitoring station in Samsø island (Denmark)

(Figure 9).

The goal of the monitoring project was to assess the pollu-

tion risk of the aquifers supervising the groundwater evolution

through the integration of electrical resistivity tomography

(ERT) ad IP datasets (Bording et al., 2018). However, in this

work, we focus on the direct current measurements only. The

geology of the site is composed of a fill cover over a sand

layer of various grain sizes and moraine clays that underlies

the sand layer. We aim to invert two datasets acquired 1 year

F I G U R E 1 0 (a) Observed data on 27th March 2016. (b)

Observed data on 28th March 2017.

apart, 27 March 2016 and 28 March 2017, respectively. This

choice is made to limit the shallow seasonal effects that could

affect the datasets. After removing outliers and negative resis-

tivity values, the number of data points for each dataset is 336;

Figure 10 shows the two pseudo sections.

We start building two ensemble, Pprior and 𝚲prior , each

drawn from two Gaussian distributions and according to the

assumed Gaussian variograms (Figure 11a,c). The moments

of the distributions are computed from the observed data,

paying attention to avoid underestimation of the standard
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10 VINCIGUERRA et al.

F I G U R E 1 1 (a) Prior marginal log-Gaussian associated with

each cell of the model 𝛒0. (b) Spatial correlation associated with the 2D

Gaussian variogram and assumed for 𝛒0. (c) Prior marginal

log-Gaussian distribution associated with each cell of the model 𝛌𝜌. (d)

Spatial correlation associated with the 2D Gaussian variogram and

assumed for 𝛌 𝜌.

deviation. As from previous investigations (Bording et al.,

2018) and geological information (Høyer et al., 2019), we

expect a mainly horizontal deposits and impose a lateral cor-

relation range (𝑎𝑥) of 6 m and a vertical correlation (𝑎𝑦)

of 4 m both for the resistivity model and the resistivity

change (Figure 12b–d). The choice of the ensemble dimen-

sion has been evaluated repeating the inversion and changing

the ensemble member; Figure 12 shows the results in terms of

root mean square error (RMSE) % and estimated uncertainty

employing 500, 2000, 3000 and 30,000 models. Even though

the prediction error is not heavily affected by the ensemble

size (Figure 12a,b), the uncertainty can be underestimated if a

proper number size is not considered. For instance, the coeffi-

cients of variation associated with the model 𝛒0 in Figure 12c

(500 models) seem to be underestimated in comparison with

Figure 12d (2000 models). On the other hand, the uncertainty

assessed through ensembles of size 2000, 3000 and 30,000

models is comparable and shows coefficients of variation up

to 50% in depth and laterally. Therefore, considering the com-

putational cost, we decide to employ two ensembles of 2000

models. Figure 13a–d shows six realizations drawn from the

ensemble Pprior , whereas Figure 13e–h shows six realizations

drawn from the ensemble 𝚲prior .

Table 2 summarizes the selected parameters for the inver-

sion. After setting the maximum iteration number, the inver-

sion process ends if the summation of Equation (6) is equal to

1 or if the maximum number of iterations is reached. In this

inversion, we set the maximum number of iterations equal to

10, but the inversion stops at the 7th iteration after 109 min

on an Intel Core i7-8700 CPU @ 3.20 GHz personal com-

T A B L E 2 Parameters of prior distributions and Gaussian

variograms (note that the mean and the standard deviations are

expressed in logarithmic domain).

Prior mean Prior std 𝜶
𝒙

𝜶
𝒚

𝛒0 4.3 0.7 6 3

𝛌𝜌 0.004 0.05 6 3

puter. As in the synthetic test, the data fitting is quantified

through the cross-plot and RMSE between observed and pre-

dicted data. Figure 14a,b exhibits an RMSE of 3.1% for the

prediction 𝛒a0 and an RMSE of 3.7% for the prediction of 𝛒a1,

which demonstrates a satisfying result in terms of data fitting.

The mean models computed from the ensembles at each iter-

ation allow to evaluate the prediction error during the entire

inversion process. We observe that the error decreases from

the first to the last iteration, starting with an RMSE of about

75% and of about 150% at the first iteration and reaching a

value of about 3%. The scatter plot of Figure 14d illustrates

a steady decrease of the inflation coefficient 𝛼𝑘 suggesting

a reduction on the error function value iteration by iteration

(Equation 5).

The comparison between the RMSE error obtained with

ensemble smoother (ES)-multiple data assimilation (MDA)-

restricted step (RS) and ES-MDA (Figure 15a,b), evaluated

maintaining the same prior information, shows that the adap-

tive algorithm guarantees lower RMSE values. This effect is

particularly evident in Figure 15b, where the red line (ES-

MDA), associated with 𝛒a1, reaches an RMSE of almost 10%.

From Figures 14c and 15, we can affirm that at each assimila-

tion step, the entire ensemble of predicted data tend to fit the

observed data.

This is evident if we compare the ensemble of predicted

data at the first and at the last iteration (Figure 16). In

particular, Figure 16a–c shows all the data predicted from

the ensembles of models Pprior and 𝚲prior (in orange), which

are not able to predict the observed data (in red). During the

inversion run, the entire ensembles constantly decrease the

prediction error, until all the ensembles are able to well predict

the observed data (Figure 16b–d). Indeed, as the ensembles

Pprior and 𝚲prior are randomly drawn from the prior distribu-

tions, the corresponding RMSEs are large (from about 20%

to more than 100%, Figure 17a,b). On the contrary, after the

last iteration, the ensembles Ppost and 𝚲post are able to pre-

dict the observed data with low prediction error (about 3%

in Figure 17c, around 4%–5% in Figure 17d). At this stage,

we compute the posterior mean models and the associated

uncertainties (Figure 18). As expected from previous knowl-

edge of the study area, the mean model 𝛒0 exhibits a shallow

high resistivity layer that decreases its thickness from left to

right and can be interpreted as the fill cover zone. Below that

high resistivity zone, it is evident a low resistivity region at an
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STOCHASTIC INVERSION 11

F I G U R E 1 2 (a) Prediction error of the data 𝛒a0 as the Pprior ensemble size varies. A total of 500, 2000, 3000 and 30,000 models in light blue,

green and red, respectively. (b) Prediction error of the data 𝛒a1 as the 𝚲prior ensemble size varies. A total of 500, 2000, 3000 and 30,000 models in

light blue, green and red, respectively. (c) Coefficients of variation considering 500 models. (d) Coefficients of variation considering 2000 models.

(e) Coefficients of variation considering 3000 models. (f) Coefficients of variation considering 30,000 models.

elevation between 20 and 15 m, whereas below 15 m, the

model shows a large lateral resistivity variation. The low-

resistivity zone is interpreted as the unconfined sandy aquifer

that we can find at that depth (Høyer et al., 2019), which might

be discontinuous due lateral to variation in grain sizes. The

deep portion of the model might be associated with moraine

clay; however, the resistivity values manifest some lateral dis-

continuities that need to be investigated in more detail. To

better interpret the results, we compute the standard deviation

from the final ensemble of posterior realizations (Figure 18b).

It seems to suggest that the high uncertainty values are

associated with the deepest cells and shallow high resistivity

values. To avoid uncertainties misinterpretation, we compute

the coefficient of variation (cv) (Figure 18c), which eases the

comparison between uncertainty values especially when the

resistivity range is wide. Specifically, we observe low ambi-

guity in the shallow part of the model, an increase of cv values

in depth and laterally due to the poor data illumination. In

other words, being the sensitivity poor, in that portion of the

model, a large range of resistivity values give rise to similar

data fitting.

This is confirmed by Figure 19 which shows examples of

six posterior realizations drawn from the ensemble Ppost . We

observe that all the models univocally predict the resistiv-

ity anomalies from the surface down to 16 m of elevation,

whereas the variability of the reconstructed resistivity values

increases at the lateral and bottom edge of the investigated

area (see Figure 19).

The estimated resistivity changes between 𝛒0 and 𝛒1 are

shown in Figure 20a. The figure shows the presence of three

anomalies characterized by high value of 𝛌𝜌 (about 2.5) at

the elevation between 20 and 16 m. This means that from 𝑡0
to 𝑡1, that is from the first and second acquisition, the resis-

tivity has more than doubled in that portion of the models.

We interpret the anomalies as a decrease in saturation of the

sandy aquifer, which is discontinuous probably due to the lat-

eral change in grain size (Høyer et al., 2019). Below those

central high variation anomalies, we note a decrease of resis-

tivity corresponding to 𝛌𝜌 values of about 0.5. Analysing the

standard deviation map of Figure 20b, computed from the

posterior marginal probability density functions of each cell,

we note a correlation between high uncertainties and high

resistivity values. Thus, to better evaluate and compare the

estimated uncertainty, we calculate the cv (Figure 20c). It is

clear that the ambiguous portions of the model are located

at the bottom and at the lateral side of the model where

the data illumination is poor. On the contrary, low uncer-

tainties are located at the shallowest part of the model and

above an elevation of 15 m where the three high ratio anoma-

lies are present. In conclusion, the coefficient of variation in

Figure 20c suggests that the three high ratio anomalies are

reliable.

 13652478, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1365-2478.13464 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 VINCIGUERRA et al.

F I G U R E 1 3 (a–d) Prior realizations drawn from the prior ensemble Pprior . (e–h) Prior realizations drawn from the ensemble Λprior .

F I G U R E 1 4 Data misfit and cross plot between observed and

predicted data 𝛒a0. (b) Data misfit and cross plot between observed and

predicted data 𝛒a1 (c) root mean square error (RMSE) evolution during

the iterations. (d) Inflation coefficient trend.

As a confirmation of this, analysing the posterior real-

izations extracted from the ensemble 𝚲post(Figure 21), we

observe that each realization exhibits the same anomalies up

to an elevation of 15 m, whereas below that elevation the vari-

ability between each model is large. To validate our results,

we employ the cascaded inversion algorithm, a more tradi-

tional gradient-based inversion approach that in inverts the

two datasets separately, but exploiting the model estimated

from the dataset 𝛒a0 as the starting model for the inversion of

𝛒a1(Miller et al., 2008). For this purpose, we exploit the BERT

F I G U R E 1 5 (a) Root mean square error (RMSE) error of 𝛒a0
prediction obtained from ensemble smoother (ES)-multiple data

assimilation (MDA) and ES-MDA-restricted step (RS). (b) RMSE of

𝛒a1 prediction obtained from ES-MDA and ED-MDA-RS.

open-source software package. Figure 22 shows the models

estimated by of the ES-MDA-RS algorithm and by the cas-

caded inversion. As expected, the cascaded inversion is faster

than our algorithm; indeed, the computational time is less than

1 min. However, it is clear the similarity between the 𝛒0 esti-

mated by the two algorithms (Figure 22a–d) especially above

an elevation of 15 m. In addition, even though the results

of the gradient based inversion seem to be smoother than

the stochastic ones, the locations of the anomaly are consis-

tent. The resistivity variations (Figure 22b–e) are completely
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STOCHASTIC INVERSION 13

F I G U R E 1 6 (a) Ensemble of 2000 predicted data from the ensemble Pprior (orange) and the observed data 𝛒a0 (red). (b) Comparison between

the data predicted by the ensemble Ppost (orange) and the observed data 𝛒a0 (red). (c) Ensemble of 2000 predicted data;from the 𝚲prior (orange) and

the observed data 𝛒a1 (red). (d) Comparison between the ensemble of data predicted by the ensemble 𝚲post (green orange) and the observed data (red).

F I G U R E 1 7 (a) Histogram of the prediction root mean square

error (RMSE) obtained from the ensemble Pprior . (B) Histogram of the

prediction RMSE obtained from the prior ensemble 𝚲prior . (c)

Histogram of the prediction RMSE associated with the ensemble Ppost .
(d) Histogram of the prediction RMSE associated with the ensemble

𝚲post .

coherent in terms of location and magnitude, especially the

resistivity increase that we already interpreted. Moreover, the

resistivity estimated at the time 𝑡1 in Figure 22c,f exhibits the

same anomalies distribution in the whole model where illu-

mination is not poor. This comparison suggests the reliability

of the ES-MDA-RS for time-lapse ERT inversion purposes.

F I G U R E 1 8 (a) Predicted mean model 𝛒0 by the ensemble

smoother (ES)-multiple data assimilation (MDA)-restricted step (RS)

algorithm. (b) Standard deviation map computed from the marginal

posterior distributions. (c) Coefficient of variation associated with the

mean model 𝛒0.

CONCLUSION

In this paper, we formulate the time-lapse (TL) elec-

trical resistivity tomography (ERT) data inversion as a

data-assimilation problem to quantify the uncertainties of

the inverse solution. The implemented ensemble smoother
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14 VINCIGUERRA et al.

F I G U R E 1 9 (a–f) Realizations drawn from the ensemble Ppost .

F I G U R E 2 0 (a) Predicted mean ensemble model 𝛌𝜌 by the

ensemble smoother (ES)-multiple data assimilation (MDA)-restricted

step (RS) algorithm. (b) Standard deviation map computed from

marginal posterior distributions. (c) Coefficient of variation associated

with the mean model 𝛌𝜌.

(ES)-multiple data assimilation (MDA)-restricted step (RS)

casts the problem in a Bayesian setting, allowing for the inte-

gration of prior knowledge about the expected changes in

resistivity to recover the posterior probability density func-

tion. We compute the moments of the prior distributions from

the observed data without any other constraints to test the

applicability of the algorithm. Despite this, the ES-MDA-

RS is able to estimates the resistivity model, the resistivity

changes and the uncertainties.

The inversion of the synthetic TL data validates the effec-

tiveness of the approach, resulting in a satisfactory estimation

of the resistivity variation both in the shallow and deep part

of the model. Moreover, the integrated interpretation of the

standard deviation and the coefficients of variation guarantee

the robust interpretation of the anomalies, distinguishing the

more reliable portions of the model from those affected by

poor sensitivity or artefacts.

The TL ES-MDA-RS applied to the Pillemark landfill mon-

itoring station is able to map the resistivity variation of the

unconfined aquifer with a good spatial resolution and low root

mean square error. In particular, the clear change in resistiv-

ity that we interpret as the decrease of the saturation of the

aquifer corresponds with low uncertainty. Thus, the uncer-

tainty estimation carried out using both the standard deviation

and the coefficient of variation provides a valuable tool to

assess the reliability of the mapped anomalies and the portions

of the models affected by poor sensitivity. The comparable

model estimation obtained through the deterministic cascade

inversion validates the ES-MDA-RS results.

Even though the assumptions required by the approach

limit the applicability to Gaussian prior distribution and

Gaussian error on the data, the main advantage of the pro-

posed algorithm is the appraisal of the uncertainty associated

with resistivity variation through a computationally feasible

stochastic approach. The automatic selection of the inflation

coefficient and the stopping criteria simplify the preliminary

setting phase of the ES-MDA algorithm. In our example, the

adaptive choice of the inflation coefficient helps the inver-

sion obtain a lower error prediction. This paper demonstrates
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F I G U R E 2 1 (a–f) Realizations drawn from the posterior ensemble 𝚲post .

F I G U R E 2 2 (a–c) Estimated models by ensemble smoother (ES)-multiple data assimilation (MDA)-restricted step (RS). (d–f) Estimated

models by the cascade inversion algorithm.

the potential of data assimilation to solve the non-linear ERT

problem in the TL framework, making it a valid alternative

for inverting permanent monitoring station data.
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