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Abstract: We investigated the thermal stability and corrosion effects of a promising ionic liquid (IL)
to be employed as an advanced heat transfer fluid in solar thermal energy applications. Degradation
tests were performed on IL samples kept in contact with various metals (steel, copper and brass) at
200 ◦C for different time lengths. Structural characterization of fresh and aged IL samples was carried
out by high-resolution magic angle spinning nuclear magnetic resonance and Fourier transform
infrared spectroscopic analyses, while headspace gas chromatography–mass spectrometry was
employed to evaluate the release of volatile organic compounds. The combination of the above-
mentioned techniques effectively allowed the occurrence of degradation processes due to aging to
be verified.

Keywords: ionic liquids; heat storage; thermal stability; HRMAS NMR; FTIR

1. Introduction

Ionic liquids (ILs) are a group of compounds that are attracting increasing interest
in many fields of application, thanks to the possibility of combining different anions
and cations, thus allowing the design of new materials with optimal chemical–physical
properties for specific applications, especially in the energy sector [1,2]. In particular, ILs
are suggested as promising working fluids in solar energy technologies, thanks to their
high heat capacity, low melting point and relatively high density in the typical operating
conditions of solar thermal energy systems [3–6]. Further attractive features of ILs are the
high chemical stability, non-flammability, and the low impact on the environment and on
health; this feature derives from their negligible vapor pressure, which limits their release in
the atmosphere [7]. Given the wide application potential, evaluation of ILs’ thermal stability
is fundamental for their implementation in solar energy systems as working fluids [8–10].

Most of the thermal stability studies available in the literature are based on dynamic
thermogravimetric (TG) analyses [11,12]. However, several experimental parameters, such
as sample mass, pre-treatment conditions, heating rate and testing atmosphere (inert gas
or open air), can affect measurement consistency [13]; therefore, TG analysis appears to
be more appropriate for comparative thermal stability studies [14], and certainly cannot
provide a deep insight into the modifications of the IL structure due to thermal stress.
Another issue of relevance is metal corrosion in the presence of ILs. In fact, several R&D
activities in the field have focused on the investigation of the corrosion behavior of different
metals in contact with ILs, and on the evaluation of the release of volatile compounds
during operation in solar thermal devices and processes [15–19].
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To address the previously mentioned issues, in this paper, we present a multi-technique
approach to identify possible degradation products of a promising IL subjected to thermal
aging in the absence or presence of different metals. Specifically, we have character-
ized the ionic liquid N-tributyl-N-methylammonium bis(trifluoromethanesulfonyl)imide
([TBuMA][NTF2]) after thermal treatment at T = 200 ◦C for 4, 24 and 168 h in contact
with AISI 304 steel, copper or brass, as well as in the absence of metals. The temperature
used for aging was selected because it is the standard operating temperature of common
diathermic oils used as heat transfer fluids. This specific ammonium-based IL compound
was chosen for its potential application as a heat transfer fluid [5,12], and for the stability
of the anion [20], which has been reported to withstand temperatures up to 400 ◦C by
thermogravimetry. However, to the best of our knowledge, there is no indication of the
thermal stability of NTF2 coupled with a quaternary ammonium salt. The characteriza-
tion of the degraded IL was carried out by high-resolution magic angle spinning nuclear
magnetic resonance (HRMAS NMR) and Fourier transform infrared (FTIR) spectroscopies,
while headspace gas chromatography–mass spectrometry (HS-GC-MS) was employed to
estimate the concentration of volatile compounds produced. HRMAS NMR is suitable
for the characterization of highly viscous liquids. In this tecnique, the use of magic angle
spinning allows highly resolved spectra to be obtained, which is not feasible using standard
solution NMR spectroscopy, due to the presence of residual interactions and magnetic
susceptibility issues [21].

2. Materials and Methods
2.1. Materials

The ionic liquid N-tributyl-N-methylammonium bis(trifluoromethanesulfonyl)imide
(C15H30F6N2O4S2), CAS number 405514-94-5; MW 480.53, Figure 1a, was purchased from
Solvionic (Am3408a). Purity of the IL was 99.9%.
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Figure 1. (a) Structure of the ionic liquid [TBuMA][NTF2]. (b) In sequence, from left to right, samples
of the ionic liquid in the presence of steel, copper and brass metal plates and with no metal plate. The
same samples were heated at 200 ◦C for 4 h (c), 24 h (d) and 168 h (e).

The degradation procedure was performed as described in the following. Six milliliters
of [TBuMA][NTF2] was heated in an oven at 200 ◦C for 7 days with or without a steel,
copper or brass metal plate (2 × 2 cm). At selected times (4, 24 and 168 h; Figure 1b–e,
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respectively), 1 mL of IL was sampled for the analyses (FTIR, HS-GC-MS and HRMAS
NMR spectroscopy).

Table 1 summarizes the thermally treated samples analyzed and the code used through-
out the text. The code of the initial non-heated sample is B.

Table 1. Sample codes of the IL samples.

Metal 4 h at 200 ◦C 24 h at 200 ◦C 168 h at 200 ◦C

1 (steel) 1B4 1B24 1B168
2 (copper) 2B4 2B24 2B168
3 (brass) 3B4 3B24 3B168

4 (no metal) 4B4 4B24 4B168

2.2. FTIR Spectroscopy

Infrared spectra were recorded in reflectance mode by using a Perkin–Elmer Frontiers
FTIR Spectrophotometer, equipped with a universal attenuated total reflectance (ATR)
accessory and a triglycine sulphate TGS detector. Three replicates (3–5 µL of IL for each
measurement) were performed after background acquisition. For each sample, 32 scans
were recorded, averaged and Fourier transformed to produce a spectrum with a nominal
resolution of 4 cm−1.

2.3. HS-GC-MS Analysis

HS-GC-MS analyses were performed using an Agilent 6850 gas chromatograph,
equipped with a split/splitless injector, in combination with an Agilent 5975c mass spec-
trometer. A CTC CombiPAL autosampler was employed for HS sampling. Vials with
1 g of sample were incubated at 80 ◦C for 15 min. A 0.5 mL HS volume was then sampled
(gas-tight syringe held at 85 ◦C) and injected into the GC. The syringe was then flushed
with helium. The inlet liner (internal diameter of 1 mm) was held at 200 ◦C and the injection
was performed in splitless mode. Compounds were separated on a polar column (DB-WAX
ultra-inert; length: 30 m; stationary phase: bonded polyethylene glycol; 0.25 mm inner
diameter; 0.50 µm coating) using the following temperature program: 10 min at 30 ◦C, then
increased by 5 ◦C/min to 60 ◦C (held for 2 min) followed by an increase of 10 ◦C/min to
240 ◦C (held for 9 min). The temperature of the transfer line was set at 250 ◦C. After GC
separation, compounds were ionized in positive EI, and the acquisition was performed
in full scan mode. Spectral identification was performed when the spectra and the NIST
spectral mass library (NIST 05) combined with our in-house library matched with a spectral
similarity >90%. Results are reported as relative intensity (counts).

2.4. HRMAS NMR Spectroscopy

NMR spectra were acquired on a Bruker AVANCE NEO NMR Spectrometer, working
at a 1H Larmor frequency of 500.13 and 125.77 MHz for 1H and 13C nuclei, respectively,
and using an HRMAS probe. All samples were spun at 6 kHz. The samples were dissolved
in DMSO-d6 (99.7% deuterated, Sigma) (1:1 volume ratio) to provide the lock signal and to
reduce their viscosity, thus facilitating their insertion in the rotors; TMS was added to each
mixture for 1H spectral referencing. Following this, 50 µL of each mixture was transferred
to an HRMAS rotor for NMR analysis. 1H spectra were acquired on all samples using
a relaxation delay of 1 s and several scans ranging from 128 to 1000 depending on the
sample. 13C spectra were acquired on samples B, 1B168, 2B168 and 4B168 using the Bruker
zg30pg pulse sequence for NOE enhancement of carbon nuclei signals. A relaxation delay
of 2 s was used and 4k scans were accumulated. One-dimensional (1D) selective 1H total
correlation spectroscopy (TOCSY) and two-dimensional (2D) 1H-13C heteronuclear single
quantum coherence (HSQC) experiments were also performed on sample 4B168. For the
TOCSY experiments, the Bruker seldigpzs pulse sequence was used, with a Gaussian shaped
180◦ pulse (Bruker pulse shape: Gaus1_180r.1000) for selective excitation, a relaxation delay
of 1 s, and a mixing time of 80 ms. 1H–13C HSQC were obtained by employing the Bruker
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hsqcetgpsisp2.2 pulse sequence, with a relaxation delay of 1 s. For all experiments, a 1H 90◦

pulse of 7 µs and a 13C 90◦ pulse of 12 µs were used. All experiments were performed at
298 K.

3. Results and Discussion

Figure 1 shows that, after 4 h, all the samples displayed a brown color, indicating that
the thermal treatment degrades [TBuMA][NTF2]. The color was more intense in the pres-
ence of metals, particularly steel and copper, and became darker with longer heating times.
To understand the decomposition pathway(s), FTIR and HRMAS NMR experiments were
performed on all the samples. Figure 2 shows the ATR-FTIR spectra of [TBuMA][NTF2]
after 4, 24 and 168 h (samples 4B4, 4B24 and 4B168) of thermal treatment without metal
plates. The spectrum of untreated IL (sample B) is also reported for comparison.
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Figure 2. Representative ATR-FTIR spectra of B, 4B4, 4B24 and 4B168 samples in the 3400–2650 and
1740−600 cm−1 regions.

As far as the IL anion is concerned, the strong absorptions at 1347 and 1177 cm−1

are attributed to asymmetric and symmetric S=O stretching vibrations, respectively, the
band at 1052 cm−1 to asymmetric C–F stretching, the band at 739 cm−1 to asymmetric S–N
stretching, and the band at 614 cm−1 to S=O scissoring. Specific TBuMA cation signals are
expected at 1134 cm−1, ascribable to symmetric C–N stretching, around 1470 cm−1 due to
methyl and methylene C–H bending, and at 1465 and 1378 cm−1 due to C–H scissoring and
methyl rocking, respectively. The spectra of all the samples are basically identical, except
for slight differences in the 3250–3000 cm−1 region (Figure 3), suggesting that the anion is
not affected by the thermal treatment, and indicating a major involvement of the cation
in the thermal degradation. Inspection of this region highlights that the original structure
of the TBuMA cation, characterized by the large band at 3348 cm−1 and the shoulder at
3040 cm−1, due to ammonium absorptions, is modified after thermal treatment. The most
significant changes are the decrease in the band at 3348 cm−1 and the increase in the peak
in the region between 3200 and 3100 cm−1, both in the presence and absence of metals. This
peak has been assigned to the medium intensity band of unsaturated hydrogen stretches
(C=C–H) [22], and suggests the formation of alkenes.
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Figure 3. ATR-FTIR spectra of all samples in the 3400–2650 cm−1 region.

Figure 4 shows the trend of the area of the band at 3153 cm−1 (3208–3103 cm−1 baseline
points) of the IL spectra with or without metal plates, as a function of the duration of the
thermal treatment.
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Further insight on the degradation process was gained from HRMAS NMR spectroscopy.
The comparison of the 1H NMR spectrum of the original compound [TBuMA][NTF2] with
the spectra recorded on [TBuMA][NTF2] after heating for 4, 24, and 168 h (samples 4B4, 4B24,
and 4B168) reveals that the signals of the original cation remain dominant, even at the longest
heating time. Low-intensity peaks, due to the degradation products, appear in the samples
subjected to thermal treatment, and their intensity tends to increase with the heating time.
Figure 5 shows the NMR spectra of samples B (traces a and b) and 4B168 (traces c and d).
Four new signals, resonating at 9.16, 8.31, 2.75 and 2.57 ppm, appear in the latter. Additional
signals of lower intensity appear in the region between 5 and 6 ppm upon heating. Complete
characterization of the degradation compounds was accomplished by the analysis of 1H, 1D
selective 1H TOCSY, 13C and 2D 1H–13C HSQC spectra of 4B168 (Figures S1 and S2). The
assignments of 1H and 13C NMR signals are reported in Tables S1 and S2.
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Figure 5. 1H HRMAS NMR spectra of [TBuMA][NTF2] (a,b) and 4B168 (c,d); in (b,d), the vertical
scale used in (a,c) is expanded by the factors reported on each spectral region. Selected signals of the
degradation compounds are labeled as “Hi,j”, with i representing the atom number and j indicating
the degradation product (Scheme 1). Signals of water protons and residual protons of deuterated
DMSO are marked with asterisks.

The dominant thermal degradation products are N-dibutyl-N-methylammonium (1)
and N-butyl-N-methylammonium (2), as outlined in Scheme 1; these compounds are
compatible with the Hoffman elimination of one or two alkyl chains from the original
cation [23]. For these compounds, the signals due to the hydrogen atoms labeled as H1
and H2 in Scheme 1 are clearly observable. Additional signals, characterized by lower
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intensities, were assigned to 1-butene (Scheme 1, compound 3), in agreement with the
hypothesized degradation pathway. These assignments are indicated in Figure 5, where
the signals are labeled as “Hi,j”, with i representing the atom number and j the degradation
product. The amount of compounds 1 and 2 was determined from the 1H spectra of all
the samples, with respect to the amount of the original cation B, using the integrals of the
H2,1 and H2,2 signals. Figure 6 shows the values of these integrals as a function of the
heating time, where the intensity of the corresponding signal of the non-degraded ionic
liquid, occurring at 2.97 ppm, is arbitrarily set to 100. It was, thus, found that, even at the
longest heating time, about six molecules of compound 1 and two molecules of compound
2 were present every 100 molecules of ionic liquid cation. This estimate agrees with that
obtained using H1,1 and H1,2 signals. Interestingly, the concentration of compound 2
increased at a slower rate than compound 1, in agreement with the fact that the formation
of compound 2 requires the preliminary formation of compound 1. Moreover, the amount
of compound 3 was always much lower than that expected on the basis of the stoichiometry
of the degradation pathways, as clearly evident from the large scaling factor necessary to
visualize the signals of this compound (Figure 5d). This can be explained by the volatility
of 1-butene or its further degradation/reactions. The presence of 1-butene is compatible
with the alkene absorption band between 3200 and 3100 cm−1 detected by FTIR (3090 cm−1

in the FTIR spectrum of butene in the vapor gas phase). Unfortunately, the absence of
specific absorption lines prevented the detection of compounds 1 and 2 in the FTIR spectra.
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Figure 6. Intensity of H2,1 (black squares) and H2,2 (red circles) signals as a function of the heating
time, as obtained from the 1H HRMAS NMR spectra of B, 4B4, 4B24 and 4B168 (filled symbols) and
of B, 1B4, 1B24 and 1B168 (empty symbols). The intensity value is relative to that of H2 protons of the
non-degraded ionic liquid, which was set to 100 in all spectra.

The 1H NMR spectra recorded after heating for up to 168 h in the presence of metal
plates do not show significant differences with respect to the 4B168 spectrum (Figure 7).
The main signals of the NMR spectrum of 4B168 are those of the original ionic liquid. For
both steel and copper, the spectral lines are broadened, with steel inducing larger line
broadening of the signals compared to copper. This broadening, not observed in the case of
brass, is probably due to the presence of dissolved paramagnetic metal ions resulting from
corrosion of the metal/alloy. Figure 8 shows that the signals of the degradation compounds
1, 2 and 3 are also present in the spectra of samples 1B168 and 3B168, whereas, in the
case of 2B168, only sharp signals, due to compound 3, are observed. In the latter case, if
compounds 1 and 2 are present, their concentration is below detection limits. However, the
occurrence of 1-butene signals suggests that the elimination reactions sketched in Scheme 1
also take place in the presence of copper. The absence of the H1,1 and H1,2 signals could
be explained by hypothesizing that the ammonium compounds 1 and 2 release H+ and
the amine formed coordinates to a copper ion. A similar mechanism has been suggested
to rationalize the extraction of Cu2+ ions from aqueous solutions using protic ammonium
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ionic liquids [24]. However, due to the large linewidth of the signals, it was not possible to
confirm this hypothesis.
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For the samples degraded in the presence of steel, the kinetics of formation of com-
pounds 1 and 2 were monitored. Figure 6 shows the trends of the intensity of the H2,1 and
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H2,2 signals as a function of heating time in the samples degraded in the presence and
absence of metals. The kinetics of formation of compound 2 from compound 1 seems to be
accelerated by steel.

HS-GCMS analysis was performed on the 168 h aged samples, with the aim of ob-
serving possible volatile degradation compounds in the most extreme condition. Figure 9
shows the peak area of nine main compounds identified in samples B, 4B168, 1B168, 2B168
and 3B168; these are cyclohexane, butanal, ethyl acetate, tert-butanol, methyl-vinyl ketone,
N,-N-dimethylformamide, 2-ethyl-1-hexanol and benzothiazole. However, 1-butene was
not detected, likely because it was lost in the pre-analytical phase, considering its high
volatility, or because of its oxidation. The relevant result is, indeed, the release of butanal in
the 3B168 sample, i.e., in the IL treated with copper. We can hypothesize that copper and
copper particles may act as catalyzers for the further reaction of butene. Recently, several
authors have reported the remarkable long-term stability and high selectivity towards
alkenes of Cu nanoparticles as a promising alternative to replace precious-metal-based
catalysts in selective hydrogenation [25]. It must be pointed out that even the concentration
of butanal was too low to be detected by FTIR and NMR. These volatiles probably result
from minor side reactions occurring during the degradation process.
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4. Conclusions

The structural characterization of the ionic liquid [TBuMA][NTF2], both fresh and
after thermal treatment, with or without different metals, was carried out by HRMAS NMR
and FTIR spectroscopic analyses, while HS-GC-MS was employed to reveal the formation
of volatile compounds. The degradation products of [TBuMA][NTF2] were characterized
after thermal treatment at 200 ◦C for 4, 24 and 168 h in contact with AISI 304 steel, copper
or brass, and without metals as a comparison. The combination of the above-mentioned
techniques evidenced the occurrence of degradation processes of the cation. The data
suggested a degradation mechanism compatible with the Hoffman elimination of one or
two alkyl chains from the cation, with 1-butene being one of the degradation products after
thermal treatment, both in the absence or presence of metal plates. The proposed multi-
technique approach was revealed to be suitable for the characterization of the degradation
compounds of [TBuMA][NTF2] after thermal treatment in the presence of metals, thus
proving to be a promising method for the selection of IL compounds that possess high
stability and a suitable lifetime to meet the durability requirements of commercial and
industrial solar thermal applications.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/app12031652/s1: Figure S1: comparison of 1H HRMAS spec-
trum of 4B168 (a,d) with 1D selective 1H TOCSY obtained by irradiating H1,1 (9.16 ppm, b), H1,2
(8.31 ppm, c) and H1a,3 (5.13 ppm, e).; Figure S2: 1H–13C HSQC spectrum of 4B168; Table S1: assign-
ment of 1H and 13C NMR signals of the ionic liquid B; Table S2: assignment of 1H and 13C NMR
signals of the degradation compounds 1, 2 and 3.
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