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Abstract
We consider the generalized Choquard equation of the type

−�Q + Q = I (|Q|p)|Q|p−2Q,

for 3 ≤ n ≤ 5, with Q ∈ H1
rad(R

n), where the operator I is the classical Riesz potential
defined by I ( f )(x) = (−�)−1 f (x) and the exponent p ∈ (2, 1 + 4/(n − 2)) is energy
subcritical. We consider Weinstein-type functional restricted to rays passing through the
ground state. The corresponding real valued function of the path parameter has an appropriate
analytic extension. We use the properties of this analytic extension in order to show local
uniqueness of ground state solutions. The uniqueness of the ground state solutions for the
case p = 2, i.e. for the case of Hartree–Choquard, is well known. The main difficulty for the
case p > 2 is connected with a possible lack of control on the L p norm of the ground states
as well on the lack of Sturm’s comparison argument.
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1 Main results

In this work we study the uniqueness of the ground states for generalized Choquard equation

− �u + u = I (|u|p)|u|p−2u. (1.1)

Here and below I ( f ) is the Riesz potential defined by

I ( f )(x) = (−�)−1 f (x) = G0 ∗ f (x), G0(|y|) = 1

(n − 2)|Sn−1|
1

|y|n−2 , (1.2)

where 3 ≤ n ≤ 5 and |Sn−1| = nπn/2/�(1 + n/2) being the surface measure of the unit
sphere inR

n .The active study of the existence and qualitative behavior of the ground states Q
is closely connected with stability/instability properties of the corresponding standing waves
U (t, x) = eiωt u(x) that are solutions of the Cauchy problem for NLS

i∂tU + �U + I (|U |p)|U |p−2U = 0, (t, x) ∈ R × R
n,

U (0, x) = u(x).
(1.3)

The study of the H1-evolution dynamics of thisCauchy problem ismotivated by the important
question of orbital stability/instability properties of the standing waves. The existence of
ground states is studied in [4, 17, 18], while [20, 21] treat the decay and scattering properties
of the ground states. A detailed classification result for linearized stability properties of the
standing waves is obtained in [5]. Considering linearization of (1.3) around standing waves,
one can apply the classification results from [5] and deduce that linearized stability holds for
p ∈ (1+2/n, 1+4/n),while linearized instability is fulfilled for p ∈ [1+4/n, 1+4/(n − 2)).
The ground states in this case can be obtained (see Theorem 2 in [5]) via the minimization
problem

Eσ = inf
u∈H1, ‖u‖2

L2
=σ

Ep(u). (1.4)

Here and below

Ep(u) = 1

2
‖∇u‖2L2 − 1

2p
D(|u|p, |u|p), (1.5)

where

D(|u|p, |u|p) = 〈I (|u|p), |u|p〉L2 = ∥∥(−�)−1/2|u|p∥∥2L2 . (1.6)

Since the local uniqueness of ground states for n = 3 and p < 7/3 is already discussed in [7]
and since our goal is to study the general case 3 ≤ n ≤ 5 and 2 < p < 1+4/(n−2),we shall
turn back to the approach in [17] where the ground states are associated with Weinstein-type
functional

Wp(u) = ‖∇u‖2
L2 + ‖u‖2

L2

p
√
D(|u|p, |u|p) . (1.7)

Namely, we define

W = inf
u∈H1

rad\{0}
Wp(u), (1.8)

where

H1
rad(R

n) = {u ∈ H1(Rn); u(x) = u(|x |)}.
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One can use the Gagliardo–Nirenberg type inequality

D(|u|p, |u|p) ≤ C‖u‖n+2−p(n−2)
L2 ‖∇u‖np−(n+2)

L2 (1.9)

and verify that W is a positive constant. Nontrivial minimizer u ∈ H1
rad of (1.8) exists (see

[5, 17]) and it can be normalized (multiplying it by appropriate constant) so that it satisfies
the Euler–Lagrange equation (1.1) and the condition

‖∇u‖2L2 + ‖u‖2L2 = D(|u|p, |u|p). (1.10)

As a consequence, it satisfies the Pohozaev identity

‖∇u‖2
np − n − 2

= D(|u|p, |u|p)
2p

.

Summarizing, we have the following relations

‖u‖2
β

= ‖∇u‖2
γ

= D(|u|p, |u|p)
p

= kW , (1.11)

where

β = n + 2 − p(n − 2)

2
, γ = np − n − 2

2
= p − β (1.12)

and

kW = 1

p
W p/(p−1).

Now we can state our first main result, which treats the local uniqueness of minimizers Q of
(1.8), satisfying the normalization condition (1.10).

Theorem 1.1 Assume n ≥ 3 and 2 < p < 1+4/(n−2). Then one can find ε ∈ (0, 1), so that
for any two radial positive minimizers Q1, Q2 ∈ H1

rad of (1.8), satisfying the normalization
condition (1.10) and such that

‖Q1 − Q2‖L2
rad

≤ ε,

we have Q1 = Q2.

Remark 1.1 Note that the Pohozaev normalization conditions (1.11) are obtained as a con-
sequence of the fact that Q is a minimizer of (1.8) and satisfies (1.10), so there is universal
constant R > 0, so that

‖Q‖H1 ≤ R (1.13)

for any minimizer Q satisfying (1.10).

Another important question is the nondegeneracy of the ground state. The degeneracy of the
ground state means that the kernel of the operator

L+ = −� + 1 − pI (Qp−1·)Qp−1 − (p − 1)I (Qp)Qp−2 (1.14)

is non trivial on H1
rad . Here and below Q(|x |) ∈ H1

rad(R
n) is a radial positive solution of

(1.1), so that setting A(|x |) = (−�)−1Qp(|x |) and r = |x | we have the following ordinary
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differential system

− ∂2r Q(r) − n − 1

r
∂r Q(r) + Q(r) = A(r)Q(r)p−1

− ∂2r A(r) − n − 1

r
∂r A(r) = Qp(r).

(1.15)

The operator L+ becomes

L+ = −∂2r − n − 1

r
∂r + 1 − pI (Qp−1·)Qp−1 − (p − 1)AQp−2. (1.16)

Our next result treats the dimension of the kernel of L+ in H1
rad(R

n). To be more precise, if
h ∈ H1

rad(R
n)∩KerL+, then we can have stronger regularity properties (see Proposition 2.2

below)

h ∈ Hs
q , s ∈ [0, p + 1), 1 < q < ∞,

where the Sobolev space Hs
q , defined for s ∈ R and q as above, is the closure of the Schwartz

functions under the norm ‖ f ‖Hs
q (Rn) = ‖(1 − �)s/2 f ‖Lq (Rn). If h ∈ H1

rad(R
n) is a radial

solution of the equation L+h = 0, then the couple of h and B = (−�)−1Qp−1h satisfies
the system of nonlinear second-order differential equations

h′′(r) + n − 1

r
h′(r) = h(r) − pBQp−1 − (p − 1)AQp−2h,

B ′′(r) + n − 1

r
B ′(r) = −Qp−1h.

⎫

⎪⎬

⎪⎭

(1.17)

Our key point in the proof of Theorem 1.1 is the following.

Theorem 1.2 There is no classical solution (h, B) of the Cauchy problem (1.17) with initial
data

h(0) > 0, h′(0) = 0, B(0) < 0, B ′(0) = 0.

Now we can give some more precise information about the kernel of L+.

Corollary 1.1 If n ≥ 3, 2 < p < 1 + 4/(n − 2), then

dim
(

KerL+ ∩ H1
rad

) ≤ 1.

Remark 1.2 It is well-known that nondegeneracy of the ground states plays crucial role
in the applications (for example blow-up in mass-critical defocusing case, spectral stabil-
ity/instability of ground states). The existence of nodal solutions is discussed in [8] and in
[9]. Their results imply existence of non-trivial non radial solutions to (1.1) that minimize
the energy functional over Nehari manifold. In the case p > 2 one can expect that these
non-radial solutions are minimizers of the Weinstein functional over H1 without radiality
assumption. However, the existence of non-trivial radial solution to (1.17) remains an open
problem. It is interesting to recall that uniqueness and nondegeneracy hold for n = 3 and
p > 2 close to 2 [23]. Even in the case of degeneracy one can use appropriate modification
of nondegeneracy assumption in order to control the spectral stability/instability as in [5].

Remark 1.3 Note that we treat the case p > 2. The analysis of the local uniqueness and a
result similar to Corollary 1.1 in the interval 1 + 2

n < p < 2 is also important. However,
we prefer to concentrate on the case p > 2 since our proofs use essentially the exponential
decay of the ground state. In the case 1 + 2

n < p < 2, only polynomial decay occurs.
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1.1 Overview on existing results and ideas to prove themain results

There are differentmethods to prove the uniqueness of positive radialminimizers of nonlinear
elliptic equations with local-type nonlinearities. The method of McLeod and Serin [15, 16]
and the subsequent refinements due to Kwong [11] are also based on Sturm’s oscillation
argument and therefore they work effectively for local type nonlinearities. In our case the
nonlinearities involve the non-local Riesz potential and consequently we have met essential
difficulties in following this strategy. The classical case p = 2, n = 3 has been studied in
[13] (see [12] too), the approach is based on shooting method and the fact that the Riesz
potential behaves like

I (|u|2)(x) = ‖u‖2
L2

4π |x | + o
(|x |−1) , x → ∞ (1.18)

so that the conditions (1.11) become

‖u‖2
3

= ‖∇u‖2 = D(|u|2, |u|2)
4

in this case. Indeed, taking any two solutions u1, u2, we use the previous normalization
conditions and from (1.18) we deduce

I (|u1|2)(x) − I (|u2|2)(x) = o
(|x |−1) , x → ∞.

This gives the possibility to apply Sturm’s argument and to follow shootingmethod to deduce
uniqueness. If p > 2 and n ≥ 3, then (1.18) becomes

I (|u|p)(x) = cn
‖u‖p

L p

|x |n−2 + o
(|x |−n+2) , x → ∞, cn = 1

(n − 2)|Sn−1|
and obviously we lose uniqueness of the asymptotics of Riesz potential at infinity, since in
this case the L p norm is not presented in Pohozaev normalization conditions (1.11). Another
key point in [13] is the application of Newton’s formula (see Theorem 9.7 in [14]) valid for
n ≥ 3 and any radial functions f (|x |) that is sufficiently regular and decaying at infinity

I ( f )(x) = 1

(n − 2)|Sn−1|
∫

Rn

f (|y|)dy
|x − y|n−2

= 1

(n − 2)|Sn−1|
∫

Rn

f (|y|)dy
max(|x |n−2, |y|n−2)

.

(1.19)

One can assume that Q is a radial positive minimizer of Lemma 5.1 satisfying (1.1). In the
case p = 2 the Newton’s identity enables one to take radial ξ ∈ Ker L+, where L+ is the
operator

L+ = −� + 1 − 2I (Q·)Q − I (Q2),

and rewrite L+ξ = 0 as L+ξ = cQ, with c being a real constant and

L+ξ = −�ξ + ξ − (|x |−1 ∗ |Q|2) ξ + 2Q(r)
∫ r

0
s
(

1 − s

r

)

Q(s)ξ(s)ds.

One can check that similar application of the Newton’s relation with p > 2 will lead to
relation L+ξ = c(x)Q, where c(x) is not a constant and

L+ξ = −�ξ + ξ − cn(p − 1)
(

|x |−(n−2) ∗ |Q|p
)

Qp−2ξ
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+ p

n − 2
Q(r)p−1

∫ r

0
s

(

1 − sn−2

rn−2

)

Qp−1(s)ξ(s)ds.

The fact that c(x) is not a constant is the reason why we can not follow directly the approach
developed in [12, 13] and therefore we are trying to obtain only local uniqueness of ground
state following a different idea. The case n = 3 and 2 < p < 2+δ with δ > 0 small is studied
in [23]. Since the nondegeneracy property of L+ is fulfilled for p = 2, n = 3, the author in
[23] shows that Qp , the ground state for p ↘ 2, is close to Q2 and obtains nondegeneracy
(and uniqueness) for p sufficiently close to 2. The result in Theorem 1.1 guarantees local
uniqueness of minimizers in the general case p ∈ (2, 5) for n = 3 and also for

p ∈
{

(2, 3), if n = 4;
(2, 7/3), if n = 5.

The case n = 3 and 5/3 < p < 1 + 4/3 was announced [7], where local uniqueness is
established. Here we give detailed proof in the case n ≥ 3, 2 < p < 1 + 4/(n − 2) that
clarifies some missing points in the proofs for the particular case n = 3, p < 1+4/n studied
in [7]. The approach in [7] is based on the construction of analytic function

K (z) = D((Q + zh)p, (Q + zh)p)
(‖∇Q‖2 + σ + z2(‖∇h‖2 + 1)

)p , (1.20)

where h ∈ KerL+ is orthogonal to Q and σ = ‖Q‖2
L2 .The construction of analytic extension

of K depends essentially on the asymptotic behaviors of Q and h at infinity. In this work
we continue to use the analytic extension of K , but a more precise asymptotic analysis is
applied following the approach in [6]. Recall that [6] proves the uniqueness of the ground
states associated with energy functional (1.5) with constraint ‖u‖L p = const .

Another delicate point is the fact that the kernel of L+ might be nontrivial. The key novelty
in our work is the fact that dimKerL+ ≤ 1 obtained in Corollary 1.1. On the other hand,
the lack of Sturm’s comparison argument for nonlocal ODE causes essential difficulties in
treating the nondegeneracy of L+ or to show nonexistence of nontrivial solutions of (1.17).
Our approach to obtain the local uniqueness of the minimizer might allow degeneracy of L+,

however Theorem 1.2 guarantees that the Kernel of L+ has at most one nontrivial solution.
To show this fact we switch to new unknown functions

ξB(r) = −
∫ ∞

r
τ n−1B(τ )Qp(τ )dτ,

ξh(r) = −
∫ ∞

r
τ n−1A(τ )Qp−1(τ )h(τ )dτ

(1.21)

and consider the ODE system (3.8) for these quantities in the place of the ODE system (1.17).
Here the key advantage of using the new quantities ξB , ξh is the fact that the initial conditions
for ξB , ξh can be connected with the orthogonality conditions (see Lemma 2.3 and (2.22))

h ⊥ Q, h ⊥ L+(Q),

ξB(0) = −
∫ ∞

0
τ n−1B(τ )Qp(τ )dτ = 0.

(1.22)

Next, we explain the main idea to prove that there is no solution of (1.17) having initial
data

h(0) > 0 > B(0), h′(0) = B ′(0) = 0.
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We start with the following observation. If the first zero R0 of ξh(r) is finite, then

ξh(r) > 0, r ∈ (0, R0), ξh(R0) = 0,

ξ ′
h(R0) ≤ 0.

(1.23)

Once h, B are given so that they satisfy (1.17) and (1.1), we define ξh, ξB and R0. Then we
are able to control the sign of ξ ′

B on (0, R0).

Crucial point now is to introduce the combination

ξh(r) + νξB(r)

assuming ν > 0 chosen appropriately large.
Consider the set

N = {ν > 0; ξ ′
h(r) + νξ ′

B(r) < 0, ∀r ∈ (0, R0]}.
Onone hand, we have ξ ′

B(r) < 0, for r ∈ (0, R0) as established in Lemma 3.5. If R0 < ∞,
then this Lemma gives

ξ ′
B(R0) < 0. (1.24)

Further, Lemma 3.8 implies that the set N is connected and N = (ν0,∞) for some ν0 > 0.
Hence we are able to find ν0 so that

ξ ′
h(r) + ν0ξ

′
B(r) < 0, r ∈ (0, R0),

ξ ′
h(R0) + ν0ξ

′
B(R0) = 0.

(1.25)

On the other hand, the property (1.23) guarantees that

ξ ′
h(R0) ≤ 0 (1.26)

and together with (1.24) this gives

ξ ′
h(R0) + ν0ξ

′
B(R0) < 0

which contradicts (1.25). The contradiction shows that R0 = ∞. But in this case ξ ′
B and B

have permanent sign on (0,∞) that is impossible due to orthogonality condition (1.22).

Outline of the paper

We organize the work as follows. Section2 is devoted to the proof of Theorem 1.1, once the
crucial result given in Theorem 1.2 is assumed to be acquired. Namely, we start by displaying
our analysis on the first and the second linearization of a suitable version of the Weinstein
functional (1.7), summarizing some properties of the ground states arising from (1.1). At this
point we set up the main steps of the proof, introducing the definition of local uniqueness and
how to show it by using an extension of the Weinstein functional in the complex plane (see
(1.20)). As aforementioned, we utilize Corollary 1.1, which ensures that the space generated
by the H1 radial functions lying in the kernel of L+, defined as in (1.14), has dimension
one at most. Such a result is a straightforward consequence of Theorem 1.2, which will be
established in Sect. 3. Finally, from Sect. 4 to “Appendix 7” a wide set of ancillary tools,
mandatory for the proof of the main results, are developed.
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2 Proof of Theorem 1.1

2.1 Preliminary facts and scheme of the proof

Lemma 5.1 guarantees that we have to show the local uniqueness of the minimizer Q,

associated with the minimization problem

Wσ = inf
u∈H1

rad ,‖u‖2
L2

=σ

Wp(u), (2.1)

where

σ = βkW , kW = 1

p
W p/(p−1), β = n + 2 − p(n − 2)

2
.

Any minimizer Q has to satisfy the Euler–Lagrange equation

− �Q + Q = AQp−1, A = I (Qp) = (−�)−1(Qp) (2.2)

as well the normalization conditions (1.11), i.e.

‖Q‖2
β

= ‖∇Q‖2
γ

= D(Qp, Qp)

p
= kW , (2.3)

with

γ = np − n − 2

2
= p − β.

Let us start with the local regularity of ground states.
This question is discussed in Theorem 2 in [18] and therefore, if Q ∈ H1(Rn) is a solution

to

(1 − �)Q = |Q|p−2Q(−�)−1(|Q|p), (2.4)

then Q ∈ W 2,q
loc (Rn). By using a bootstrap argument carefully, we can verify the following

global elliptic bounds.

Proposition 2.1 If

2 < p < 1 + 4

n − 2
, n = 3, 4, 5 (2.5)

and Q ∈ H1(Rn) is solution to (2.4), then for any s ∈ [0, 1+ p) and for any q ∈ (1,∞) we
have 1

‖Q‖Hs
q (Rn) � 1. (2.6)

Corollary 2.1 If the assumption (2.5) is fulfilled, then A = I (Qp) = (−�)−1(Qp) satisfies

‖Ds A‖Lq (Rn) � 1, ∀s ∈ [0, p + 2), q ∈
(

max

(
n

n − 2 + s
, 1

)

,∞
)

. (2.7)

1 Here Hs
q (Rn) is the Sobolev space obtained as completion of smooth compactly supported functions with

respect to the norm ‖ f ‖Hs
q (Rn) = ‖(1 − �)s/2 f ‖Lq (Rn).
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We can use the regularity result in Proposition 2.1 and see that

Q ∈ Hs
q (Rn), ∀s ∈ [0, 1 + p), ∀q ∈ (1,∞). (2.8)

Further Corollary 2.1 gives (2.7). Using the Sobolev embedding we can see that for n =
3, 4, 5, p > 2 we have

Hs
q (Rn) ⊂ C3(Rn), s ∈ (3, 1 + p) (2.9)

and q ∈ (2,∞). Therefore, we can consider positive radial minimizers Q that are strictly
decreasing in r = |x | and such that

Q ∈ H2
rad(R

n) ∩ C2(Rn)

A = (−�)−1(Qp) ∈ Lq
rad(R

n) ∩ C2(Rn), ∇A ∈ H1
rad(R

n),

}

(2.10)

where q ∈ (n/(n − 2),∞). The regularity of the radial functions Q, A and the positiveness
of Q imply

Q(0) > 0, Q′(0) = 0, A(0) > 0, A′(0) = 0.

The asymptotic behavior of Q is established in Corollary 4.1 as follows

Q(|x |) = c�(Q)G(|x |)
(

1 + O
(

e−|x |)) |x | → ∞, (2.11)

with c�(Q) > 0 and G being the fundamental solution of 1− �. The minimizers of Wp are
maximizers of 1

W p
p
so we can consider the functional

K (ε, h) = 1

Wp(Q + εh)p
, (2.12)

which is well defined for (ε, h) ∈ [−ε0, ε0] × {h ∈ H1
rad , ‖h‖L2(Rn) = 1} and ε0 > 0 small.

Then

K (ε, h) = D(|Q + εh|p, |Q + εh|p)
(

‖∇(Q + εh)‖2
L2 + ‖Q + εh‖2

L2

)p

has Taylor expansion

K (ε, h) = K (0, h) + ∂εK (0, h)ε + 1

2
∂2ε K (0, h)ε2 + o(ε2), (2.13)

where

K (0, h) = D(Qp, Qp)1−p,

∂εK (0, h) = −2pD(Qp, Qp)−p〈Q, L−h〉L2 ,

1

2
∂2ε K (0, h) = −2p(p − 1)D(Qp, Qp)−p−1D(Qp, Qp−1h)2−

− pD(Qp, Qp)−p〈L+h, h〉L2

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(2.14)

and

L−h = −�h + h − (−�)−1(Qp)Qp−2h,

L+h = −�h + h − pQp−1(−�)−1(Qp−1h)−
− (p − 1)Qp−2h(−�)−1(Qp).

⎫

⎪⎪⎬

⎪⎪⎭

(2.15)

It will be convenient to introduce the following.
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Definition 2.1 If

A ⊆ H1
rad(R

n),

then we shall say that local uniqueness of the minimizer Q holds on A, if there exists
ε0 = ε0(A) > 0, so that

Wp (Q + εh) > Wp(Q)

is fulfilled for any h ∈ A and for any ε ∈ (0, ε0].
Now we are ready to explain the scheme of the proof.

Step I Proof of (2.13) and coercive estimate needed for Step II.
Step II Dichotomy property (see Lemma 2.4): reduction of the proof to check uniqueness

only on the one-dimensional space (due to Corollary 1.1)

KerL+ ∩ Q⊥ ∩ (�Q)⊥.

Step III Check of the fact that K (z) = K (z, h) is analytic near the origin and it is Hölder
continuous in h ∈ H1

rad .
Step IV Construction of analytic extension of K (z) in appropriate domain (see Fig. 1) in the

complex plane and verification that K (z) can not be a constant.

2.2 Step I

As we promised above first we verify (2.13). We take h ∈ H1(Rn). We have the expansions

D(|Q + εh|p, |Q + εh|p) = D(Qp, Qp) + 2pD(Qp, Qp−1h)ε

+ [p(p − 1)D(Qp, Qp−2h2) + p2D(Qp−1h, Qp−1h)
]

ε2 + o(ε2)

and

1
(

‖∇Q‖2
L2 + σ + 2(〈∇Q,∇h〉L2 + 〈Q, h〉L2) ε +

(

‖∇h‖2
L2 + ‖h‖2

L2

)

ε2
)p

= 1

(‖∇Q‖2
L2 + σ)p

− 2p(〈∇Q,∇h〉L2 + 〈Q, h〉L2)ε

(‖∇Q‖2
L2 + σ)p+1

−
[

p

(‖∇Q‖2
L2 + σ)p+1

(‖∇h‖2L2 + ‖ h‖2L2

)

]

ε2

+
[

4p(p + 1)(〈∇Q,∇h〉L2 + 〈Q, h〉L2)2

2(‖∇Q‖2
L2 + σ)p+2

]

ε2 + o(ε2).

Hence

K (0, h) = D(Qp, Qp)
1

(‖∇Q‖2
L2 + σ)p

,

∂εK (0, h) = −D(Qp, Qp)
2p(〈∇Q,∇h〉L2 + 〈Q, h〉L2)

(‖∇Q‖2
L2 + σ)p+1

+

+ 2pD(Qp, Qp−1h)
1

(‖∇Q‖2
L2 + σ)p

.
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From Lemma 5.1 we know that Q has to satisfy

D(Qp, Qp) = ‖∇Q‖2L2 + ‖Q‖2L2 . (2.16)

Thus

∂εK (0, h)

= − 2pD(Qp, Qp)−p (〈∇Q,∇h〉L2 + 〈Q, h〉L2 − D(Qp, Qp−1h)
)

and we obtain the second identity in (2.13) as well as the Euler–Largange equation (2.2)
together with the Pohozaev normalization conditions (2.3). Using (2.16), we obtain further

1

2
∂2ε K (0, h) = −2pD(Qp, Qp−1h)

2p(〈∇Q,∇h〉L2 + 〈Q, h〉L2 )

(‖∇Q‖2
L2 + σ)p+1

− D(Qp, Qp)

[

p

(‖∇Q‖2
L2 + σ)p+1

(‖∇h‖2L2 + ‖ h‖2L2

)

]

+ 4D(Qp, Qp)

[

p(p + 1)(〈∇Q,∇h〉L2 + 〈Q, h〉L2 )2

2(‖∇Q‖2
L2 + σ)p+2

]

+ [p(p − 1)D(Qp, Qp−2h2) + p2D(Qp−1h, Qp−1h)
] 1

(‖∇Q‖2
L2 + σ)p

= − (4p2 − 2p(p + 1)
)

D(Qp, Qp)−p−1D(Qp, Qp−1h)2 −
− pD(Qp, Qp)−p(‖∇h‖2L2 + ‖ h‖2L2 )

+ pD(Qp, Qp)−p [(p − 1)D(Qp, Qp−2h2) + pD(Qp−1h, Qp−1h)
]

= − 2p(p − 1)D(Qp, Qp)−p−1D(Qp, Qp−1h)2 − pD(Qp, Qp)−p〈L+h, h〉L2 .

These relations imply
⎧

⎨

⎩

1

2
∂2ε K (0, h) = −2p(p − 1)D(Qp, Qp)−p−1D(Qp, Qp−1h)2

− pD(Qp, Qp)−p〈L+h, h〉L2 .

(2.17)

The fact that Q is a minimizer of Wp satisfying the corresponding Euler–Lagrange equa-
tion (2.2) implies L−Q = 0, so we have

∂εK (0, h) = 〈Q, L−h〉L2 = 0. (2.18)

Let us recall some of the known properties of the operators L±.

Lemma 2.1 (see Lemma 1 in [5]) The operator L− is self-adjoint and non-negative on H1
rad .

The control of the sign of 〈L+h, h〉L2 in (2.17) is realised on the space orthogonal to
L+(Q) as stated in the next.

Lemma 2.2 The operator L+ satisfies the following properties

(a) L+ is self-adjoint on H1
rad ;

(b) L+ has exactly one negative eigenvalue;
(c) L+ is non-negative on a space of codimension 1. More precisely,

〈L+h, h〉L2 ≥ 0 (2.19)

for h ⊥ L+(Q).
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Proof Most of the assertions are already established in [5] (see Lemma 1 and Lemma 6 in
this work). For completeness we shall sketch the idea of the proof. The operator L+ has the
representation

L+ = −� + 1 − K,

K(h) = pQp−1(−�)−1(Qp−1h) + (p − 1)Qp−2h(−�)−1(Qp).
(2.20)

One can easily show that it is a symmetric�-bounded operator on L2
rad so L+ is self-adjoint.

Moreover R maps any bounded domain in H1
rad into a precompact set in L2.

We turn to the proof of the inequality (2.19). The relation (2.15) implies

L+Q = −2(p − 1)Qp−1(−�)−1(Qp),

〈L+(Q), h〉L2 = −2(p − 1)D(Qp, Qp−1h).

}

(2.21)

Then we quote the identity (2.17) and note that

1

2
∂2ε K (0, h) = −pD(Qp, Qp)−p−1D(Qp, Qp−1h)〈L+(Q), h〉L2

−pD(Qp, Qp)−p〈L+h, h〉L2 = −pD(Qp, Qp)−p〈L+h, h〉L2

for h ⊥ L+(Q). Finally, we recall that K (ε, h) has local maximum at ε = 0 so we have

∂2ε K (0, h) ≤ 0.

Therefore, we have (2.19) and hence L+ can not have 2 negative eigenvalues. Thus, the
existence of at least one negative eigenvalue follows from (2.21) so

〈L+(Q), Q〉L2 = −2(p − 1)D(Qp, Qp) < 0.

��
Therefore, we consider the set

{h ∈ H1
rad ; h ⊥ L+(Q), ∂2ε K (0, h) = 0}

= {h ∈ H1
rad ; h ⊥ L+(Q), 〈L+h, h〉L2 = 0}.

The relation (2.21) guarantees that h ⊥ L+(Q) if and only if

D(Qp, Qp−1h) = 0

and the last identity can be rewritten in two equivalent forms

D(Qp, Qp−1h) =
∫ ∞

0
A(r)Qp−1(r)h(r)rn−1dr = 0,

D(Qp, Qp−1h) =
∫ ∞

0
Qp(r)B(r)rn−1dr = 0,

⎫

⎪⎪⎬

⎪⎪⎭

(2.22)

where

A(r) = (−�)−1(Qp)(r), B(r) = (−�)−1(Qp−1h)(r). (2.23)

Then the fact that K (ε, h) has a local maximum at ε = 0 implies

〈L+h, h〉L2 ≥ 0, ∀h ⊥ L+(Q) (2.24)

123



Local uniqueness of ground states for the generalized… Page 13 of 39   135 

for any h ∈ H1
rad with ‖h‖L2 = 1. One can verify the following

{h ∈ H1
rad ; h ⊥ L+(Q), 〈L+h, h〉L2 = 0} = {h ∈ H1

rad ; h ⊥ L+(Q), L+h = 0}, (2.25)

that follows from the stronger coerciveness property.

Lemma 2.3 Assume

2 < p < 1 + 4

n − 2
.

Then we have

〈L+h, h〉L2 ≥ C‖h‖2
H1
rad

, ∀ h ∈ HQ, (2.26)

where

HQ = {h ∈ H1
rad , h ⊥ L+(Q), h ⊥ KerL+

}

. (2.27)

Proof To check this coercive estimate we follow [1, 22]. More precisely, we assume

inf
h∈HQ , 〈(−�+1)h,h〉L2=1

〈L+h, h〉L2 = 0. (2.28)

where HQ is defined by (2.27). Using (2.20) we see that (2.28) is equivalent to

inf
h∈HQ ,〈Kh,h〉L2=1

〈(−� + 1)h, h〉L2 = 1 (2.29)

and equip the space

KerL+ ∩ H1
rad ∩ {L+(Q)}⊥ = {h ∈ H1

rad ; h ⊥ L+(Q), L+(h) = 0} (2.30)

with orthonormal basis. Since this space has maximal dimension k ≤ 1 (see Corollary 1.1),
we consider only the case k = 1, since the case k = 0 is similar. For this purpose, let the
vector e �= 0 generate the space (2.30). The minimization problem (2.28) has a minimization
sequence {hk}k∈N, satisfying all constraints. On the other hand, we have the representation
(2.20) with operatorK being a compact operator in H1

rad . In conclusion, taking a subsequence
of {hk} we prove its convergence in H1

rad to some h∗ ∈ H1
rad , satisfying 〈Kh∗, h∗〉L2 = 1,

h∗ ⊥ L+(Q), h∗ ⊥ KerL+ and

(−� + 1)h∗ = λL+(Q) + λ1e + λ2Kh
∗.

Multiplying by h∗ and using (2.29) we find λ2 = 1 so

L+h∗ = λL+(Q) + λ1e.

Multiplying by e, we get λ1 = 0. Hence, we have

L+h∗ = λL+(Q). (2.31)

Multiplying now by Q, we see that λ = 0 so h∗ ∈ KerL+ and this contradicts the properties
h∗ ⊥ KerL+ and ‖h∗‖H1

rad
= 1. Therefore, we have the estimate (2.26). ��

The coercive estimate (2.26) implies the following.

Corollary 2.2 We have the relation

{h ∈ H1
rad ; h ⊥ L+(Q), ∂2ε K (0, h) = 0} = {h ∈ H1

rad ; h ⊥ L+(Q), L+h = 0, h ⊥ Q}.
(2.32)
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Proof We already know from identity (2.17) that

{h ∈ H1
rad ; h ⊥ L+(Q), ∂2ε K (0, h) = 0} = {h ∈ H1

rad ; h ⊥ L+(Q), 〈L+h, h〉L2 = 0}.
Combining the decomposition h = h1+h⊥

1 with h1 ∈ KerL+ and h⊥
1 ⊥ KerL+, the relation

〈L+(h1 + h⊥
1 ), (h1 + h⊥

1 )〉L2 = 〈L+(h⊥
1 ), (h⊥

1 )〉L2

and the coercive estimate (2.26) of Lemma 2.3, we conclude that

〈L+h, h〉L2 = 0, h ⊥ L+(Q)

implies h⊥
1 = 0 and h ∈ KerL+. So

{h ∈ H1
rad ; h ⊥ L+(Q), ∂2ε K (0, h) = 0} = {h ∈ H1

rad ; h ⊥ L+(Q), L+h = 0}.
It remains to show that

{h ∈ H1
rad ; h ⊥ L+(Q), L+h = 0} ⊂ {h ⊥ Q}.

For the purpose we use (7.1) of Lemma 7.1 and can write

L+
(

SQ + 2

p − 1
Q

)

= −2Q.

Since Q ∈ ImL+, we deduce

〈h, Q〉L2 = −1

2
〈L+(h),

(

SQ + 2

p − 1
Q

)

〉L2 = 0.

The proof is complete. ��
To see that the negativeness of the second derivative ∂2ε K (0, h) implies the local unique-

ness (as stated in Theorem 1.1) we turn to the next.

Corollary 2.3 If

{h ∈ H1
rad ; h ⊥ L+(Q), ∂2ε K (0, h) = 0} = {0}, (2.33)

then the local uniqueness holds.

Proof Indeed in this case, the set HQ in (2.27) coincides with
{

h ∈ H1
rad , h ⊥ L+(Q)

}

and the estimate (2.26) implies

∂2ε K (0, h) = −2pD(Qp, Qp)−p〈L+h, h〉L2 ≤ −C‖h‖2
H1
rad

, ∀ h ∈ HQ . (2.34)

Further, we look for ε0 > 0 so that taking arbitrary v ∈ H1
rad with ‖v‖L2 = 1 and v ⊥ Q

we have

K (ε, v) < K (0, v) (2.35)

provided 0 < ε ≤ ε0. To verify this, we take v ∈ H1
rad with ‖v‖L2 = 1 and we represent v

as αL+(Q) + h1, where h1 ⊥ L+(Q). If α = 0, then (2.34) yields (2.35). If α �= 0, then
|α| ≤ 1/‖L+(Q)‖L2 and we use the representation Q = μL+(Q) + wQ, where μ < 0 and
wQ ⊥ L+(Q). This relation shows that

v = νQ + h, h ⊥ L+(Q), ν ∈ R, ν = α

μ
�= 0.
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Then the assumption v ⊥ Q implies h �= 0 and we have the relations

K (ε, v) = 1

Wp(Q + εv)p
= 1

Wp(Q + ενQ + εh)p
= K

(
ε

1 + εν
, h

)

.

Then using the coercive estimate (2.26) we arrive again at (2.35).
��

2.3 Step II

Our goal is to establish the local uniqueness of the minimizer Q, using the L2 norm as a
measure for the distance between two minimizers. Proposition 4.1 shows that

‖Q1 − Q2‖L2
rad

≤ ε

implies a similar bound in H1
rad . Then our goal is to show that for any R > 2 there exists

ε0 > 0, so that for any h in the set

{g ∈ H1
rad(R

n); ‖g‖L2 = 1, ‖g‖H1
rad

≤ R},
we have

Wp (Q + εh) > Wp(Q),

for 0 < ε ≤ ε0. Using the Taylor expansion (2.13) and the Corollary 2.2, we can conclude
that the local uniqueness of Q is fulfilled on

Brad(R) ∩ (KerL+)⊥ , (2.36)

where

Brad(R) = {g ∈ H1
rad(R

n); ‖g‖L2 = 1, ‖g‖H1
rad

≤ R, g ⊥ Q, g ⊥ L+(Q)}.
Since KerL+ is at most one dimensional we can take e as the unit vector generating this
kernel. Then using the coerciveness, we deduce the local uniqueness of Q on the set

Brad(R) ∩ {g; distH1
rad

(g,KerL+) ≥ δ} (2.37)

for small δ > 0. Indeed, if h is in the set (2.37), then h = k + k⊥, where k ∈ KerL+ and
k⊥ ⊥ KerL+ with

distH1
rad

(h,KerL+) = ‖k⊥‖H1
rad

≥ δ

and

〈L+h, h〉L2 = 〈L+k⊥, k⊥〉L2 ≥ C‖k⊥‖2H1 ≥ Cδ

due to (2.26). So it remains to verify the local uniqueness of the minimizer Q on the domain

Brad(R) ∩ {g; distH1
rad

(g,KerL+) ≤ δ} (2.38)

choosing sufficiently small δ.

Lemma 2.4 Let e generate KerL+ and ‖e‖L2 = 1. We have the following two possibilities:

(a) there exists δ > 0 so that local uniqueness of the minimizer Q is valid in (2.38);
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(b) for any sequence {εk}k∈N, εk → 0 there exists subsequence {εmk }k∈N, so that

Wp
(

Q + εmk e
) = Wp(Q); (2.39)

or

Wp
(

Q − εmk e
) = Wp(Q). (2.40)

Proof Let {εk}k∈N, be a sequence with εk → 0. If the property (a) is not true, then for any
δ = 1/m,m ∈ N and for any k ∈ N, we can find hk,m ∈ Brad(R) so that

Wp
(

Q + εk(hk,m)
) = Wp(Q), (2.41)

distH1
rad

(hk,m,KerL+) < 1/m and

‖hk,m‖H1
rad

≤ R. (2.42)

Fix k and make the projection

hk,m = gk,m + g⊥
k,m, gk,m ∈ KerL+, g⊥

k,m ⊥ KerL+

with

distH1
rad

(hk,m,KerL+) = ‖g⊥
k,m‖H1

rad
<

1

m
. (2.43)

Since the dimension of KerL+ is at most 1 (due to Corollary 1.1) and we have (2.42), we
can find a subsequence of {1/m}m∈N that shall be denoted again as {1/m}m∈N so that

lim
m→∞ gk,m → ±λe ∈ KerL+, (2.44)

where the convergence is in H1
rad and λ ≥ 0. The relation ‖hk,m‖L2 = 1 and (2.43) yields

λ = 1. Thus, we can justify the limit m → ∞ in (2.41) so we obtain (2.39) or (2.40).
Therefore the property (b) is established and the proof of the Lemma is complete. ��

2.4 Step III

Let us assume that option (b) of Lemma 2.4 holds. Applying a bootstrap argument as in
Proposition 2.1, we arrive at the following.

Proposition 2.2 If (2.5) is fulfilled and h ∈ KerL+ ∩ H1
rad(R

n), then for any s ∈ [0, 1+ p)
and for any q ∈ (1,∞) we have

‖h‖Hs
q (Rn) � 1. (2.45)

Moreover, B = (−�)−1(Qp−1h) has regularity described in (2.7). For simplicity, we
shall use a weaker regularity (similar to the one proposed in (2.10))

h ∈ H2
rad(R

n) ∩ C2(Rn)

B = (−�)−1(Qp−1h) ∈ Lq
rad(R

n) ∩ C2(Rn), ∇B ∈ H1
rad(R

n).

}

(2.46)

Then our goal is to take e that generates KerL+, normalized by ‖e‖L2 = 1 and show that
one can find ε0 > 0 so that

Wp (Q + εh) > Wp(Q) (2.47)
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for 0 < ε ≤ ε0. This conclusion is in contradiction with the assumption that (b) of Corol-
lary 2.4 holds and therefore the statement of Theorem 1.1 will be established. Thanks
to regularity property (2.46), we see that h(r) = e(r) and B(r) = I (Qp−1e)(r) ∈
C2((0,∞)) ∩ C1([0,∞)) satisfy the system of nonlinear second-order differential equa-
tions

h′′(r) + n − 1

r
h′(r) = h(r) − pBQp−1 − (p − 1)I (Qp)Qp−2h,

B ′′(r) + n − 1

r
B ′(r) = −Qp−1h.

⎫

⎪⎬

⎪⎭

(2.48)

We can apply the asymptotic expansion (4.25), (4.27) and we find

‖h‖H2
rad

+ ‖G−1h‖L∞(|x |>1) + ‖G−1
0 B‖L∞(|x |>1) ≤ C . (2.49)

Here and belowG(|x |) = Gn(|x |) is the fundamental solution of (1−�) having asymptotics

Gn(|x |) = c∞
e−|x |

|x |(n−1)/2
, |x | → ∞, c∞ > 0.

Following the scheme of the proof of the Theorem, we shall show that the function K (ε) =
Kh(ε) can be extended to an analytic function K (z) = Kh(z) for complex z near the origin.

Lemma 2.5 Let h = e generate KerL+ and ‖e‖L2 = 1. Then there exists ε0 > 0 so that the
function

Kh(ε) = K (ε, h) = 1

Wp (Q + εh)p
, ε ∈ [0, ε0]

can be extended as analytic function

Kh : z ∈ {z ∈ C; |z| ≤ ε0} → D((Q + zh)p, (Q + zh)p)
(‖∇Q‖2 + σ + z2(‖∇h‖2 + 1)

)p .

Proof We have the relation

1

Wp (Q + εh)p
= D(|Q + εh|p, |Q + εh|p)
(

(‖∇Q‖2 + ε2‖∇h‖2) + (σ + ε2)
)p .

We obviously have the analyticity of

z → 1
(

(‖∇Q‖2 + σ) + z2(1 + ‖∇h‖2))p (2.50)

near z = 0. In fact, (2.49) implies ‖h‖H1 ≤ C and hence there exists ε0 > 0 so that (2.50)
is analytic in {|z| ≤ ε0}. More delicate is the analyticity of the map

z → D((Q + zh)p, (Q + zh)p).

In this case, we use (2.49) again and find the estimate

|h(r)|/Q(r) ≤ C .

Then Re (1 + zh(r)/Q(r)) > 1/2 for |z| small and the function

z →
(

1 + z
h(r)

Q(r)

)p
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is analytic near the origin, say {|z| < ε0} with ε0 < 1/(2C). Then,

z →
∫

Rn

∫

Rn

(

1 + z
h(|x |)
Q(|x |)
)p (

1 + z
h(|y|)
Q(|y|)
)p Q(x)pQ(y)pdxdy

|x − y| (2.51)

is analytic in the same disk. This completes the proof. ��
Remark 2.1 As mentioned in Sect. 1.1, the proof of the above lemma relies on the formula
(1.20) introduced in the paper [7], which is a consequence of the orthogonality property
Q ⊥ h in H1

rad , if h ∈ KerL+. Specifically, we know that the operator L− is self-adjoint
on H1

rad (see Lemma 2.1) and also that 〈Q, L−h〉L2 = 0, by (2.18). Moreover, since the
operator L+ is also self-adjoint on H1

rad (see Lemma 2.2) and h ∈ KerL+, we get

〈Q, L+h〉L2 = 0 = 〈L+Q, h〉L2 .

An application of (2.15), (2.21) in combination with the fact that Q ∈ ImL+ due to (7.1),
gives then the desired

〈Q, h〉L2 = 0 = 〈∇Q,∇h〉L2 .

2.5 Step IV

Let us summarize the properties of the function

K (z) = 1

Wp (Q + ze)p
. (2.52)

(i) K (z) is analytic in z in a small neighborhood of the origin in C;
(ii) the coefficients of the series expansion of K (z) are real numbers;
(iii) for σ close to 0 in R we have local minimum at the origin: K (σ ) ≥ K (0) and in the

case (b) of Lemma 2.4 all partial derivatives ∂mσ K (0) are identically zero, so K (z) is a
constant.

Then the final step in the proof of Theorem 1.1 is the following.

Lemma 2.6 Let h = e generate KerL+ and ‖e‖L2 = 1. The function K (z) = Kh(z) can not
be a constant.

Proof If K (z) is a constant, then

K (z) = K (0) (2.53)

near z = 0. Further, setting

w = w(z) = 1 + z
h(r)

Q(r)
,

we have on the line {Rez = Imz} the property

Re w(z) = 1 + Rez
h(r)

Q(r)
= 1 + Imz

h(r)

Q(r)
= 1 + Im w(z).

Since the principal value of Log w can be defined on the line Rew(z) = 1+ Imw(z) as well
as on its small neighborhood

�δ = {|Rez − Imz| < δ,Rez > 0, Imz > 0}.
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Fig. 1 The domain of analyticity of K (z), here depicted by the shaded region �δ

Indeed, we have

Rew − Imw = 1 + (Rez − Imz)
hθ (r)

Q(r)
≥ 1 − δ

|h(r)|
Q(r)

≥ 1 − δC .

In conclusion we have analytic extension of

z → D((Q + zh)p, (Q + zh)p)

in the domain

�δ = {|z| ≤ 4δ} ∪ �δ.

Our next step is to show that K (z) can be extended as analytic function in �δ. Indeed, we
can show the analyticity of Arg(σ + z2) on �δ. For |z| < 4δ and δ <

√
σ/8 one has

Re (σ + z2) > 3σ/4. For |z| > 4δ and z ∈ �δ it is easy to see that Re z > 2δ, then we
have

Im (σ + z2) = 2( Re z)( Im z) = 2( Re z)2 + 2 Re z( Im z − Re z)

> 2( Re z)2 − 2 Re zδ = 2 Re z( Re z − δ) > 4δ(2δ − δ) = 4δ2.

This shows that we can extend K (z) as analytic function in the domain �δ, so we can extend
the relation (2.53) in the whole �δ.

Choosing z(R) = R + i R with R → ∞, we can use the relation

1 + z(R)h(|x |)/Q(|x |)
√

σ + z(R)2
→ h(|x |)

Q(|x |) ,

combined with Lebesgue dominated convergence theorem to conclude that

lim
R→∞ K (z(R)) = 1

Wp(
√

σ h)p
.
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The relation

Wp(
√

σ h)p = 1

K (0)
= Wp(Q)p

shows that u(|x |) = √
σ h is a minimizer ofWp, satisfying the constraint condition ‖u‖2

L2 =
σ . Hence the same is true for |u(|x |)| and both of them satisfy the equation

− �u + u = I (|u|p)|u|p−2u. (2.54)

Since h is orthogonal to Q, there exists r0 > 0, such that h(r0) = u(r0) = 0. Now we can
use the following.

Lemma 2.7 If u and |u| solve (2.54), u ∈ C1(0,∞) and there exists r0 > 0, such that
u(r0) = 0, then u(r) ≡ 0.

Proof If u′(r0) = 0, then the Cauchy problem for the ODE (2.54) implies the assertion. If
u′(r0) < 0, then |u(r)| is not differentiable in r0. The proof is now completed.

Therefore, we are in position to apply Lemma 2.7 and to conclude that u(r) = 0 for any
r > 0. This is an obvious contradiction since ‖h‖L2 = 1 and completes the proof. ��

3 On radial solutions in the kernel of L+

3.1 ODE system and its initial data

We recall that (Q, A) are solutions of

Q′′(r) + n − 1

r
Q′(r) = Q(r) − A(r)Qp−1,

A′′(r) + n − 1

r
A′(r) = −Qp.

⎫

⎪⎬

⎪⎭

(3.1)

If h ∈ H1
rad(R

n) is a radial solution of the equation L+h = 0, then h and B =
(−�)−1(Qp−1h) are sufficiently regular as in (2.46) so the pair (h, B) is a classical solution
to the nonlinear ordinary differential equations system

h′′(r) + n − 1

r
h′(r) = h(r) − pBQp−1 − (p − 1)AQp−2h,

B ′′(r) + n − 1

r
B ′(r) = −Qp−1h.

⎫

⎪⎬

⎪⎭

(3.2)

We can transform the system (3.2) into two equivalent forms replacing (h, B) by the
normalized quantities

h̃(r) = h(r)

Q(r)
, B̃(r) = B(r)

A(r)
(3.3)

and the new unknown functions

ξB(r) = −
∫ ∞

r
τ n−1B(τ )Qp(τ )dτ,

ξh(r) = −
∫ ∞

r
τ n−1A(τ )Qp−1(τ )h(τ )dτ.

(3.4)
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We note that we have the asymptotic expansions

h̃(r) = h̃0(1 + O(r2)), (3.5)

B̃(r) = B̃0(1 + O(r2)), (3.6)

near the origin.

Lemma 3.1 We have the following properties

(a) the normalized quantities in (3.3) satisfy the system
[

rn−1Q2(r )̃h′]′ = −rn−1AQp(pB̃ + (p − 2)̃h),
[

rn−1A2(r)B̃ ′]′ = −rn−1AQp (̃h − B̃);

}

(3.7)

(b) the quantities ξh(r), ξB(r) defined in (3.4) satisfy the following system

− L0(ξh)(r) = 1

rn−1Q2(r)
[pξB(r) + (p − 2)ξh(r)] ,

− L0(ξB)(r) = 1

rn−1Q2(r)
(α(r)ξh(r) − α(r)ξB(r)),

⎫

⎪⎪⎬

⎪⎪⎭

(3.8)

where

L0( f )(r) =
(

f ′(r)
rn−1AQp

)′
(3.9)

and

α(r) = Q2(r)

A2(r)
∈ (0, 1].

Proof It is easy to obtain a system satisfied by h̃ and B̃. Indeed, we use the relations

Q2h̃′ = h′Q − hQ′, A2 B̃ ′ = B ′A − BA′

and arrive at the system (3.7). Integrating over (r ,∞), we find

rn−1Q2(r )̃h′(r) = −pξB(r) − (p − 2)ξh(r),

rn−1A2(r)B̃ ′(r) = −ξh(r) + ξB(r).
(3.10)

From

ξ ′
B(r) = rn−1A(r)Qp(r)B̃(r),

ξ ′
h(r) = rn−1A(r)Qp(r )̃h(r),

we arrive at
(

ξ ′
h(r)

rn−1AQp

)′
= − 1

rn−1Q2(r)
(pξB(r) + (p − 2)ξh(r)),

(
ξ ′
B(r)

rn−1AQp

)′
= − 1

rn−1A2(r)
(ξh(r) − ξB(r))

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

and thus we obtain (3.8). This completes the proof.
��
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Corollary 3.1 For any ν > 0 we have the equation

− L (νξB(r) + ξh(r)) (r) = a(ν, r)ξh(r), (3.11)

where
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− L( f )(r) := −L0( f )(r) + V (ν, r) f =

−
(

f ′(r)
rn−1AQp

)′
+ V (ν, r) f (r),

V (ν, r) = 1

rn−1Q2(r)

(

α(r) − p

ν

)

a(ν, r) = 1

rn−1Q2(r)

[

να(r) + (p − 2) +
(

α(r) − p

ν

)]

.

(3.12)

Proof We have the identities

−
(

(νξB(r) + ξh(r))′

rn−1AQp

)′

= 1

rn−1Q2(r)
[να(r)ξh(r) − να(r)ξB(r) + pξB(r) + (p − 2)ξh(r)]

= 1

rn−1Q2(r)
[(να(r) + (p − 2))ξh(r) − (να(r) − p)ξB(r)]

= 1

rn−1Q2(r)

[

(να(r) + (p − 2) +
(

α(r) − p

ν

)

)ξh(r)
]

− 1

rn−1Q2(r)

[(

α(r) − p

ν

)

(νξB(r) + ξh(r))
]

and the proof is completed now. ��
An important point in the proof of Lemma 3.1 is the following inequality

Lemma 3.2

A(r) ≥ Q(r), ∀r > 0. (3.13)

Proof Indeed the inequality is true for r large due to asymptotic expansions of Sect. 4.3. For
this we can define

r∗ = inf{τ ; A(r) ≥ Q(r), ∀r > τ }.
If r∗ > 0, then A(r∗) = Q(r∗) and we have two possibilities:

Case A there exists r1 ∈ (0, r∗) so that A(r) < Q(r), ∀r ∈ (r1, r∗) and A(r1) = Q(r1).
Then we use (3.1) and find

− �(A − Q) + (A − Q)Qp−1 = Q (3.14)

and applying the maximum principle for the interval (r1, r∗)we arrive at a contradiction with
the fact that Q is positive.

Case B A(r) < Q(r), ∀r ∈ [0, r∗). Thanks to regularity results of Proposition 2.1 we
can assert that A(r), Q(r) ∈ C2[0,∞). Since we have the Fuchs–Painleve system (3.1), we
can apply Theorem 6.1 and deduce that A(r), Q(r) can be extended as even functions. Using
even extensions of A, Q on the real line, we deduce

A(r) < Q(r), ∀r ∈ (−r∗, r∗), A(r∗) = Q(r∗), A(−r∗) = Q(−r∗).

Again an application of the maximum principle for (3.14) leads to a contradiction. ��
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Our next step is to study the asymptotic behavior of ξh, ξB near the origin and near infinity.
By using the orthogonality conditions (2.22) and the definitions (3.4) of ξh, ξB , we find

ξh(0) = −
∫ ∞

0
τ n−1A(τ )Qp(τ )̃h(τ )dτ = 0,

ξB(0) = −
∫ ∞

0
τ n−1A(τ )Qp(τ )B̃(τ )dτ = 0.

(3.15)

Therefore, we have the relations

ξh(r) =
∫ r

0
h̃(τ )τ n−1A(τ )Qp(τ )dτ,

ξB(r) =
∫ r

0
B̃(τ )τ n−1AQp(τ )dτ

(3.16)

and hence we have the asymptotic expansion, given by next Lemma.

Lemma 3.3 We have the following asymptotics near r = 0

ξB(r) = rn

n
A0Q

p
0 B̃0
(

1 + O(r2)
)

,

ξh(r) = rn

n
A0Q

p
0 h̃0
(

1 + O(r2)
) ;

(3.17)

where A0 = A(0), Q0 = Q(0).

Moreover, (3.4) imply that ξh(r) and ξB(r) have exponential decay at infinity. From
Lemma 3.1 we know that (h̃, B̃) satisfies the equations in the system (3.7). We take ini-
tial data

h̃(0) = h̃0, B̃(0) = B̃0

so that

h̃0 > 0 > B̃0. (3.18)

From (3.16) we arrive at the following ordering rules.

Lemma 3.4 We have the following properties

(a) If

h̃(t) > 0, ∀t ∈ (0, T ), (3.19)

for some T > 0, then

ξh(t) > 0, ∀t ∈ (0, T ). (3.20)

(b) If

B̃(t) < 0, ∀t ∈ (0, T ), (3.21)

for some T > 0, then

ξB(t) < 0, ∀t ∈ (0, T ). (3.22)
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(c) If

h̃(t) > 0 > B̃(t), ∀t ∈ (0, T ) (3.23)

for some T > 0, then

ξh(t) > 0 > ξB(t), ∀t ∈ (0, T ). (3.24)

3.2 Scheme of the proof of Theorem 1.2

Let us make a plan of the proof of Theorem 1.2.

(a) We take initial data satisfying

h(0) > 0 > B(0), h′(0) = B ′(0) = 0 (3.25)

and assume classical solution (ξh, ξB) exists.
(b) We define R0 as the first zero of ξh(r). Note that this is well-defined, since (3.25) implies

positiveness of ξh(r) for small r > 0. We have two cases:

(1) If R0 < ∞, then

ξh(r) > 0, r ∈ (0, R0), ξh(R0) = 0,

ξ ′
h(R0) ≤ 0.

(3.26)

(2) If R0 = ∞, then we require

ξh(r) > 0, r ∈ (0,∞), lim
r→∞ ξh(r) = 0,

lim
r→∞ ξ ′

h(r) = 0.
(3.27)

(c) One can show that the second option in the previous point is impossible, while in the case
R0 < ∞ we can control the sign of ξ ′

B on (0, R0) (see Lemma 3.5 below). To be more
precise, the case R0 = ∞ can be excluded, since permanent sign of ξ ′

B means permanent
sign of B̃ and this contradicts the orthogonality condition (3.15) (seeCorollary 3.2 below).

(d) The previous point guarantees that there is a fixed R0 < ∞, so that (3.26) holds. Once
R0 is fixed, we can find sufficiently large ν0 > 0, so that

ξ ′
h(r) + ν0ξ

′
B(r) < 0, r ∈ (0, R0),

ξ ′
h(R0) + ν0ξ

′
B(R0) = 0.

(3.28)

The precise statement and proof are given in Lemma 3.8.
(e) The relations (3.26) and (3.28) lead to a contradiction. In fact, formally from (3.26) and

(3.28) we can have

ξ ′
h(R0) = ν0ξ

′
B(R0) = 0.

However, in this case we can use the fact that

ξ ′
B(r) < 0, 0 < r < R0

and deduce that

ξ ′
h(r) + νξ ′

B(r) < 0, r ∈ (0, R0),

ξ ′
h(R0) + νξ ′

B(R0) = 0
(3.29)
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for any ν ≥ ν0. However, for ν large we prove in Lemma 3.6 below that

ξ ′
h(R0) + νξ ′

B(R0) < 0 (3.30)

holds. This is a clear contradiction with (3.29).

3.3 Proof of Theorem 1.2

Proof of Theorem 1.2 We define the maps

(h, B) → (̃h, B̃) → (ξh, ξB)

as in (3.3), (3.4). We start with point c) in the scheme of Sect. 3.2. ��
Lemma 3.5 Assume the initial data h̃0, B̃0 satisfy (3.18)and ξh, ξB areC2(0,∞)∩C([0,∞))

functions defined in (3.16) so that (ξh, ξB) is a classical solution of

−
(

ξ ′
h(r)

rn−1AQp

)′
= 1

rn−1Q2(r)
(pξB(r) + (p − 2)ξh(r)),

−
(

ξ ′
B(r)

rn−1AQp

)′
= 1

rn−1A2(r)
(ξh(r) − ξB(r)).

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

(3.31)

Let 0 < R0 ≤ ∞ be the first zero of ξh(r), satisfying (3.26) or (3.27). Then we have

ξB(r) < 0, r ∈ (0, R0) (3.32)

and

ξ ′
B(r) < 0, r ∈ (0, R0). (3.33)

If R0 < ∞, then

ξ ′
B(r) < 0, r ∈ (0, R0]. (3.34)

Proof Weprove (3.33), since then (3.32) follows. To prove (3.33)we argue by a contradiction.
Let R0 < ∞. If r1 ∈ (0, R0] is the first zero of ξ ′

B , such that ξ ′
B(r1) = 0 and ξ ′

B is negative
on (0, r1), then we can multiply the second equation in (3.31) by ξB(r) and integrate by parts
in (0, r1). Note that at this point it is crucial to use the asymptotics (3.17) near the origin. In
this way we find

∫ r1

0

(ξ ′
B(r))2

rn−1AQp
dr =
∫ r1

0

1

rn−1A2(r)
(ξh(r) − ξB(r))ξB(r)dr . (3.35)

The different signs in (3.35) lead to contradiction. The case R0 = ∞ can be treated in a
similar way. To assure the integration by parts on (0,∞) we use the exponential decay of
ξh, ξB that follows from the definition (3.4) and the asymptotics of h, B.

This completes the proof. ��
As it is mentioned in the point (c) in the scheme of Sect. 1.2, the above Lemma implies

Corollary 3.2 Assume the initial data h̃0, B̃0 satisfy (3.18) and ξh, ξB are C2(0,∞) ∩
C([0,∞)) functions defined in (3.16) so that (ξh, ξB) is a classical solution of (3.8). Then
R0 < ∞ and (3.26) is satisfied.
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Lemma 3.6 Assume the initial data h̃0, B̃0 satisfy (3.18)and ξh, ξB areC2(0,∞)∩C([0,∞))

functions defined in (3.16) so that (ξh, ξB) is a classical solution of (3.8). Then there exists
ν0 > 0, so that for any ν > ν0 we have

R(ν) > R0, (3.36)

where R(ν) > 0 is the first positive critical point of ξh + νξB and

ξ ′
h(r) + νξ ′

B(r) < 0, r ∈ (0, R(ν)). (3.37)

Proof We use Corollary 3.1, especially we recall that the Eq. (3.11) is fulfilled. We take

ν0 >
p

inf [0,R0] α(r)

and then (3.11) yields

−
(

(ξh(r) + νξB(r))′

rn−1AQp

)′
+ V (ν, r)(ξh(r) + νξB(r)) = a(ν, r)ξh(r), (3.38)

where
⎧

⎪⎪⎨

⎪⎪⎩

V (ν, r) = 1

rn−1Q2(r)

(

α(r) − p

ν

)

> 0,

a(ν, r) = 1

rn−1Q2(r)

[

να(r) + (p − 2) +
(

α(r) − p

ν

)]

> 0

for r ∈ (0, R0), ν > ν0. We can follow the proof of Lemma 3.5 so multiplying the equation
by ξh(r) + νξB(r) and integrating over (0, R0), we arrive at contradiction if R(ν) ≤ R0.

This completes the proof.
��

Consider the set

N = {ν > 0; ξ ′
h(r) + νξ ′

B(r) < 0, ∀r ∈ (0, R0]}.
Given any ν ∈ N ,we denote by R(ν) > 0 the first positive zero of ξ ′

h(r)+νξ ′
B(r), satisfying

(3.37).

Lemma 3.7 The set N is connected and open. More precisely, if ν∗ ∈ N, then for any ν > ν∗
we have ν ∈ N .

Proof Set

uν(r) = ξh(r) + νξB(r).

If ν∗ ∈ N , then we have

u′
ν∗(r) < 0 ∀r ∈ (0, R(ν∗)), R(ν∗) > R0.

Take any ν > ν∗. For any r ∈ (0, R0] we have
u′

ν(r) = ξ ′
h(r) + νξ ′

B(r) = u′
ν∗(r) + (ν − ν∗)ξ ′

B(r).

From ν∗ ∈ N we have u′
ν∗(r) < 0 for any r ∈ (0, R0]. The inequality ξ ′

B(r) ≤ 0 for
r ∈ (0, R0] is established in Lemma 3.5. So the definition of N leads to ν ∈ N . The fact that
N is open follows from the strict inequality in the definition of N .

��
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Finally, we show that N � (0,∞). More precisely, we can complete the point (d) in the
scheme.

Lemma 3.8 There exists ν0 > 0, so that N = (ν0,∞). Moreover, we have

R(ν0) = R0

and

ξ ′
h(R0) + ν0ξ

′
B(R0) = 0.

Proof of Lemma 3.8 We know from (3.4) that

ξ ′
h(r) + νξ ′

B(r) = rn−1Qp−1(r)(B(0)Q(0) + νA(0)h(0) + o(1))

as r ↘ 0. This fact and the choice h(0) > 0 > B(0) imply that

ξ ′
h(r) + νξ ′

B(r) > 0

for and r > 0 close to 0 and ν > 0 small. Hence N can not be (0,∞). Let N = (ν0,∞)

with ν0 > 0. If

ξ ′
h(r) + ν0ξ

′
B(r) < 0, ∀r ∈ [0, R0],

then we can find δ > 0 so that ν0 − δ ∈ N . This contradicts the fact that

N = (ν0,∞).

��
As it is mentioned in the point (e) of the scheme we arrive at a contradiction. This proves
Theorem 1.2. ��

4 Asymptotics at infinity

In this section we aim to find more precise asymptotic expansions for two elliptic equations

−�B(|x |) = H(|x |), (4.1)

(−� + 1)h(|x |) = F(|x |), (4.2)

assuming sufficiently fast decay of the radial source terms F, H . Taking into account the
regularity properties of Q obtained in Proposition 2.1 and the regularity of A obtained in
Corollary 2.1, we shall assume

h(r) ∈ C2(0,∞) ∩ C1([0,∞)), F(r) ∈ C(0,∞),

h(r) = O(1), h′(r) = O(1), F(r) = O(e−br ), b > 1, as r → ∞,

}

(4.3)

B(r) ∈ C2(0,∞) ∩ C1([0,∞)), H(r) ∈ C(0,∞),

B(r) = o(1), H(r) = O(r−a), a > n as r → ∞.

}

(4.4)

The asymptotic expansions concern solutions to these equations represented as follows

B = G0 ∗ H , h = G ∗ F,

where G0 and G are the corresponding fundamental solutions.
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4.1 Estimates and asymptotics of B

Lemma 4.1 If B, H satisfy

B(r) ∈ C2(0,∞) ∩ C1([0,∞)), H(r) ∈ C(0,∞),

B(r) = o(1), H(r) = O(r−a), a > n as r → ∞

}

(4.5)

and

− (rn−1B ′(r)
)′ = rn−1H(r), (4.6)

then we have

∣
∣B(r) − G0(r)‖H‖L1(Rn)

∣
∣ � r−n+2

∫ ∞

r
|H(τ )|τ n−1dτ,

∣
∣B ′(r) − G ′

0(r)‖H‖L1(Rn)

∣
∣ � r−n+1

∫ ∞

r
|H(τ )|τ n−1dτ,

⎫

⎪⎪⎬

⎪⎪⎭

(4.7)

where

‖H‖L1(Rn) = |Sn−1|
∫ ∞

0
τ n−1H(τ )dτ.

Proof Integrating (4.6), we get

rn−1B ′(r) = −
∫ r

0
τ n−1H(τ )dτ. (4.8)

Therefore, we have

B ′(r) = −r−n+1
∫ ∞

0
τ n−1H(τ )dτ + r−n+1

∫ ∞

r
τ n−1H(τ )dτ.

Since

G0(r) = 1

(n − 2)|Sn−1|
1

rn−2 , G ′
0(r) = − 1

|Sn−1|
1

rn−1 , (4.9)

we obtain the second estimate in (4.7). Since B(r) = o(1), we get

B(r) = 1

n − 2

∫ ∞

0

H(τ )

[max(r , τ )]n−2 τ n−1dτ (4.10)

so we can write

B(r) = 1

n − 2

∫ r

0

H(τ )

rn−2 τ n−1dτ + 1

n − 2

∫ ∞

r

H(τ )

τ n−2 τ n−1dτ

= 1

n − 2

∫ ∞

0

H(τ )

rn−2 τ n−1dτ − 1

n − 2

∫ ∞

r

H(τ )

rn−2 τ n−1dτ + 1

n − 2

∫ ∞

r

H(τ )

τ n−2 τ n−1dτ

and we find
∣
∣
∣
∣
B(r) − G0(r)

∫

Rn
H(|x |)dx

∣
∣
∣
∣
� G0(r)

∫ ∞

r
|H(τ )|τ n−1dτ.

Therefore, we have the first asymptotic estimate in (4.7). ��
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The kernel G(|x |) of (1 − �)−1 is a radial positive decreasing function given by

G(|x |) = Gn(|x |) = (2π)−n/2 K(n−2)/2(|x |)
|x |(n−2)/2

, (4.11)

where Kν(r) is the modified Bessel function of order ν > −1/2. We have the following
asymptotic expansion valid if r > 0 tends to ∞

G(|x |) = Gn(|x ||) ∼ e−|x |

|x |(n−1)/2

(

1 + O(|x |−1) ,

G ′(|x |) ∼ − e−|x |

|x |(n−1)/2

(

1 + O(|x |−1)
(4.12)

near infinity. Near r > 0 close to 0 we have the asymptotic expansion (see (27), p.83, Chapter
7.2, [3])

Kν(r) = c0r
−ν(1 + O(r)), c0 > 0. (4.13)

Hence

G(|x |) = c

|x |n−2 (1 + O(|x |)) ∼ G0(|x |),

G ′(|x |) = −c(n − 2)

|x |n−1 (1 + O(|x |))
(4.14)

near x = 0 with c > 0. Concerning the fact that G(r) is positive and decreasing, we can
deduce this property by applying a combination between the maximum principle and the fact
that G(r) is a solution of the elliptic equation

−G ′′(r) − n − 1

r
G ′(r) + G(r) = 0, r ∈ (0,∞).

More precisely, the function G̃(r) = rkG(r) satisfies the elliptic equation

−G̃ ′′(r) − n − 1 + 2k

r
G̃ ′(r) + G̃(r) + (n − 2 − k)k

4r2
G̃(r) = 0

so the maximum principle implies

rkG(r) ↘, ∀k ∈ [0, n − 2]. (4.15)

Remark 4.1 The asymptotic behavior of ground states that are solutions of nonlocal elliptic
equations is studied in [2, 19] and these asymptotics are important to treat stability and
scattering.

4.2 Estimates and asymptotics of h

Lemma 4.2 If h, F satisfy

h(r) ∈ C2(0,∞) ∩ C1([0,∞)), F(r) ∈ C(0,∞),

h(r) = O(1), h′(r) = O(1), F(r) = O(e−br ), b > 1, as r → ∞

}

(4.16)

123



  135 Page 30 of 39 V. Georgiev et al.

and (1 − �)h = F . Then for r → ∞ we have

h(r) = c� G(r) + O

(

r−(n−1)/2e−r
∫ ∞

r
τ (n−1)/2eτ |F(τ )|dτ

)

,

h′(r) = c� G ′(r) + O

(

r−(n−1)/2e−r
∫ ∞

r
τ (n−1)/2eτ |F(τ )|dτ

)

.

⎫

⎪⎪⎬

⎪⎪⎭

(4.17)

Here

c� =
∫ ∞

0
G�(τ )τ n−1G(τ )F(τ )dτ, G�(r) =

∫ r

0
ρ−n+1 1

G2(ρ)
dρ. (4.18)

Proof We can make the substitution h(r) = G(r)v(r), so that the Eq. (4.2) is transformed
into

−rn−1G(r)

(

v′′(r) + n − 1

r
v′(r) + 2G ′(r)

G(r)
v′(r)
)

= rn−1F(r).

Introducing the function ξ(r) so that

ξ ′(r)
ξ(r)

= n − 1

r
+ 2G ′(r)

G(r)
,

we find ξ(r) = G2(r)rn−1 we can rewrite the equation for v in the form

− (ξ(r)v′(r)
)′ = G−1(r)ξ(r)F(r) ≡ G(r)rn−1F(r).

Integrating over (r , R), we deduce

rn−1G2(r)v′(r) − Rn−1G2(R)v′(R) =
∫ R

r
τ n−1G(τ )F(τ )dτ.

Using (4.16), we arrive at

Rn−1G2(R)v′(R) ∼ e−2R
(

eR R(n−1)/2h′(R) + eR R(n−1)/2h(R)
)

→ 0

as R → ∞. Hence

rn−1G2(r)v′(r) =
∫ ∞

r
τ n−1G(τ )F(τ )dτ. (4.19)

Integrating over (0, r), we find

v(r) =
∫ r

0
ρ−n+1 1

G2(ρ)

∫ ∞

ρ

τ n−1G(τ )F(τ )dτ

=
∫ ∞

0

(
∫ min(r ,τ )

0
ρ−n+1 1

G2(ρ)
dρ

)

τ n−1G(τ )F(τ )dτ

=
∫ ∞

0
G�(min(r , τ ))τ n−1G(τ )F(τ )dτ.

The function G� is is positive increasing and has asymptotics

G�(r) = e2r (c0 + o(1))

as r → ∞. From the above relations we find

v(r) =
∫ ∞

0
G�(min(r , τ ))τ n−1G(τ )F(τ )dτ
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=
∫ ∞

0
G�(τ )τ n−1G(τ )F(τ )dτ −

∫ ∞

r
G�(τ )τ n−1G(τ )F(τ )dτ +

+
∫ ∞

r
G�(r)τ n−1G(τ )F(τ )dτ

and this gives

v(r) =
∫ ∞

0
G�(τ )τ n−1G(τ )F(τ )dτ

(

1 + O

(∫ ∞

r
τ (n−1)/2eτ |F(τ )|dτ

))

.

Hence we have the first asymptotic expansion in (4.17). To check the second one we use
(4.19) and get

(
h(r)

G(r)

)′
= v′(r) = 1

rn−1G2(r)

∫ ∞

r
τ n−1G(τ )F(τ )dτ

so we have
∣
∣
∣
∣
h′ − G ′(r)h(r)

G(r)

∣
∣
∣
∣
=
∣
∣
∣
∣

1

rn−1G(r)

∫ ∞

r
τ n−1G(τ )F(τ )dτ

∣
∣
∣
∣

≤ 1

r

∫ ∞

r
τ |F(τ )|dτ ≤ 1

r
r−(n−3)/2e−r

∫ ∞

r
ττ (n−3)/2eτ |F(τ )|dτ

due to (4.15). Using the first inequality in (4.17) we arrive at the second one. ��

4.3 Asymptotics of the ground stateQ and vector h in the kernel of L+

The ground state for the Choquard problem is described by the following elliptic system

(1 − �)Q = AQp−1, (4.20)

− �A = Qp. (4.21)

The kernel of L+ can be described by the following linear elliptic system

(1 − �)h = pBQp−1 + (p − 1)AQp−2h, (4.22)

− �B = Qp−1h. (4.23)

Thanks to regularity properties obtained in Proposition 2.1 and Corollary 2.1 we can assume
that regularity properties of h, Q are given by (4.3), while (4.4) represents the regularity of
B, A. By the asymptotic expansions of Lemmas 4.1 and 4.2, we achieve

Corollary 4.1 If Q ∈ H1
rad(R

n) is a positive solution of (4.20) and h ∈ H1
rad(R

n) is a
solution of (4.22), then we have

Q(|x |) = c�(Q)G(|x |)
(

1 + O
(

e−(p−2)|x |)) , |x | → ∞, (4.24)

with

c�(Q) =
∫ ∞

0
G�(τ )τ n−1G(τ )A(τ )Q(τ )p−1dτ > 0

and

h(|x |) = c�(h, Q)G(|x |)
(

1 + O
(

e−|x |)) , |x | → ∞ (4.25)
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with

c�(h, Q) =
∫ ∞

0
G�(τ )τ n−1G(τ )

[

pB(τ )Q(τ )p−1 + (p − 1)AQp−2h
]

dτ.

Moreover, if A ∈ H1
rad(R

n) is a positive solution of (4.21) and B ∈ H1
rad(R

n) is a solution
of (4.23), then

A(|x |) = d(Q)G0(|x |)
(

1 + O
(

e−p|x |)) , |x | → ∞, (4.26)

where

d(Q) =
∫

Rn
Q(|x |)p−1dx = |Sn−1|

∫ ∞

0
Q(τ )p−1τ n−1dτ

and

B(|x |) = d(h, Q)G0(|x |)
(

1 + O
(

e−|x |)) , |x | → ∞, (4.27)

where

d(h, Q) =
∫

Rn
Q(|x |)p−2h(|x |)dx = |Sn−1|

∫ ∞

0
Q(τ )p−2h(τ )τ n−1dτ.

Nowwe are ready to check that the annihilation of both coefficients c�(h, Q) and d(h, Q)

in the asymptotics of h, B implies h ≡ 0, B ≡ 0.

Corollary 4.2 If h, B are solutions to (4.22), then the conditions

lim
r→∞G−1(r)h(r) = lim

r→∞G−1
0 (r)B(r) = 0

imply h ≡ 0, B ≡ 0.

Proof Following the approach in [6], we define the decreasing function

�(r) = sup
ρ>r

∣
∣G−1(ρ)h(ρ)

∣
∣+
∣
∣
∣G−1

0 (ρ)B(ρ)

∣
∣
∣ .

The estimate (4.7) applied with H = hQp−1 and the assumption

lim
r→∞G−1

0 (r)B(r) = 0

give

|B(r)|
G0(r)

�
∫ ∞

r

|h(τ )|Qp−1

G0(τ )
τdτ �

∫ ∞

r
τ n−1|h(τ )|Qp−1(τ )dτ

�
∫ ∞

r
τ n−1�(τ)G(τ )pdτ �

∫ ∞

r
τ (n−1)−(n−1)p/2�(τ)e−pτdτ.

In this way we arrive at

|B(r)|
G0(r)

�
∫ ∞

r
τ (2−p)(n−1)/2e−pτ�(τ)dτ. (4.28)

In a similar manner, we use (4.17) with F = pBQp−1+(p−1)AQp−2h and the assumption

lim
r→∞G−1(r)h(r) = 0
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and obtain

|h(r)|
G(r)

�
∫ ∞

r
τ (n−1)/2eτ |B(τ )|Qp−1(τ )dτ +

∫ ∞

r
τ (n−1)/2eτ A(τ )Qp−2(τ )|h(τ )|dτ

�
∫ ∞

r
τ (n−1)/2eτ τ−n+2�(τ)τ (1−n)(p−1)/2e−(p−1)τdτ.

From these estimates and (4.28) we find

�(r) �
∫ ∞

r
τ (2−p)(n−1)/2e−(p−2)τ�(τ)dτ

and therefore we can use Gronwall Lemma A.1 from [6] and deduce � ≡ 0. ��
Proposition 4.1 If Q1, Q2 are radial minimizers of (1.8), satisfying ‖Q j‖H1 � 1, j = 1, 2,
the normalization condition (1.10) and such that

‖Q1 − Q2‖L2
rad

≤ ε,

then we have

‖Q1 − Q2‖H1 � ε. (4.29)

Proof We know that if Q j , j = 1, 2 are minimizers, then we have (4.20) and

(1 − �)Q j = A(Q j )|Q j |p−2Q j ,

A(Q j ) = (−�)−1(|Q j |p).
The regularity estimate of Proposition 2.1

‖Q j‖Hs (Rn) � 1, (4.30)

for s ∈ [0, p + 1). Then we have

(1 − �)(Q1 − Q2) = A(Q1)|Q1|p−2Q1 − A(Q2)|Q2|p−2Q2. (4.31)

Using Sobolev inequalities, we find
∥
∥(−�)−1/2g

∥
∥
L2(Rn)

� ‖g‖L2n/(n+2)(Rn) (4.32)

and

‖ f |g|p−1‖L2n/(n+2)(Rn) � ‖ f ‖L2np/(n+2)(Rn)‖g‖p−1
L2np/(n+2)(Rn)

.

Multiplying (in L2) the equation (4.31) by Q1 − Q2 and applying the above estimate, we
get

‖∇(Q1 − Q2)‖2L2(Rn)
+ ‖Q1 − Q2‖2L2(Rn)

� ‖Q1 − Q2‖2L2np/(n+2)

(‖Q1‖L2np/(n+2) + ‖Q2‖L2np/(n+2)

)2(p−1)
.

To be more precise, in the above bounds we are using (4.32) again and via the Gagliardo–
Nirenberg inequality

‖g‖L2np/(n+2) � ‖∇g‖(np−(n+2))/(2p)
L2 ‖g‖(n+2−p(n−2))/(2p)

L2

we find

‖∇(Q1 − Q2)‖2L2(Rn)
� ‖∇(Q1 − Q2)‖(np−(n+2))/p

L2 ε((n+2)−p(n−2))/p (4.33)

and this estimate implies (4.29). ��
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Following the proof of the Proposition 4.1, we get

Corollary 4.3 If h1, h2 ∈ KerL+ ∩ H1
rad(R

n), then we have

‖h1 − h2‖H1(Rn) � ‖h1 − h2‖L2(Rn). (4.34)

5 Appendix I: Properties of the ground states

We start with the following variational statement.

Lemma 5.1 Assume n ≥ 3, p ∈ (2, 1 + 4/(n − 2)). Then we have the following properties:

(a) we have the identities

W = W∗ = Wσ , (5.1)

where

W∗ = inf{Wp(u); u ∈ H1
rad \ {0}, ‖∇u‖2L2 + ‖u‖2L2 = D(|u|p, |u|p)},

Wσ = inf{Wp(u); u ∈ H1
rad \ {0}, ‖u‖2L2 = σ, σ = βkW }; (5.2)

(b) we have also the identity

{u ∈ H1
rad \ {0};Wp(u) = W, ‖∇u‖2L2 + ‖u‖2L2 = D(|u|p, |u|p)}

= {u ∈ H1
rad \ {0};Wp(u) = W, ‖u‖2L2 = σ = βkW }. (5.3)

Proof of Lemma 5.1. To show the first identity in (5.1) it is sufficient to use the obvious
inequality W ≤ W∗ and deduce the opposite inequality W∗ ≤ W from the following
observation: for any ε > 0 the property W + ε ≥ Wp(u) ≥ W implies that for any real
nonzero constant μ the function μu is also satisfies W + ε ≥ Wp(μu) ≥ W. If we choose
μ so that μu satisfies the constraint condition and take ε → 0, we getW∗ ≤ W . In this way
we deduce W∗ = W. Similar argument shows that W = Wσ . Let

Wp(u) = W, ‖∇u‖2L2 + ‖u‖2L2 = D(|u|p, |u|p).
Then for any h ∈ S(Rn)we have (see Step I, proof of Theorem 1.1 in Sect. 2 for more detailed
calculation)

d

dε
Wp(u + εh)

∣
∣
∣
∣
ε=0

= D(|u|p, |u|p)−1/p (〈−�u + u − I (|u|p)|u|p−2u, h〉L2
)

and we deduce the Eq. (1.1). From this equation we deduce the normalization conditions
(1.11) so we have

‖u‖2L2 = σ = βkW .

In this way, we obtain the inclusion

{u ∈ H1
rad \ {0};Wp(u) = W, ‖∇u‖2L2 + ‖u‖2L2 = D(|u|p, |u|p)}

⊆ {u ∈ H1
rad \ {0};Wp(u) = W, ‖u‖2L2 = σ = βkW }. (5.4)

Vice versa we have to show

{u ∈ H1
rad \ {0};Wp(u) = W, ‖u‖2L2 = σ = βkW }

⊆ {u ∈ H1
rad \ {0};Wp(u) = W, ‖∇u‖2L2 + ‖u‖2L2 = D(|u|p, |u|p)}. (5.5)
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If

Wp(u) = W,

then we have

d

dε
Wp(u + εh)

∣
∣
∣
∣
ε=0

= D(|u|p, |u|p)−1/p (〈−�u + u − �I (|u|p)|u|p−2u, h〉L2
)

,

where

� = ‖∇u‖2
L2 + ‖u‖2

L2

D(|u|p, |u|p) .

Then (5.5) easily follows from the implications

� ≶ 1 �⇒ ‖u‖2L2 ≷ σ = βkW . (5.6)

To be more precise, if � > 1, then we can find μ > 1 so that μu satisfies

‖∇(μu)‖2L2 + ‖μu‖2L2 = D(|μu|p, |μu|p).
Since μu is also minimizer for Wp, we see that (5.4) implies

μ2‖u‖2L2 = σ,

so ‖u‖2
L2 < σ. Similarly, � < 1 �⇒ ‖u‖2

L2 > σ and we have (5.6) that implies (5.5).
This completes the proof. ��

6 Appendix II: Fuchs–Painleve series expansions of ground states

The equation

− �u + u = I (u p)u p−1 (6.1)

can be rewritten as a system of nonlinear second-order differential equations

Q′′(r) + n − 1

r
Q′(r) = Q − A(r)Qp−1,

A′′(r) + n − 1

r
A′(r) = −Qp. (6.2)

Our goal will be to verify that imposing special initial data

Q(0) = Q0 > 0, Q′(0) = 0,

A(0) = A0, A′(0) = 0, (6.3)

we can find a unique real analytic (near r = 0) solution to this Cauchy problem. Then we
can consider the following more general problem

Y ′′(r) + c

r
Y ′(r) = F(r , Y ),

Y (0) = Y ′(0) = 0, (6.4)
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where we have shifted the initial data to zero, but we assume that F(r , 0) �= 0 may be a
nontrivial source term. To be more precise, here Y (t) ∈ C2([0, 1); R

n) is a vector-valued
function, while F satisfies the assumptions

F(r , Y )is real analytic near r = 0, Y = 0 (6.5)

and

F(0, 0) �= 0. (6.6)

As in Theorem 11.1.1 in [10] we can state the following Fuchs–Painleve type result.

Theorem 6.1 If the conditions (6.5) and (6.6) are fulfilled, then the Cauchy problem (6.4)
has a unique real analytic solution

Y (r) =
∞
∑

k=2

Ykr
k

near r = 0.

This result applied to the Cauchy problem (6.2), (6.3) gives the following series expansions
near r = 0

Q(r) = Q0 +
∞
∑

k=1

Q2kr
2k, A(r) = A0 +

∞
∑

k=1

A2kr
2k . (6.7)

To be more precise, we can take more general initial data

Q(0) = Q0 > 0, Q′(0) = Q1,

A(0) = A0, A′(0) = A1, (6.8)

and we can take
(

Q(r)
A(r)

)

=
(

Q0 + Q1r
A0 + A1r

)

+ Y (r), Y (r) =
(

Y1(r)
Y2(r)

)

F(r , Y ) =
(

Q0 + Q1r + Y1(r) − (A0 + A1r + Y2(r))(Q0 + Q1r + Y1(r))p−1

−(Q0 + Q1r + Y1(r))p

)

.

Then assuming Q0 > 0, we see that F(r , Y ) is real analytic near r = 0, Y = 0 and we have
the equation

Y ′′(r) + n − 1

r
Y ′(r) = F(r , Y )

with zero initial data. Applying the Fuchs–Painleve Theorem 6.1 we see that Y (r) is real
analytic near r = 0 and rewriting the equation in Y in the form

rY ′′(r) + (n − 1)Y ′(r) = r F(r , Y ),

we see that Y ′(0) = 0, so we have (6.3).
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7 Appendix III:Q is in the image of L+

Following [22] we have to prove the following.

Lemma 7.1 If S = x · ∇x is the scaling operator in R
n, then

L+
(

SQ + 2

p − 1
Q

)

= −2Q. (7.1)

Proof The scaling operator S = x · ∇x satisfies the commutator relations

[(−�), S] = 2(−�),

[(−�)−1, S] = −2(−�)−1. (7.2)

Indeed the first relation in (7.2) is trivial, while the second one follows from

[AB,C] = A[B,C] + [A,C]B,

applied with A = (−�), B = (−�)−1 and C = S. Since

L+h = (−� + 1)h

−pQp−1(−�)−1(Qp−1h) − (p − 1)Qp−2h(−�)−1(Qp)

and

L+(Q) = −2(p − 1)Qp−1(−�)−1(Qp),

we shall use the relations

L+(SQ) = (−� + 1)SQ

−pQp−1(−�)−1(Qp−1SQ) − (p − 1)(Qp−2SQ)(−�)−1(Qp)

= S(−� + 1)Q − 2�Q − Qp−1(−�)−1(SQp) − (SQp−1)(−�)−1(Qp)

= S(−� + 1)Q − 2�Q − [S (Qp−1(−�)−1(Qp)
)+ 2Qp−1(−�)−1(Qp)

]

= S
[

(−� + 1)Q − Qp−1(−�)−1(Qp)
]− 2�Q − 2Qp−1(−�)−1(Qp)

= 2
[

(−� + 1)Q − Qp−1(−�)−1(Qp)
]− 2Q + 4Qp−1(−�)−1(Qp)

= −2Q − L+
(

2

p − 1
Q

)

,

because (7.2) implies

S
(

Qp−1(−�)−1(Qp)
) = (SQp−1)(−�)−1(Qp) + Qp−1S

(

(−�)−1(Qp)
)

= (SQp−1)(−�)−1(Qp) + Qp−1(−�)−1(SQp) − 2Qp−1(−�)−1(Qp).

Then the proof is completed. ��
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