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INTRODUCTION

A very interesting invariant of a moduli stack is its Picard group. It was introduced by Mumford
in [22], where he also computed the Picard group of the moduli stack of elliptic curves. This cal-
culation prompted a great amount of research in this topic, which eventually leaded to a complete
understanding of the Picard group of the moduli stack of curves over fields of almost every char-
acteristic (see [1, 10, 14, 16, 26]). In particular, knowing the Picard group of a Deligne-Mumford
stack with finite inertia also gives a description of the rational Picard group of the coarse moduli
space. Integral Picard group of other interesting moduli stacks has also been computed in recent
years [3, 7] and [11].

Another quite relevant moduli stack is the moduli stack of polarized K3 surfaces. In particular,
the rational Picard group of the moduli space M, of (primitively) polarized K3 surfaces of degree
d with at most rational double points has been the subject of much research [6, 21], eventually
culminated in the proof of the so-called Noether-Lefschetz conjecture [5], from which one can
deduce the rank of Pic(M,;) ® Q. On the other hand, not much is known on the integral Picard
group of the associated moduli stack .Z . In this paper, we prove the following (we work over C).
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834 | DI LORENZO ET AL.

Theorem (Theorem 2.2). Let # 4 be the moduli stack of primitively polarized K3 surfaces of degree
d with at most rational double points. Then, we have

Pic( M y) ~ 7PP,
where p(d) is the rank of Pic(M;) ® Q computed in [6].
Furthermore, we prove that the integral Picard group of the moduli space M is torsion free.

Theorem (Corollary 2.10). Let M; be the moduli space of primitively polarized K3 surfaces of degree
d with at most rational double points. Then, we have

Pic(M,) = 77D,

There are other two stacks that are closely related to .#;, namely, the stack %#; of primitively
quasi-polarized K3 surfaces, and the stacky period domain ;. At the level of schemes, the dif-
ferences between these stacks do not appear (indeed, %; and .#; have the same coarse moduli
space), but as stacks they are all nonisomorphic. Therefore, it makes sense to also ask what their
integral Picard groups are. We give an answer in the following.

Theorem (Theorem 3.2, Theorem 3.3, and Theorem 3.4). The following hold true:

(1) Asan abstract group, Pic(#) ~ 2P @ 7/2.
(2) The morphism 3 — P induces an isomorphism Pic(%;) =~ Pic(#y).
(3) Suppose that % # 1 (mod 4): then we have a split short exact sequence

0 — Pic(My) — Pic(P) — Z2/2 — 0.
(4) Suppose % =1 (mod 4): then we have a nonsplit short exact sequence
0 — Pic(M ) X Z/2 —> Pic(P) — 7/2 — 0.

The generator of the torsion part in the Picard groups above is made explicit in the paper.
Notice that our proof does not give any hint as to what the generators of Pic(.# ;) are. For d < 8,
this is worked out in [9], but for higher values of d, the problem is wide open.

Structure of the paper

The paper is organized as follows. In Section 1, after introducing the moduli stacks we are inter-
ested in and after discussing some of their properties, we first show that there exists a morphism
Py — M 4 from the stacky period domain (Lemma 1.12) to the stack of polarized K3 surfaces with
rational double points, and we show that it induces an injection of Picard groups.

Then, in Section 2, we compute the torsion part of Pic(%;) by looking at the fundamental group
of this stack (Proposition 2.4), and then, we prove that the torsion line bundle on %; does not come
from . ; (Lemma 2.5).
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INTEGRAL PICARD GROUP OF MODULI OF POLARIZED K3 SURFACES | 835

After proving that the Picard group of .# is finitely generated, we obtain the desired conclu-
sion. We then leverage the result just obtained to compute in Section 3 the Picard groups of %
and %, by means of certain localization exact sequences (Theorem 3.3).

Assumptions

In what follows, we always work over C.

1 | SOME MODULI STACKS OF K3 SURFACES
1.1 | Overview of the section

In this section, we introduce three different stacks, all of which in a sense parameterize polarized
K3 surfaces of a fixed degree.

1.2 | The stack of primitively quasi-polarized K3 surfaces

Let %, be the stack of primitively quasi-polarized K3 surfaces of degree d. That is, the objects of
H 4 over a scheme S are pairs (X — S, L), where:

* X — Sisa proper, finitely presented and flat morphism whose geometric fibers are smooth K3
surfaces;

* L is a section of Pic, . — S that on the geometric fibers is represented by a primitive, numer-
ically effective line bundle of degree d; we also require that if (L, Cy) = 0 for a curve C; C X,

where s is a geometric point of S, then (CSZ) = -2

The morphisms in #; are given by S-isomorphisms f : X > X’ such that f*L’ = L. The fibred
category % is a smooth Deligne-Mumford stack [24, (1.2.1), (1.2.2)] (note that in loc. cit. the stack
F g is denoted as M}"). From now on, we will refer to the objects of %, as quasi-polarized K3
surfaces instead of primitively quasi-polarized K3 surfaces.

1.3 | The stack of primitively polarized K3 surfaces of degree d with at
most rational double points

Let ./, denote the stack of primitively polarized K3 surfaces of degree d with at most rational
double points. That is, the objects of .#; over a scheme S are pairs (X — S, L) where:

* X — Sisaproper, finitely presented and flat morphism whose geometric fibers are K3 surfaces
with at most rational double points;

* L is a section of Pic, /s~ S that on the geometric fibers is represented by an ample, primitive
line bundle of degree d.

The morphisms in .#, are given by S-isomorphisms f : X > X’ such that f*L' = L. The fibred
category ./ 4 is a smooth Deligne-Mumford stack with a coarse moduli space, which we denote
M, [18, 84] (note that in loc. cit., the stack . is the one denoted as .Z ;).
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836 | DI LORENZO ET AL.

1.4 | Lattice theory of K3 surfaces
Let A denote the lattice Eq(—1)®? @ U®3. Given a smooth K3 surface X, this lattice arises as
H?(X, Z) together with the cohomological pairing.

Let  be the element in A defined as e + % f,where e and f form a basis for the first copy of U.

Then, we denote Ay :=7¢ L the sublattice of A orthogonal to Z. Given a smooth K3 surface X with
a primitive quasi-polarization L of degree d, then A arises as the orthogonal of ¢, (L) in H*(X, Z).

1.5 | Period domains
Let Q, be the period domain of (primitively) quasi-polarized K3 surfaces of degree d, that is,
Q4 :={w € P(A; ® C) such that(w, w) > 0,(w, ) > 0}.
This is a complex manifold, it has two connected components [19, (1.2)]. Let D; denote one con-

nected component. Then D, is a bounded symmetric domain of type IV, hence simply connected
[19, 1.2)].

1.6 | Orthogonal transformations
Let O(A,) be the group of orthogonal transformations of A;. Set
O(Ag) = ker(0(Ag) — O(AY/Ag)),
where AZ is the lattice formed by x € A; ® Q such that (x,A) C Z. Let O (A,) be the subgroup
of orthogonal transformations having positive spinor norm. We set T; := O(A,) N O*(A,); this

arithmetic group can be regarded as the group of orthogonal transformations of A that fix #, and
it acts on the connected component D, with a properly discontinuous action [19, (1.2)], [15, p. 16].

1.7 | The period stack
We define the analytic quotient stack
Py 1= Tg\Dyl,

and we refer to this stack as the period stack. It is actually a smooth Deligne-Mumford stack [4,
Theorem 10.11].

1.8 | The period map
There is a morphism of stacks

Pa  Eqg— Ty,
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which is the stacky version of the usual period map. Indeed, given a quasi-polarized K3 sur-
face (x : X — S, L), consider the associated analytic morphism 79" : X% — S and the family
of lattices R°7%"Z together with the cohomological pairing. The quasi-polarization L defines a
section of R?79"Z.

We can use this object to define a I'j-torsor U; — % its objects are triples (7 : X — S,L,a),
where a (Rzn'g”Z,L) ~ (A, ¢) is an isomorphism of lattices that sends L to # (the marking of
the K3 surface). We can then construct a I' j-equivariant morphism U; — D, by sending a triple
(mr : X - S,L, ) to the line subbundle a(7,.Q) C A; ® Og. The resulting morphism p; : #,; —
[T4\Dy] is étale and representable [13, (1.2)].

Etaleness can also be verified directly by proving that for every geometrlc pointx € F andy =
Dq(x) € %, the induced homomorphism of complete rings @% x @9 y is an isomorphism.

As explained in [20, Proof of 5.8], this blows down to verify that the 1nduced morphism of tan-
gent spaces is an isomorphism. If the point x corresponds to a quasi-polarized K3 surface (X, L),
its tangent space corresponds to the deformation space Ext'(Qy, L), which is isomorphic to the
subspace of primitive classes in H1(X).

Given an isomorphism « : (H*(X,Z),L) ~ (A,£), we have an induced identification of
HM(X Jprim With the subspace orthogonal to the linear span of {w, w} in A; ® C, where w is any
class in ac(H*>°(X)). The latter is exactly the tangent space of D, at [w], which is isomorphic to
the tangent space of &, aty, as D; — %, is étale.

Remark 1.9. The period map p, is not an isomorphism. Indeed, the induced map of auto-
morphism groups is not always surjective: consider a quasi-polarized K3 surface (X, L) whose
quasi-polarization is not a polarization. Then, in H"!(X), there is an element & which is the class
of a (—2)-curve. The automorphism of H2(X, Z) given by the reflection with respect to & defines
then an automorphism of p,;(X) that does not come from an automorphism of (X, L) [13, (1.2)]

1.10 | The contraction map
There is a morphism
Pa + Fq—> Mg,
which sends a quasi-polarized K3 surface (X — S, L) to the image of X via the map associated
to the linear system |L®N| for N > 3. The image is a polarized K3 surface with at most rational

double points. The rational double points arise because of the (—2)-curves that get contracted by
the polarization.

1.11 | Relation between the period map and the contraction map

Call .7™ the open substack of . corresponding to smooth surfaces. The complement ./ sing.

% sm Wlth the reduced scheme structure, is a closed substack and a divisor. Set

M = M\ MEE, K = ] M.
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Let Dzm C D, be the open subset of D, formed by those [w] such that the in the sublattice w' N

ot c A, there are no elements & such that 8% = (—2). This open subset is I';-invariant; hence,
we can define

P = [TA\DS].

Lemma 1.12. There exists a factorization

Proof. We want to show that ¢, descends along p,. The latter is étale, so all we have to do is
to check that there is an isomorphism pr} ¢  ~ pr; ¢ on Fy X, Fy, where the pr; denote the
two projections.

As M 4 is separated, if pr] ¢, is isomorphic to pr3 ¢, on the generic point, they are isomorphic
everywhere. Therefore, in order to conclude is enough to observe that )™ — 47" and Z )™ —
;™ are both isomorphisms, so we have that ¢, descends to ¢ 0 p;l along Z3" — P

This implies that there is an isomorphism pr} ¢4 =~ pr; ¢, on the generic point. O

Denote by .7’ the open subset of surfaces with a single A, -singularity. Since the deformation
theory of a K3 surface with rational double points is unobstructed, and the map from the defor-

mation space of the surface to that of the singularities is smooth, we have that ./# ng is a reduced
sing

divisor, and ./ fis is a dense open substack contained in the smooth locus of .Z ;=.

Lemma 1.13. The divisor ﬂ;ing has two irreducible components if % =1 (mod 4), and is
irreducible otherwise.

Proof. First, we prove a similar statement for @;ing: indeed, if we look at the action of T'; on the set

of generic points of the T;-invariant divisor Dzing C D,, we see that when % =1 (mod 4), this set
is made up of two orbits, and is made up of one orbit otherwise [8, Proposition 2.11]. This implies
that the substack g’dsmg has either two or one irreducible components.

To conclude, observe now that g’;ing and ;ing share the same coarse space, and hence, they
must have the same number of irreducible components. O

2 | COMPUTATION OF THE PICARD GROUP OF
2.1 | Overview of the section
In this section, we compute the Picard group of .Z, the stack of polarized K3 surfaces of degree

d with at most rational double points. Let p(d) be the rank of the rational Picard group of My [5,
Corollary 1.3]. Then, the main result of this section is the following.

Theorem 2.2. We have

Pic( ) ~ 7P D).
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INTEGRAL PICARD GROUP OF MODULI OF POLARIZED K3 SURFACES 839

2.3 | Proof of the first main theorem

By definition, D; — %, is a I';-torsor. We can use it to define an analytic line bundle on %, as fol-
lows: take D; X A! and let T'; acts diagonally, where the action on Al is given by A - 1 : = det(A)A.
The resulting quotient &, := [[;\D, X A!] is a line bundle over %;, which is not trivial because
the determinant of an element in I'; is not trivial in general. Observe also that 3?2 ~ Oy, ,because
the determinant of an element in I'; is a square root of the unity.

Proposition 2.4. The analytic line bundle &, is algebraic, and we have

. Z2/27 - | & ifn is even,
Pie(Zpln] z{ / O[ & g}n is odd.

where Pic(%)[n] denotes the Z-submodule of elements annihilated by n.

Proof. Let u, denote the group of n-roots of unity. Then in the étale topology, we have a short
exact sequence of sheaves

-r
0— u, — 0" — 0" — 0,

where the morphism 0* — 0 sends x to x". By looking at the induced long exact sequence in
étale cohomology, we have

H(%,,0%) - H'(%;,6%) - H' (P}, ) —» HY(P;, 0%) - H (P, 0%). (2.1)

Observe that HY(%, 6*) = C*. Indeed, consider the coarse moduli space 7 : % — My — M,
and its Baily-Borel compactification ]\_/Id: the latter is a normal projective variety [4, Theorem
10.11], and My \ M, has codimension > 2. This implies that 6(M,) ~ 6(M,) = C; as M, is a
coarse space for %, we have 7,04, =~ 0y , from which our claim follows.

In particular, the first arrow in (2.1) is surjective because C is algebraically closed. As
HY(P;, 0%) ~ Pic(%;), we deduce that Pic(%,))[n] ~ H(%;, u,). The latter group classifies cyclic
covers of %;, which are also classified by surjective homomorphisms 7,(%;) - Z/nZ.

As D, is simply connected, we deduce that 7,(%;) ~ I';. Any morphism I'y — Z/nZ factors
through the abelianization of 'y, which is isomorphic to Z/27 [15, Theorem 1.7]. From this, we
deduce that Pic(%)[n] is trivial if n is odd, and isomorphic to Z/27Z if n is even.

Let %(C) denote the analytic stack associated to %, and let 0, denote the sheaf of invertible
holomorphic functions on %,;(C). Then, we have a commutative diagram

HY Py py) —> H'(P4,0%)

l 1

H(P4(C), 1) — H(P¢(C), 05,)

where H(—, —) on the bottom row are the sheaf cohomology groups with respect to the analytic
topology. By Artin’s comparison theorem [2, Exposé XI, Theorem 4.4.(iii)], the first vertical arrow
is an isomorphism: this implies that Z, is in the image of H' (%, u,) — Hgl(ﬁd(c), o* ), from
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which we deduce that it is in the image of the right vertical arrow, that is, &, comes from an
algebraic line bundle, which has to be unique because of our previous computation. O

Lemma 2.5. The line bundle £, on %, does not descend to a line bundle on ./ 4.

Proof. The stabilizer of a generic point of e@smg is u,, generated by the automorphism given by

the reflection o with respect to the unique (up to scalar) element 6 € A, with 6% = (=2). This

automorphism does not come from an automorphism of the associated singular K3 surface [13,

Remark 1.3]. Therefore, if we show that o acts nontrivially on a generic fiber of Z,| sing, We can
“d

conclude that &, does not come from ..
Recall that &, is constructed using the determinant representation of I';: then it follows that
0, acts via the determinant on a generic fiber of Z| sing, and det(c) = —1; we deduce that the
“d

action of o4 is not trivial, and thus, the lemma is proved. O

Lemma 2.6. We have

?ix0%, = Oy, PaxOx, = O,

Proof. The first statement follows from the fact that ¢ is proper and birational, and .Z ; is smooth.

For the second, the point is that p, is representable étale, surjective and birational. Let U —
&, be an étale map, where U is a scheme. Set VEUx o, #q; then V' is an algebraic space, the
map V — U is étale and a homeomorphism; we need to show that the induced homomorphism
O(U) - 6(V) is an isomorphism.

If US"¢ and VSlng are the inverse images of 2%"¢ in U and V, respectively, and set U=
U\ Us"8and =A% \ V5i"8 Then, the restriction V/ — U’ of the projection V' — U is an isomor-
phism; hence, 6(U’) — 6(V') is an isomorphism. But O(U) is the subring of 6(U") of function
without poles on U™, and analogously, O(V is the subring of @(V") of function without poles on
Vsing Since V' — U is étale and surjective, a function in 6(U”) has poles on U"8 if and only if its
pullback to V” has poles along VSI"8; this completes the proof. O

Proposition 2.7. The pullback homomorphism ¢’ : Pic(M ;) — Pic(F) is injective.

Proof. Lemma 2.6 implies that 0 ;, — 13, 0g, is an isomorphism. Therefore, given a line bundle
& such that gb;g ~ Og,» applying the projection formula, we have

L2ZQ0y, =L ®Yy0gp =i L ® 0zp) =4,05 =04, O
Corollary 2.8. The Picard group of /4 is torsion free.
Proof. By Proposition 2.7, the pullback of any nontrivial torsion line bundle on .#, is a non-
trivial torsion line bundle on ;. The only nontrivial torsion line bundle on %, is Z,;, which by

Lemma 2.5 does not come from .# 4; thus, there are no nontrivial torsion line bundleson .Z;. []

Lemma 2.9. The Picard group of /4 is finitely generated.
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INTEGRAL PICARD GROUP OF MODULI OF POLARIZED K3 SURFACES 841

Proof. Applying excision to the pair .#Z ;ing C M4, we see that there is an exact sequence
7%¢ — Pic(M 3) — Pic(M™) — 0,

where e is the number of irreducible components of .# ng, which is either 1 or 2 by Lemma 1.13.
Therefore, is enough to prove that Pic(.#™) is finitely generated.

We have an isomorphism .#3" ~ [H;/PGL, ], where Hy is a smooth quasi-projective vari-
ety [18, Example 4.5]. It always exists a PGL,,-representation V such that PGL,, acts freely on
an open subset U C V whose complement has codimension > 2 [12, Lemma 9]. Consider then
X, 1= [Hy x U/PGL,]: we claim that (1) X is a scheme and (2) Pic(X) ~ Plc(./%fim).

Claim (1) can be proved as follows: the quotient stack [U/PGL,] is actually a scheme [12,
Lemma 9], the group PGL,, is connected and H, is smooth, hence normal; from this, it follows
that [H; X U/PGL, ] is a (smooth) scheme [12, Proposition 23.(2)].

Claim (2) follows from the fact that .#3™ ~ [H,/PGL,] is a smooth quotient stack; hence, we
can identify its Picard group with its equivariant Picard group PicPtn(H 4) [12, Proposition 18].
By homotopy invariance of equivariant Picard groups, we have Pic?™(H, d) = PicPStn(H aXV)
[12, Lemma 2.(b)]. As the complement of H; X U in H; X V has codimension > 2, by exci-
sion, we deduce PicPCln (HyXV) =~ PicPCn (Hyz x U), and the latter is isomorphic to Pic([H, X
U/PGL,]) ~ Pic(X,).

This implies that Pic(# ;) ~ Pic(X,), so we reduce to proving the lemma in the case of a smooth
quasi-projective variety.

There exists a smooth compactification Y,; D X, ([23] and [17]), so if we prove that Pic(Y) is
finitely generated, we are done.

For this, observe that Pic,, 1s an abelian group scheme over C, and we claim that PlC is an
abelian variety with f1n1tely many torsion points: if this is the case, then we can conclude ‘that it
is trivial.

To see that P_ic?,d has finitely many torsion points, consider the open embedding X; < Y, and

the induced pullback homomorphism of groups Pic’(Y,;) — Pic’(X,): if we prove that the latter
has finitely many torsion points, we are done, because the complement of X; in Y; is made of
finitely many divisors. But we just proved that Pic(X;) ~ Pic(.# flm) that is torsion free; hence, our
claim holds true.

The claim implies that Pic(Y ;) injects into the Neron-Severi group, which is finitely generated.
This concludes the proof. O

Proof of Theorem 2.2. By Lemma 2.9 and Corollary 2.8, we know that Pic(.# ;) is a finitely gener-
ated, torsion-free abelian group. Its rank is equal to the rank of Pic(.Z ;) ® Q, and the latter group
is isomorphic to Pic(M,) ® Q, whose rank is known [5, Corollary 1.3]. O

We can also easily compute the Picard group of the moduli space M, of (primitively) polarized
K3 surfaces of degree d with at most rational double points, leveraging Corollary 2.8.

Corollary 2.10. We have

Pic(M,) = 774,
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842 | DI LORENZO ET AL.

Proof. Since p(d) is the rank of Pic(M,;) ® Q, it is enough to show that the Picard group of M, is
torsion free. By [25, Proposition 6.1], the coarse moduli space 7 : /#; — M, induces an injection
of Picard groups n* : Pic(M,;) < Pic( ). By Corollary 2.8, the latter group is torsion-free, and
so, Pic(M,) is also torsion-free. O

3 | THE PICARD GROUPS OF &¥#; and % ;
3.1 | Overview of the section
In this last section, we leverage our knowledge of the Picard group of ./, to compute the Picard
groups of #; and %,.

From the fact that Pic(%,) is finitely generated, which is proved exactly like in the case of ./,
(see Lemma 2.9), and from Proposition 2.4, we immediately obtain the following.

Theorem 3.2. As an abstract group, Pic(#)) ~ z2°D @ 7 /2.

The exact relation between Pic(.# ), Pic(%;), and Pic(# ;) depends on whether % =1 (mod 4)
or not.

Theorem 3.3. Suppose that g # 1 (mod 4). Then, the pullback pz : Pic(%;) — Pic(H,) is an
isomorphism and we have a split exact sequence

0 — Picly —%3 PicP, —3 7/2 — 0.
where the splitting is given by 1 — [Z;].

Theorem 3.4. Suppose %E 1 (mod 4). Then p;: Pic(%;) — Pic(H) is an isomorphism;
furthermore, we have a nonsplit short exact sequence

*xid
0 — Picly x7/2 255 picp, — 7/2 — 3 0.

and neither class [9’;1111 8 or [gj?g] sent to zero by the last map.

3.5 | Proof of the remaining main theorems

Call @;ing and %;ing the inverse images of .# Zing in &, and %, respectively, with their reduced
scheme structure. Since #y — % is étale, %, is the scheme-theoretic inverse image of 2,"¢.
Moreover, when g =1 (mod 4), let # erl.lg (resp., @;ling, %;l?g) for = 1, 2 be the two irreducible

components of .# Zing (resp., @;ing, %;ing) given by Lemma 1.13.
Lemma 3.6. We have

Yl = 2[2),  pilR el = [
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If % =1 (mod 4), we have

¢d[ smg] z[gliling]’ pd[g,smg] — [ smg].
Proof. The second equations of both statements follow from the fact that p, is étale.

For the first, notice that a generic closed point & : SpecC — /%ng corresponds to a polarized
K3 surface (X, L) with only one singular point of type A,. If X — X is the crepant resolution of X,
we can fix an isomorphism « : H*(X, Z) ~ A sending c;(L) in #; by taking a ® id-(H>°(X)), we
obtain a point y € D; mapping to &, hence a liftingn : SpecC — %, of §.

The automorphism group of 7 is the stabilizer of y in A,, which contains the reflexion along
the element § € A corresponding to the class in H*(X, Z) of the (—2)-curve contracted by X — X.
Then the group homomorphism Autyn — Auté is surjective, and its kernel is cyclic of order 2,
generated by the reflexion along &.

It follows that 1, is ramified of order 2 along the irreducible components 9=, which implies
the first equations of both statements. O

sing

Lemma3.7. For= 1, 2, the divisor [(@;iing] does not belong to the image of ) : Pic(# 3) — Pic(Fy).

Proof. Letus assume thati = 1, the other case can be proved in the same way. We argue by contra-
diction, thus suppose that [2 Slng] P d[ff’ ]. This implies that the ideal sheaf 6(— QDSIID &) comes
from ;. ’

Letx € 9’ M hea generic point, and let o; € Aut(x) be the involution that does not come from
Aut(hy(x)). Then O(— @Slng)(x) is generated by a local equation of 9’;? & on which o4 should act

trivially. We now show that this is not the case.
Let y € D, be a point mapping to x in &%;: then there exists a (—2)-class § € A, such that

£(z)=(58,z) =0

sing

is a local equation for the preimage of &% * around y. By construction, the involution o, corre-

sponds to the reflection with respect to the hyperplane §*; hence, it maps § — —3. This implies
that o - £(z) = —£(z), and hence, the action on the generator of O(— Q’Slng) is not trivial. We have
reached a contradiction. O

Proof of Theorem 3.3. The fact that z,b; : Pic(4 ) — Pic(%) and p; : Pic(%;) — Pic(%,) are
injective follows from Lemma 2.6 and the projection formula.
By Lemma 1.13, we have that ./# ng, gjdsmg, and %;mg are irreducible. We have three homomor-

phisms Z — Pic(# ;), Z — Pic(%;), and Z — Pic(H,;) sending 1 € Z in ,/%Zing, gﬁdsing, and %;ing,
respectively. From Lemma 3.6, we get two commutative diagrams with exact rows

Z — Pic(Mly) — Pic(U3™) — 0

I |

7 — Pic(Py) — Pic(UlE™) — 0
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844 | DI LORENZO ET AL.

and

7 — Pic(Py) — Pic(F™) — 0

H I |

Z — Pic(Hy) — Pic(H) — 0

From the second, we get that z,b;;: Pic(%;) — Pic(#,) is surjective, and hence, that is an
isomorphism, as claimed.
From the first, we obtain that the cokernel of the injective map 1/)2 Pic( 4 ;) — Pic(%) is con-

2
tained in the cokernel of Z — Z, which is Z/2Z. Since we have a 2-torsion element of Pic(%;),
the class of £;, which does not come from Pic(.# ;) (Lemma 2.5), this proves the result. O

Proof of Theorem 3.4. The fact that z,bz : Pic(# ) — Pic(%) and pl’; : Pic(%y) — Pic(H,) are
injective follows from Lemma 2.6 and the projection formula, as in the previous proof.

We have /%ng = /% smg U /%anlg, where the /% Smg are integral divisors. Similarly, we have

gjsing — gjsing U @sing an d %81ng e%,smg U %51ng
d .

Definea homomorph1sm Z-e,®Z e, > Plc(/% q)givenbye; — [ Slng] We also have homo-
morphisms Z-e; @ Z-e, — Pic(#) and Z-e,  Z - e, — Pic(H}) deflned in a similar way.
From the second part of Lemma 3.6, we have commutative diagrams

Z-e,®7-e; — Pic(ily) — Pic(UE™) — 0

ook

Z-e,®Z-e; — Pic(Py) —— Pic(M}") ——> 0

and

Z-e,®7Z-e; — Pic(Py) — Pic(P)") —— 0

H I |

Z-e,@®7Z-e; — Pic(Hy) — Pic(XJ") — 0.
From the second, we get that gb; : Pic(%;) — Pic(H,) is surjective, and hence, that is is an

isomorphism, as claimed.
From the first, we get that there is an exact sequence

0 —> Pic(ully) — Pic(P)) <> 7/2% 2)2.

Observe that f(Z,;) # 0 because £; does not come from Pic(.#Z ;). From this, we deduce that we
have an exact sequence

0 —> Pic(ly) X Z/2 - [ 23] —> Pic(P)) — Z/2.
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To prove that the last arrow is surjective, we show that g([@;ilng]) # 0 (the same argument applies
also to [@;?g]).

We argue by contradiction: if g([@;ifg]) =0, then
[9;,11r1g] =YL 1 +alZ,], a€fo1}

Suppose first a = 1. If we restrict everything to the open substack g’d\g’smg we deduce

d1l ’
that gdl

8. this is a contradiction, because by construction, the

P\ comes from A, \ M a1

d1
automorphism group of a point x € @iglg acts nontrivially on the fiber &;(x).

This shows that we must have a = 0, but also this cannot be the case because of Lemma 3.7.
Therefore, g(['@;’llng]) # 0 as claimed. The fact that ¢ is not split follows from the fact that
Pic(%))[2] ~ Z/2 by Proposition 2.4. O
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