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Abstract
We compute the integral Picard group of the moduli
stack of polarized K3 surfaces of fixed degree whose
singularities are at most rational double points, and of
its coarse moduli space. We also compute the integral
Picard group of the stack of quasi-polarized K3 surfaces,
and of the stacky period domain.
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INTRODUCTION

A very interesting invariant of a moduli stack is its Picard group. It was introduced by Mumford
in [22], where he also computed the Picard group of the moduli stack of elliptic curves. This cal-
culation prompted a great amount of research in this topic, which eventually leaded to a complete
understanding of the Picard group of the moduli stack of curves over fields of almost every char-
acteristic (see [1, 10, 14, 16, 26]). In particular, knowing the Picard group of a Deligne–Mumford
stack with finite inertia also gives a description of the rational Picard group of the coarse moduli
space. Integral Picard group of other interesting moduli stacks has also been computed in recent
years [3, 7] and [11].
Another quite relevant moduli stack is the moduli stack of polarized K3 surfaces. In particular,

the rational Picard group of the moduli space𝑀𝑑 of (primitively) polarized K3 surfaces of degree
𝑑 with at most rational double points has been the subject of much research [6, 21], eventually
culminated in the proof of the so-called Noether–Lefschetz conjecture [5], from which one can
deduce the rank of Pic(𝑀𝑑) ⊗ ℚ. On the other hand, not much is known on the integral Picard
group of the associated moduli stackℳ𝑑. In this paper, we prove the following (we work over ℂ).
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834 DI LORENZO et al.

Theorem (Theorem 2.2). Letℳ𝑑 be the moduli stack of primitively polarized K3 surfaces of degree
𝑑 with at most rational double points. Then, we have

Pic(ℳ𝑑) ≃ ℤ𝜌(𝑑),

where 𝜌(𝑑) is the rank of Pic(𝑀𝑑) ⊗ ℚ computed in [6].

Furthermore, we prove that the integral Picard group of the moduli space𝑀𝑑 is torsion free.

Theorem (Corollary 2.10). Let𝑀𝑑 be themoduli space of primitively polarized K3 surfaces of degree
𝑑 with at most rational double points. Then, we have

Pic(𝑀𝑑) ≅ ℤ𝜌(𝑑).

There are other two stacks that are closely related toℳ𝑑, namely, the stack𝒦𝑑 of primitively
quasi-polarized K3 surfaces, and the stacky period domain 𝒫𝑑. At the level of schemes, the dif-
ferences between these stacks do not appear (indeed, 𝒫𝑑 and ℳ𝑑 have the same coarse moduli
space), but as stacks they are all nonisomorphic. Therefore, it makes sense to also ask what their
integral Picard groups are. We give an answer in the following.

Theorem (Theorem 3.2, Theorem 3.3, and Theorem 3.4). The following hold true:

(1) As an abstract group, Pic(𝒫𝑑) ≃ ℤ𝜌(𝑑) ⊕ ℤ∕2.
(2) The morphism𝒦𝑑 → 𝒫𝑑 induces an isomorphism Pic(𝒫𝑑) ≃ Pic(𝒦𝑑).
(3) Suppose that 𝑑

2
≢ 1 (mod 4): then we have a split short exact sequence

0⟶ Pic(ℳ𝑑)⟶ Pic(𝒫𝑑)⟶ ℤ∕2⟶ 0.

(4) Suppose 𝑑

2
≡ 1 (mod 4): then we have a nonsplit short exact sequence

0⟶ Pic(ℳ𝑑) × ℤ∕2⟶ Pic(𝒫𝑑)⟶ ℤ∕2⟶ 0.

The generator of the torsion part in the Picard groups above is made explicit in the paper.
Notice that our proof does not give any hint as to what the generators of Pic(ℳ𝑑) are. For 𝑑 ⩽ 8,

this is worked out in [9], but for higher values of 𝑑, the problem is wide open.

Structure of the paper

The paper is organized as follows. In Section 1, after introducing the moduli stacks we are inter-
ested in and after discussing some of their properties, we first show that there exists a morphism
𝒫𝑑 →ℳ𝑑 from the stacky period domain (Lemma 1.12) to the stack of polarized K3 surfaces with
rational double points, and we show that it induces an injection of Picard groups.
Then, in Section 2, we compute the torsion part of Pic(𝒫𝑑) by looking at the fundamental group

of this stack (Proposition 2.4), and then, we prove that the torsion line bundle on𝒫𝑑 does not come
fromℳ𝑑 (Lemma 2.5).
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INTEGRAL PICARD GROUP OF MODULI OF POLARIZED K3 SURFACES 835

After proving that the Picard group ofℳ𝑑 is finitely generated, we obtain the desired conclu-
sion. We then leverage the result just obtained to compute in Section 3 the Picard groups of𝒦𝑑

and𝒫𝑑 by means of certain localization exact sequences (Theorem 3.3).

Assumptions

In what follows, we always work over ℂ.

1 SOMEMODULI STACKS OF K3 SURFACES

1.1 Overview of the section

In this section, we introduce three different stacks, all of which in a sense parameterize polarized
K3 surfaces of a fixed degree.

1.2 The stack of primitively quasi-polarized K3 surfaces

Let𝒦𝑑 be the stack of primitively quasi-polarized K3 surfaces of degree 𝑑. That is, the objects of
𝒦𝑑 over a scheme 𝑆 are pairs (𝑋 → 𝑆, 𝐿), where:

∙ 𝑋 → 𝑆 is a proper, finitely presented and flat morphism whose geometric fibers are smooth K3
surfaces;

∙ 𝐿 is a section of Pic
𝑋∕𝑆

→ 𝑆 that on the geometric fibers is represented by a primitive, numer-
ically effective line bundle of degree 𝑑; we also require that if ⟨𝐿𝑠, 𝐶𝑠⟩ = 0 for a curve 𝐶𝑠 ⊂ 𝑋𝑠,
where 𝑠 is a geometric point of 𝑆, then (𝐶2𝑠 ) = −2.

The morphisms in𝒦𝑑 are given by 𝑆-isomorphisms 𝑓 ∶ 𝑋
≃
→ 𝑋′ such that 𝑓∗𝐿′ = 𝐿. The fibred

category𝒦𝑑 is a smooth Deligne–Mumford stack [24, (1.2.1), (1.2.2)] (note that in loc. cit. the stack
𝒦𝑑 is denoted as 𝕄sm

𝑑
). From now on, we will refer to the objects of 𝒦𝑑 as quasi-polarized K3

surfaces instead of primitively quasi-polarized K3 surfaces.

1.3 The stack of primitively polarized K3 surfaces of degree 𝒅with at
most rational double points

Let ℳ𝑑 denote the stack of primitively polarized K3 surfaces of degree 𝑑 with at most rational
double points. That is, the objects ofℳ𝑑 over a scheme 𝑆 are pairs (𝑋 → 𝑆, 𝐿) where:

∙ 𝑋 → 𝑆 is a proper, finitely presented and flat morphismwhose geometric fibers are K3 surfaces
with at most rational double points;

∙ 𝐿 is a section of Pic
𝑋∕𝑆

→ 𝑆 that on the geometric fibers is represented by an ample, primitive
line bundle of degree 𝑑.

The morphisms inℳ𝑑 are given by 𝑆-isomorphisms 𝑓 ∶ 𝑋
≃
→ 𝑋′ such that 𝑓∗𝐿′ = 𝐿. The fibred

categoryℳ𝑑 is a smooth Deligne–Mumford stack with a coarse moduli space, which we denote
𝑀𝑑 [18, 84] (note that in loc. cit., the stackℳ𝑑 is the one denoted as ℳ̄𝑑).
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836 DI LORENZO et al.

1.4 Lattice theory of K3 surfaces

Let Λ denote the lattice 𝐸8(−1)⊕2 ⊕ 𝑈⊕3. Given a smooth K3 surface 𝑋, this lattice arises as
𝐻2(𝑋, ℤ) together with the cohomological pairing.
Let 𝓁 be the element in Λ defined as 𝑒 + 𝑑

2
𝑓, where 𝑒 and 𝑓 form a basis for the first copy of𝑈.

Then, we denoteΛ𝑑 ∶= 𝓁⟂ the sublattice ofΛ orthogonal to 𝓁. Given a smooth K3 surface𝑋 with
a primitive quasi-polarization 𝐿 of degree 𝑑, thenΛ𝑑 arises as the orthogonal of 𝑐1(𝐿) in𝐻2(𝑋, ℤ).

1.5 Period domains

Let Ω𝑑 be the period domain of (primitively) quasi-polarized K3 surfaces of degree 𝑑, that is,

Ω𝑑 ∶=
{
𝜔 ∈ 𝐏(Λ𝑑 ⊗ 𝐂) such that⟨𝜔,𝜔⟩ > 0,⟨𝜔,𝜔⟩ > 0

}
.

This is a complex manifold, it has two connected components [19, (1.2)]. Let 𝐷𝑑 denote one con-
nected component. Then 𝐷𝑑 is a bounded symmetric domain of type IV, hence simply connected
[19, (1.2)].

1.6 Orthogonal transformations

Let 𝑂(Λ𝑑) be the group of orthogonal transformations of Λ𝑑. Set

𝑂(Λ𝑑) = ker(𝑂(Λ𝑑)⟶ 𝑂(Λ∨
𝑑
∕Λ𝑑)),

where Λ∨
𝑑
is the lattice formed by 𝑥 ∈ Λ𝑑 ⊗ 𝐐 such that ⟨𝑥,Λ⟩ ⊂ ℤ. Let 𝑂+(Λ𝑑) be the subgroup

of orthogonal transformations having positive spinor norm. We set Γ𝑑 ∶= 𝑂(Λ𝑑) ∩ 𝑂
+(Λ𝑑); this

arithmetic group can be regarded as the group of orthogonal transformations of Λ that fix 𝓁, and
it acts on the connected component 𝐷𝑑 with a properly discontinuous action [19, (1.2)], [15, p. 16].

1.7 The period stack

We define the analytic quotient stack

𝒫𝑑 ∶= [Γ𝑑⟍𝐷𝑑],

and we refer to this stack as the period stack. It is actually a smooth Deligne–Mumford stack [4,
Theorem 10.11].

1.8 The period map

There is a morphism of stacks

𝑝𝑑 ∶𝒦𝑑 ⟶ 𝒫𝑑,
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INTEGRAL PICARD GROUP OF MODULI OF POLARIZED K3 SURFACES 837

which is the stacky version of the usual period map. Indeed, given a quasi-polarized K3 sur-
face (𝜋 ∶ 𝑋 → 𝑆, 𝐿), consider the associated analytic morphism 𝜋𝑎𝑛 ∶ 𝑋𝑎𝑛 → 𝑆𝑎𝑛 and the family
of lattices 𝑅2𝜋𝑎𝑛∗ ℤ together with the cohomological pairing. The quasi-polarization 𝐿 defines a
section of 𝑅2𝜋𝑎𝑛∗ ℤ.
We can use this object to define a Γ𝑑-torsor 𝑈𝑑 →𝒦𝑑: its objects are triples (𝜋 ∶ 𝑋 → 𝑆, 𝐿, 𝛼),

where 𝛼 ∶ (𝑅2𝜋𝑎𝑛∗ ℤ, 𝐿) ≃ (Λ,𝓁) is an isomorphism of lattices that sends 𝐿 to 𝓁 (the marking of
the K3 surface). We can then construct a Γ𝑑-equivariant morphism 𝑈𝑑 → 𝐷𝑑 by sending a triple
(𝜋 ∶ 𝑋 → 𝑆, 𝐿, 𝛼) to the line subbundle 𝛼(𝜋∗Ω) ⊂ Λ𝑑 ⊗ 𝒪𝑆 . The resulting morphism 𝑝𝑑 ∶𝒦𝑑 →

[Γ𝑑⟍𝐷𝑑] is étale and representable [13, (1.2)].
Étaleness can also be verified directly by proving that for every geometric point 𝑥 ∈𝒦𝑑 and 𝑦 =

𝑝𝑑(𝑥) ∈ 𝒫𝑑, the induced homomorphism of complete rings 𝒪𝒦𝑑,𝑥
→ 𝒪𝒫𝑑,𝑦

is an isomorphism.
As explained in [20, Proof of 5.8], this blows down to verify that the induced morphism of tan-

gent spaces is an isomorphism. If the point 𝑥 corresponds to a quasi-polarized K3 surface (𝑋, 𝐿),
its tangent space corresponds to the deformation space Ext1(Ω𝑋, 𝐿

∨), which is isomorphic to the
subspace of primitive classes in𝐻1,1(𝑋).
Given an isomorphism 𝛼 ∶ (𝐻2(𝑋, ℤ), 𝐿) ≃ (Λ,𝓁), we have an induced identification of

𝐻1,1(𝑋)prim with the subspace orthogonal to the linear span of {𝜔, 𝜔} in Λ𝑑 ⊗ ℂ, where 𝜔 is any
class in 𝛼ℂ(𝐻2,0(𝑋)). The latter is exactly the tangent space of 𝐷𝑑 at [𝜔], which is isomorphic to
the tangent space of𝒫𝑑 at 𝑦, as 𝐷𝑑 → 𝒫𝑑 is étale.

Remark 1.9. The period map 𝑝𝑑 is not an isomorphism. Indeed, the induced map of auto-
morphism groups is not always surjective: consider a quasi-polarized K3 surface (𝑋, 𝐿) whose
quasi-polarization is not a polarization. Then, in𝐻1,1(𝑋), there is an element 𝛿 which is the class
of a (−2)-curve. The automorphism of 𝐻2(𝑋, ℤ) given by the reflection with respect to 𝛿 defines
then an automorphism of 𝑝𝑑(𝑋) that does not come from an automorphism of (𝑋, 𝐿) [13, (1.2)]

1.10 The contraction map

There is a morphism

𝜑𝑑 ∶𝒦𝑑 ⟶ℳ𝑑,

which sends a quasi-polarized K3 surface (𝑋 → 𝑆, 𝐿) to the image of 𝑋 via the map associated
to the linear system |𝐿⊗𝑁| for 𝑁 ⩾ 3. The image is a polarized K3 surface with at most rational
double points. The rational double points arise because of the (−2)-curves that get contracted by
the polarization.

1.11 Relation between the period map and the contraction map

Callℳsm
𝑑

the open substack ofℳ𝑑 corresponding to smooth surfaces. The complementℳ
sing

𝑑
of

ℳsm
𝑑
, with the reduced scheme structure, is a closed substack and a divisor. Set

ℳsm
𝑑

∶=ℳ𝑑 ⧵ℳ
sing

𝑑
, 𝒦sm

𝑑
∶= 𝜑−1

𝑑
(ℳsm

𝑑
).
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838 DI LORENZO et al.

Let 𝐷sm
𝑑

⊂ 𝐷𝑑 be the open subset of 𝐷𝑑 formed by those [𝜔] such that the in the sublattice 𝜔⟂ ∩
𝜔
⟂
⊂ Λ𝑑, there are no elements 𝛿 such that 𝛿2 = (−2). This open subset is Γ𝑑-invariant; hence,

we can define

𝒫sm
𝑑

∶= [Γ𝑑⟍𝐷
sm
𝑑
].

Lemma 1.12. There exists a factorization

Proof. We want to show that 𝜑𝑑 descends along 𝑝𝑑. The latter is étale, so all we have to do is
to check that there is an isomorphism pr∗

1
𝜑𝑑 ≃ pr∗

2
𝜑𝑑 on𝒦𝑑 ×𝒫𝑑

𝒦𝑑, where the pr𝑖 denote the
two projections.
Asℳ𝑑 is separated, if pr∗1 𝜑𝑑 is isomorphic to pr

∗
2
𝜑𝑑 on the generic point, they are isomorphic

everywhere. Therefore, in order to conclude is enough to observe that𝒦sm
𝑑

→ℳsm
𝑑

and𝒦sm
𝑑

→

𝒫sm
𝑑

are both isomorphisms, so we have that 𝜑𝑑 descends to 𝜑𝑑◦𝑝−1𝑑 along𝒦sm
𝑑

→ 𝒫sm
𝑑

.
This implies that there is an isomorphism pr∗

1
𝜑𝑑 ≃ pr∗

2
𝜑𝑑 on the generic point. □

Denote byℳss
𝑑
the open subset of surfaces with a single 𝐴1-singularity. Since the deformation

theory of a K3 surface with rational double points is unobstructed, and the map from the defor-
mation space of the surface to that of the singularities is smooth, we have thatℳsing

𝑑
is a reduced

divisor, andℳss
𝑑
is a dense open substack contained in the smooth locus ofℳsing

𝑑
.

Lemma 1.13. The divisor ℳsing

𝑑
has two irreducible components if 𝑑

2
≡ 1 (mod 4), and is

irreducible otherwise.

Proof. First, we prove a similar statement for𝒫sing

𝑑
: indeed, if we look at the action of Γ𝑑 on the set

of generic points of the Γ𝑑-invariant divisor 𝐷
sing

𝑑
⊂ 𝐷𝑑, we see that when

𝑑

2
≡ 1 (mod 4), this set

is made up of two orbits, and is made up of one orbit otherwise [8, Proposition 2.11]. This implies
that the substack𝒫sing

𝑑
has either two or one irreducible components.

To conclude, observe now that𝒫sing

𝑑
andℳsing

𝑑
share the same coarse space, and hence, they

must have the same number of irreducible components. □

2 COMPUTATION OF THE PICARD GROUP OF𝓜𝒅

2.1 Overview of the section

In this section, we compute the Picard group ofℳ𝑑, the stack of polarized K3 surfaces of degree
𝑑 with at most rational double points. Let 𝜌(𝑑) be the rank of the rational Picard group of𝑀𝑑 [5,
Corollary 1.3]. Then, the main result of this section is the following.

Theorem 2.2. We have

Pic(ℳ𝑑) ≃ ℤ𝜌(𝑑).

 14692120, 2024, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12968 by C

ochraneItalia, W
iley O

nline L
ibrary on [15/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



INTEGRAL PICARD GROUP OF MODULI OF POLARIZED K3 SURFACES 839

2.3 Proof of the first main theorem

By definition, 𝐷𝑑 → 𝒫𝑑 is a Γ𝑑-torsor. We can use it to define an analytic line bundle on𝒫𝑑 as fol-
lows: take𝐷𝑑 × 𝐀1 and let Γ𝑑 acts diagonally, where the action on𝐀1 is given by𝐴 ⋅ 𝜆 ∶= det(𝐴)𝜆.
The resulting quotientℒ𝑑 ∶= [Γ𝑑⟍𝐷𝑑 × 𝐀

1] is a line bundle over𝒫𝑑, which is not trivial because
the determinant of an element inΓ𝑑 is not trivial in general. Observe also thatℒ

⊗2
𝑑

≃ 𝒪𝒫𝑑
, because

the determinant of an element in Γ𝑑 is a square root of the unity.

Proposition 2.4. The analytic line bundleℒ𝑑 is algebraic, and we have

Pic(𝒫𝑑)[𝑛] ≃

{
ℤ∕2ℤ ⋅ [ℒ𝑑] if𝑛 is even,

0 if𝑛 is odd,

where Pic(𝒫𝑑)[𝑛] denotes the ℤ-submodule of elements annihilated by 𝑛.

Proof. Let 𝜇𝑛 denote the group of 𝑛-roots of unity. Then in the étale topology, we have a short
exact sequence of sheaves

0⟶ 𝜇𝑛 ⟶ 𝒪∗ (−)𝑛

⟶ 𝒪∗ ⟶ 0,

where the morphism 𝒪∗ → 𝒪∗ sends 𝑥 to 𝑥𝑛. By looking at the induced long exact sequence in
étale cohomology, we have

𝐻0(𝒫𝑑,𝒪
∗) → 𝐻0(𝒫𝑑,𝒪

∗) → 𝐻1(𝒫𝑑, 𝜇𝑛) → 𝐻1(𝒫𝑑,𝒪
∗) → 𝐻1(𝒫𝑑,𝒪

∗). (2.1)

Observe that 𝐻0(𝒫𝑑,𝒪
∗) = ℂ∗. Indeed, consider the coarse moduli space 𝜋 ∶ 𝒫𝑑 →ℳ𝑑 → 𝑀𝑑,

and its Baily–Borel compactification 𝑀𝑑: the latter is a normal projective variety [4, Theorem
10.11], and 𝑀𝑑 ⧵𝑀𝑑 has codimension > 2. This implies that 𝒪(𝑀𝑑) ≃ 𝒪(𝑀𝑑) = ℂ; as 𝑀𝑑 is a
coarse space for𝒫𝑑, we have 𝜋∗𝒪𝒫𝑑

≃ 𝒪𝑀𝑑
, from which our claim follows.

In particular, the first arrow in (2.1) is surjective because ℂ is algebraically closed. As
𝐻1(𝒫𝑑,𝒪

∗) ≃ Pic(𝒫𝑑), we deduce that Pic(𝒫𝑑)[𝑛] ≃ 𝐻1(𝒫𝑑, 𝜇𝑛). The latter group classifies cyclic
covers of𝒫𝑑, which are also classified by surjective homomorphisms 𝜋1(𝒫𝑑) → ℤ∕𝑛ℤ.
As 𝐷𝑑 is simply connected, we deduce that 𝜋1(𝒫𝑑) ≃ Γ𝑑. Any morphism Γ𝑑 → ℤ∕𝑛ℤ factors

through the abelianization of Γ𝑑, which is isomorphic to ℤ∕2ℤ [15, Theorem 1.7]. From this, we
deduce that Pic(𝒫𝑑)[𝑛] is trivial if 𝑛 is odd, and isomorphic to ℤ∕2ℤ if 𝑛 is even.
Let𝒫𝑑(ℂ) denote the analytic stack associated to𝒫𝑑, and let 𝒪∗

𝑎𝑛 denote the sheaf of invertible
holomorphic functions on𝒫𝑑(ℂ). Then, we have a commutative diagram

where𝐻𝑐𝑙(−,−) on the bottom row are the sheaf cohomology groups with respect to the analytic
topology. By Artin’s comparison theorem [2, Exposé XI, Theorem 4.4.(iii)], the first vertical arrow
is an isomorphism: this implies that ℒ𝑑 is in the image of 𝐻1(𝒫𝑑, 𝜇2) → 𝐻1

𝑐𝑙
(𝒫𝑑(ℂ),𝒪

∗
𝑎𝑛), from
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840 DI LORENZO et al.

which we deduce that it is in the image of the right vertical arrow, that is, ℒ𝑑 comes from an
algebraic line bundle, which has to be unique because of our previous computation. □

Lemma 2.5. The line bundleℒ𝑑 on𝒫𝑑 does not descend to a line bundle onℳ𝑑 .

Proof. The stabilizer of a generic point of 𝒫sing

𝑑
is 𝜇2, generated by the automorphism given by

the reflection 𝜎 with respect to the unique (up to scalar) element 𝛿 ∈ Λ𝑑 with 𝛿2 = (−2). This
automorphism does not come from an automorphism of the associated singular K3 surface [13,
Remark 1.3]. Therefore, if we show that 𝜎 acts nontrivially on a generic fiber ofℒ𝑑|𝒫sing

𝑑

, we can
conclude thatℒ𝑑 does not come fromℳ𝑑.
Recall thatℒ𝑑 is constructed using the determinant representation of Γ𝑑: then it follows that

𝜎𝑑 acts via the determinant on a generic fiber of ℒ𝑑|𝒫sing

𝑑

, and det(𝜎) = −1; we deduce that the
action of 𝜎𝑑 is not trivial, and thus, the lemma is proved. □

Lemma 2.6. We have

𝜑𝑑∗𝒪𝒦𝑑
= 𝒪ℳ𝑑

, 𝑝𝑑∗𝒪𝒦𝑑
= 𝒪𝒫𝑑

.

Proof. The first statement follows from the fact that𝜓𝑑 is proper and birational, andℳ𝑑 is smooth.
For the second, the point is that 𝑝𝑑 is representable, étale, surjective and birational. Let 𝑈 →

𝒫𝑑 be an étale map, where 𝑈 is a scheme. Set 𝑉
def
= 𝑈 ×𝒫𝑑

𝒦𝑑; then 𝑉 is an algebraic space, the
map 𝑉 → 𝑈 is étale and a homeomorphism; we need to show that the induced homomorphism
𝒪(𝑈) → 𝒪(𝑉) is an isomorphism.
If 𝑈sing and 𝑉sing are the inverse images of 𝒫sing in 𝑈 and 𝑉, respectively, and set 𝑈′ def

=

𝑈 ⧵ 𝑈sing and𝑉′ def
= 𝑉 ⧵ 𝑉sing. Then, the restriction𝑉′ → 𝑈′ of the projection𝑉 → 𝑈 is an isomor-

phism; hence, 𝒪(𝑈′) → 𝒪(𝑉′) is an isomorphism. But 𝒪(𝑈) is the subring of 𝒪(𝑈′) of function
without poles on𝑈sing, and analogously,𝒪(𝑉 is the subring of𝒪(𝑉′) of function without poles on
𝑉sing. Since 𝑉 → 𝑈 is étale and surjective, a function in 𝒪(𝑈′) has poles on𝑈sing if and only if its
pullback to 𝑉′ has poles along 𝑉sing; this completes the proof. □

Proposition 2.7. The pullback homomorphism 𝜓∗
𝑑
∶ Pic(ℳ𝑑) → Pic(𝒫𝑑) is injective.

Proof. Lemma 2.6 implies that 𝒪ℳ𝑑
→ 𝜓𝑑∗𝒪𝒫𝑑

is an isomorphism. Therefore, given a line bundle
ℒ such that 𝜓∗

𝑑
ℒ ≃ 𝒪𝒫𝑑

, applying the projection formula, we have

ℒ ≃ℒ ⊗ 𝒪ℳ𝑑
≃ℒ ⊗𝜓𝑑∗𝒪𝒫𝑑

≃ 𝜓𝑑∗(𝜓
∗
𝑑
ℒ ⊗ 𝒪𝒫𝑑

) ≃ 𝜓𝑑∗𝒪𝒫𝑑
≃ 𝒪ℳ𝑑

. □

Corollary 2.8. The Picard group ofℳ𝑑 is torsion free.

Proof. By Proposition 2.7, the pullback of any nontrivial torsion line bundle on ℳ𝑑 is a non-
trivial torsion line bundle on𝒫𝑑. The only nontrivial torsion line bundle on𝒫𝑑 isℒ𝑑, which by
Lemma 2.5 does not come fromℳ𝑑; thus, there are no nontrivial torsion line bundles onℳ𝑑. □

Lemma 2.9. The Picard group ofℳ𝑑 is finitely generated.
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INTEGRAL PICARD GROUP OF MODULI OF POLARIZED K3 SURFACES 841

Proof. Applying excision to the pairℳsing

𝑑
⊂ℳ𝑑, we see that there is an exact sequence

ℤ⊕𝑒 ⟶ Pic(ℳ𝑑)⟶ Pic(ℳsm
𝑑
)⟶ 0,

where 𝑒 is the number of irreducible components ofℳsing

𝑑
, which is either 1 or 2 by Lemma 1.13.

Therefore, is enough to prove that Pic(ℳsm
𝑑
) is finitely generated.

We have an isomorphism ℳsm
𝑑

≃ [𝐻𝑑∕PGL𝑛], where 𝐻𝑑 is a smooth quasi-projective vari-
ety [18, Example 4.5]. It always exists a PGL𝑛-representation 𝑉 such that PGL𝑛 acts freely on
an open subset 𝑈 ⊂ 𝑉 whose complement has codimension ⩾ 2 [12, Lemma 9]. Consider then
𝑋𝑑 ∶= [𝐻𝑑 × 𝑈∕PGL𝑑]: we claim that (1) 𝑋𝑑 is a scheme and (2) Pic(𝑋𝑑) ≃ Pic(ℳsm

𝑑
).

Claim (1) can be proved as follows: the quotient stack [𝑈∕PGL𝑛] is actually a scheme [12,
Lemma 9], the group PGL𝑛 is connected and 𝐻𝑑 is smooth, hence normal; from this, it follows
that [𝐻𝑑 × 𝑈∕PGL𝑛] is a (smooth) scheme [12, Proposition 23.(2)].
Claim (2) follows from the fact thatℳsm

𝑑
≃ [𝐻𝑑∕PGL𝑛] is a smooth quotient stack; hence, we

can identify its Picard group with its equivariant Picard group PicPGL𝑛(𝐻𝑑) [12, Proposition 18].
By homotopy invariance of equivariant Picard groups, we have PicPGL𝑛(𝐻𝑑) ≃ PicPGL𝑛(𝐻𝑑 × 𝑉)

[12, Lemma 2.(b)]. As the complement of 𝐻𝑑 × 𝑈 in 𝐻𝑑 × 𝑉 has codimension ⩾ 2, by exci-
sion, we deduce PicPGL𝑛(𝐻𝑑 × 𝑉) ≃ PicPGL𝑛(𝐻𝑑 × 𝑈), and the latter is isomorphic to Pic([𝐻𝑑 ×

𝑈∕PGL𝑛]) ≃ Pic(𝑋𝑑).
This implies thatPic(ℳ𝑑) ≃ Pic(𝑋𝑑), sowe reduce to proving the lemma in the case of a smooth

quasi-projective variety.
There exists a smooth compactification 𝑌𝑑 ⊃ 𝑋𝑑 ([23] and [17]), so if we prove that Pic(𝑌𝑑) is

finitely generated, we are done.
For this, observe that Pic

𝑌𝑑
is an abelian group scheme over ℂ, and we claim that Pic0

𝑌𝑑
is an

abelian variety with finitely many torsion points: if this is the case, then we can conclude that it
is trivial.
To see that Pic0

𝑌𝑑
has finitely many torsion points, consider the open embedding 𝑋𝑑 ↪ 𝑌𝑑 and

the induced pullback homomorphism of groups Pic0(𝑌𝑑) → Pic0(𝑋𝑑): if we prove that the latter
has finitely many torsion points, we are done, because the complement of 𝑋𝑑 in 𝑌𝑑 is made of
finitely many divisors. But we just proved that Pic(𝑋𝑑) ≃ Pic(ℳsm

𝑑
) that is torsion free; hence, our

claim holds true.
The claim implies that Pic(𝑌𝑑) injects into the Neron–Severi group, which is finitely generated.

This concludes the proof. □

Proof of Theorem 2.2. By Lemma 2.9 and Corollary 2.8, we know that Pic(ℳ𝑑) is a finitely gener-
ated, torsion-free abelian group. Its rank is equal to the rank of Pic(ℳ𝑑) ⊗ 𝐐, and the latter group
is isomorphic to Pic(𝑀𝑑) ⊗ 𝐐, whose rank is known [5, Corollary 1.3]. □

We can also easily compute the Picard group of the moduli space𝑀𝑑 of (primitively) polarized
K3 surfaces of degree 𝑑 with at most rational double points, leveraging Corollary 2.8.

Corollary 2.10. We have

Pic(𝑀𝑑) ≅ ℤ𝜌(𝑑).
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842 DI LORENZO et al.

Proof. Since 𝜌(𝑑) is the rank of Pic(𝑀𝑑) ⊗ ℚ, it is enough to show that the Picard group of𝑀𝑑 is
torsion free. By [25, Proposition 6.1], the coarse moduli space 𝜋 ∶ℳ𝑑 → 𝑀𝑑 induces an injection
of Picard groups 𝜋∗ ∶ Pic(𝑀𝑑) ↪ Pic(ℳ𝑑). By Corollary 2.8, the latter group is torsion-free, and
so, Pic(𝑀𝑑) is also torsion-free. □

3 THE PICARD GROUPS OF𝓟𝒅 and𝓚𝒅

3.1 Overview of the section

In this last section, we leverage our knowledge of the Picard group ofℳ𝑑 to compute the Picard
groups of𝒦𝑑 and𝒫𝑑.
From the fact that Pic(𝒫𝑑) is finitely generated, which is proved exactly like in the case ofℳ𝑑

(see Lemma 2.9), and from Proposition 2.4, we immediately obtain the following.

Theorem 3.2. As an abstract group, Pic(𝒫𝑑) ≃ ℤ𝜌(𝑑) ⊕ ℤ∕2.

The exact relation between Pic(ℳ𝑑), Pic(𝒫𝑑), and Pic(𝒦𝑑) depends onwhether
𝑑

2
≡ 1 (mod 4)

or not.

Theorem 3.3. Suppose that 𝑑

2
≢ 1 (mod 4). Then, the pullback 𝑝∗

𝑑
∶ Pic(𝒫𝑑) → Pic(𝒦𝑑) is an

isomorphism and we have a split exact sequence

where the splitting is given by 1 ↦ [ℒ𝑑].

Theorem 3.4. Suppose 𝑑

2
≡ 1 (mod 4). Then 𝑝∗

𝑑
∶ Pic(𝒫𝑑) → Pic(𝒦𝑑) is an isomorphism;

furthermore, we have a nonsplit short exact sequence

and neither class [𝒫sing

𝑑,1
] or [𝒫sing

𝑑,2
] sent to zero by the last map.

3.5 Proof of the remaining main theorems

Call𝒫sing

𝑑
and𝒦sing

𝑑
the inverse images ofℳsing

𝑑
in𝒫𝑑 and𝒦𝑑, respectively, with their reduced

scheme structure. Since𝒦𝑑 → 𝒫𝑑 is étale,𝒦
sing

𝑑
is the scheme-theoretic inverse image of𝒫sing

𝑑
.

Moreover, when 𝑑

2
≡ 1 (mod 4), let ℳsing

𝑑,𝑖
(resp., 𝒫sing

𝑑,𝑖
, 𝒦sing

𝑑,𝑖
) for = 1, 2 be the two irreducible

components ofℳsing

𝑑
(resp.,𝒫sing

𝑑
,𝒦sing

𝑑
) given by Lemma 1.13.

Lemma 3.6. We have

𝜓∗
𝑑
[ℳsing

𝑑
] = 2[𝒫sing

𝑑
], 𝑝∗

𝑑
[𝒫sing

𝑑
] = [𝒦sing

𝑑
].
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INTEGRAL PICARD GROUP OF MODULI OF POLARIZED K3 SURFACES 843

If 𝑑
2
≡ 1 (mod 4), we have

𝜓∗
𝑑
[ℳsing

𝑑,𝑖
] = 2[𝒫sing

𝑑,𝑖
], 𝑝∗

𝑑
[𝒫sing

𝑑,𝑖
] = [𝒦sing

𝑑,𝑖
].

Proof. The second equations of both statements follow from the fact that 𝑝𝑑 is étale.
For the first, notice that a generic closed point 𝜉 ∶ Specℂ →ℳsing

𝑑
corresponds to a polarized

K3 surface (𝑋, 𝐿)with only one singular point of type𝐴1. If 𝑋 → 𝑋 is the crepant resolution of 𝑋,
we can fix an isomorphism 𝛼 ∶ 𝐻2(𝑋, ℤ) ≃ Λ sending c1(𝐿) in 𝓁; by taking 𝛼 ⊗ idℂ(𝐻

2,0(𝑋)), we
obtain a point 𝛾 ∈ 𝐷𝑑 mapping to 𝜉, hence a lifting 𝜂∶ Specℂ → 𝒫𝑑 of 𝜉.
The automorphism group of 𝜂 is the stabilizer of 𝛾 in Λ𝑑, which contains the reflexion along

the element 𝛿 ∈ Λ corresponding to the class in𝐻2(𝑋, ℤ) of the (−2)-curve contracted by𝑋 → 𝑋.
Then the group homomorphism Aut 𝜂 → Aut 𝜉 is surjective, and its kernel is cyclic of order 2,
generated by the reflexion along 𝛿.
It follows that 𝜓𝑑 is ramified of order 2 along the irreducible components𝒫

sing

𝑑
, which implies

the first equations of both statements. □

Lemma3.7. For= 1, 2, the divisor [𝒫sing

𝑑,𝑖
] does not belong to the image of𝜓∗

𝑑
∶ Pic(ℳ𝑑) → Pic(𝒫𝑑).

Proof. Let us assume that 𝑖 = 1, the other case can be proved in the sameway.We argue by contra-
diction, thus suppose that [𝒫sing

𝑑,1
] = 𝜓∗

𝑑
[ℒ′]. This implies that the ideal sheaf 𝒪(−𝒫sing

𝑑,1
) comes

fromℳ𝑑.
Let 𝑥 ∈ 𝒫sing

𝑑,1
be a generic point, and let 𝜎𝑑 ∈ Aut(𝑥) be the involution that does not come from

Aut(𝜓𝑑(𝑥)). Then, 𝒪(−𝒫
sing

𝑑,1
)(𝑥) is generated by a local equation of𝒫sing

𝑑,1
on which 𝜎𝑑 should act

trivially. We now show that this is not the case.
Let 𝑦 ∈ 𝐷𝑑 be a point mapping to 𝑥 in𝒫𝑑: then there exists a (−2)-class 𝛿 ∈ Λ𝑑 such that

𝓁(𝑧) = ⟨𝛿, 𝑧⟩ = 0

is a local equation for the preimage of𝒫sing

𝑑,1
around 𝑦. By construction, the involution 𝜎𝑑 corre-

sponds to the reflection with respect to the hyperplane 𝛿⊥; hence, it maps 𝛿 ↦ −𝛿. This implies
that 𝜎 ⋅ 𝓁(𝑧) = −𝓁(𝑧), and hence, the action on the generator of 𝒪(−𝒫sing

𝑑,1
) is not trivial. We have

reached a contradiction. □

Proof of Theorem 3.3. The fact that 𝜓∗
𝑑
∶ Pic(ℳ𝑑) → Pic(𝒫𝑑) and 𝑝∗𝑑 ∶ Pic(𝒫𝑑) → Pic(𝒦𝑑) are

injective follows from Lemma 2.6 and the projection formula.
By Lemma 1.13, we have thatℳsing

𝑑
,𝒫sing

𝑑
, and𝒦sing

𝑑
are irreducible. We have three homomor-

phisms ℤ → Pic(ℳ𝑑), ℤ → Pic(𝒫𝑑), and ℤ → Pic(𝒦𝑑) sending 1 ∈ ℤ inℳsing

𝑑
,𝒫sing

𝑑
, and𝒦sing

𝑑
,

respectively. From Lemma 3.6, we get two commutative diagrams with exact rows
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844 DI LORENZO et al.

and

From the second, we get that 𝜓∗
𝑑
∶ Pic(𝒫𝑑) → Pic(𝒦𝑑) is surjective, and hence, that is an

isomorphism, as claimed.
From the first, we obtain that the cokernel of the injective map 𝜓∗

𝑑
Pic(ℳ𝑑) → Pic(𝒫𝑑) is con-

tained in the cokernel of ℤ
⋅2
vv→ ℤ, which is ℤ∕2ℤ. Since we have a 2-torsion element of Pic(𝒫𝑑),

the class ofℒ𝑑, which does not come from Pic(ℳ𝑑) (Lemma 2.5), this proves the result. □

Proof of Theorem 3.4. The fact that 𝜓∗
𝑑
∶ Pic(ℳ𝑑) → Pic(𝒫𝑑) and 𝑝∗𝑑 ∶ Pic(𝒫𝑑) → Pic(𝒦𝑑) are

injective follows from Lemma 2.6 and the projection formula, as in the previous proof.
We have ℳsing

𝑑
=ℳsing

𝑑,1
∪ℳsing

𝑑,2
, where the ℳsing

𝑑,𝑖
are integral divisors. Similarly, we have

𝒫sing

𝑑
= 𝒫sing

𝑑,1
∪𝒫sing

𝑑,2
and𝒦sing

𝑑
=𝒦sing

𝑑,1
∪𝒦sing

𝑑,2
.

Define a homomorphismℤ ⋅ 𝑒1 ⊕ ℤ ⋅ 𝑒2 → Pic(ℳ𝑑) given by 𝑒𝑖 ↦ [ℳsing

𝑑,𝑖
].We also have homo-

morphisms ℤ ⋅ 𝑒1 ⊕ ℤ ⋅ 𝑒2 → Pic(𝒫𝑑) and ℤ ⋅ 𝑒1 ⊕ ℤ ⋅ 𝑒2 → Pic(𝒦𝑑) defined in a similar way.
From the second part of Lemma 3.6, we have commutative diagrams

and

From the second, we get that 𝜓∗
𝑑
∶ Pic(𝒫𝑑) → Pic(𝒦𝑑) is surjective, and hence, that is is an

isomorphism, as claimed.
From the first, we get that there is an exact sequence

0⟶ Pic(ℳ𝑑)⟶ Pic(𝒫𝑑)
𝑓
⟶ ℤ∕2 × ℤ∕2.

Observe that 𝑓(ℒ𝑑) ≠ 0 becauseℒ𝑑 does not come from Pic(ℳ𝑑). From this, we deduce that we
have an exact sequence

0⟶ Pic(ℳ𝑑) × ℤ∕2 ⋅ [ℒ𝑑]⟶ Pic(𝒫𝑑)
g
⟶ℤ∕2.
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INTEGRAL PICARD GROUP OF MODULI OF POLARIZED K3 SURFACES 845

To prove that the last arrow is surjective, we show that g([𝒫sing

𝑑,1
]) ≠ 0 (the same argument applies

also to [𝒫sing

𝑑,2
]).

We argue by contradiction: if g([𝒫sing

𝑑,1
]) = 0, then

[𝒫sing

𝑑,1
] = 𝜓∗

𝑑
[ℒ′] + 𝑎[ℒ𝑑], 𝑎 ∈ {0, 1}.

Suppose first 𝑎 = 1. If we restrict everything to the open substack 𝒫𝑑 ⧵𝒫
sing

𝑑,1
, we deduce

that ℒ𝑑|𝒫𝑑⧵𝒫sing

𝑑,1

comes from ℳ𝑑 ⧵ℳ
sing

𝑑,1
; this is a contradiction, because by construction, the

automorphism group of a point 𝑥 ∈ 𝒫sing

𝑑,2
acts nontrivially on the fiberℒ𝑑(𝑥).

This shows that we must have 𝑎 = 0, but also this cannot be the case because of Lemma 3.7.
Therefore, g([𝒫sing

𝑑,1
]) ≠ 0 as claimed. The fact that g is not split follows from the fact that

Pic(𝒫𝑑)[2] ≃ ℤ∕2 by Proposition 2.4. □

ACKNOWLEDGMENTS
The third author was partially supported by research funds from Scuola Normale Superiore, and
by PRIN project “Derived and underived algebraic stacks and applications.” We thank the anony-
mous referee for providing very useful comments and suggestions, and for catching a mistake in
a previous version of the manuscript.
Open access funding enabled and organized by Projekt DEAL.

JOURNAL INFORMATION
The Bulletin of the London Mathematical Society is wholly owned and managed by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.

REFERENCES
1. E. Arbarello and M. Cornalba, The Picard groups of the moduli spaces of curves, Topology 26 (1987), no. 2,

153–171.
2. M. Artin, A. Grothendieck, and J.-L. Verdier, Theorie de Topos et Cohomologie Etale des Schemas I, II, III,

Lecture Notes in Mathematics, vol. 269, 270, 305, Springer, Berlin, Heidelberg, 1971.
3. S. Asgarli and G. Inchiostro, The Picard group of the moduli of smooth complete intersections of two quadrics,

Trans. Amer. Math. Soc. 372 (2019), no. 5, 3319–3346.
4. W. L. Baily and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. Math.

84 (1966), no. 3, 442–528.
5. N. Bergeron, Z. Li, J. Millson, and C. Moeglin, The Noether-Lefschetz conjecture and generalizations, Invent.

Math. 208 (2017), 501–552.
6. J. H. Bruinier, On the rank of Picard groups of modular varieties attached to orthogonal groups, Compos. Math.

133 (2002), no. 1, 49–63.
7. S. Canning and H. Larson, The integral Picard groups of low-degree Hurwitz spaces, Math. Z. 303 (2023), no. 3,

Paper No. 61, 22.
8. O. Debarre, Hyperkähler manifolds, arxiv:1810.02087.pdf, 2018.
9. A. Di Lorenzo, Integral Picard group of some stacks of polarized k3 surfaces of low degree, arXiv:1910.08758, 2019.
10. A. Di Lorenzo, Picard group of moduli of curves of low genus in positive characteristic, Manuscripta Math. 165

(2021), no. 3–4, 339–361.

 14692120, 2024, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12968 by C

ochraneItalia, W
iley O

nline L
ibrary on [15/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



846 DI LORENZO et al.

11. A. Di Lorenzo, Intersection theory on moduli of smooth complete intersections, Math. Z. 304 (2023), no. 39,
1432–1823.

12. D. Edidin and W. Graham, Equivariant intersection theory, Invent. Math. 131 (1998), no. 3, 595–634.
13. R. Friedman, A new proof of the global Torelli theorem for k3 surfaces, Ann. Math. 120 (1984), no. 2, 237–269.
14. R. Fringuelli and F. Viviani, On the Picard group scheme of the moduli stack of stable pointed curves, arXiv:

2005.06920[math.AG], 2023.
15. V. Gritsenko, K. Hulek, and G. K. Sankaran, Abelianisation of orthogonal groups and the fundamental group of

modular varieties, J. Algebra 322 (2009), no. 2, 463–478.
16. J. Harer,The second homology group of themapping class group of an orientable surface, Invent.Math. 72 (1983),

no. 2, 221–239.
17. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero: I, Ann. Math.

79 (1964), no. 1, 109–203.
18. D. Huybrechts, Lectures on K3 surfaces, Cambridge Studies in Advanced Mathematics, Cambridge University

Press, Cambridge, 2016.
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