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Abstract

Four new centrality measures for directed networks based on unitary,
continuous-time quantum walks (CTQW) in n dimensions � where n is
the number of nodes � are presented, tested and discussed. The main
idea behind these methods consists in re-casting the classical HITS and
PageRank algorithms as eigenvector problems for symmetric matrices,
and using these symmetric matrices as Hamiltonians for CTQWs, in order
to obtain a unitary evolution operator. The choice of the initial state
is also crucial. Two options were tested: a vector with uniform occupa-
tion and a vector weighted w.r.t. in- or out-degrees (for authority and
hub centrality, respectively). Two methods are based on a HITS-derived
Hamiltonian, and two use a PageRank-derived Hamiltonian. Central-
ity scores for the nodes are de�ned as the average occupation values.
All the methods have been tested on a set of small, simple graphs in
order to spot possible evident drawbacks, and then on a larger number
of arti�cially generated larger-sized graphs, in order to draw a compar-
ison with classical HITS and PageRank. Numerical results show that,
despite some pathologies found in three of the methods when analyzing
small graphs, all the methods are e�ective in �nding the �rst and top ten
nodes in larger graphs. We comment on the results and o�er some insight
into the good accordance between classical and quantum approaches.
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1 Introduction

Centrality measures for networks [1, 2] can be loosely de�ned as measures of
importance of nodes. Notions of centrality have received considerable interest
in the last decades, especially boosted by the important task of �nding e�cient
algorithms for ranking web pages in search engines. Two classical examples of
algorithms for computing centrality scores are HITS [3] and PageRank [4].

In directed networks, nodes can be ranked according to their importance
as hubs or authorities. Roughly speaking, a strong hub is a node that points
to many important nodes and a strong authority is a node that is pointed to
by many important nodes. The notion of �important nodes� depends on the
method: in HITS, which simultaneously provides hubs and authority scores,
good hubs point to good authorities and good authorities are pointed to by
good hubs, whereas in PageRank a node has a higher authority centrality score
if it is pointed to by strong authorities.

Algorithms for webpage ranking usually compute authority centrality, but
any authority method can be easily converted to a hub method by applying it
to the reverse graph obtained by inverting the direction of each link. In matrix
terms, if A is the adjacency matrix of the original graph, the reverse graph
has adjacency matrix AT . For instance, PageRank is an authority ranking
algorithm, but it can be easily converted to hub ranking (Reverse PageRank,
see e.g. [5, 6]) by applying it to AT instead of A. HITS, on the other hand, is
fundamentally a power method that alternates between A and AT and yields
both hub and authority rankings.

An interesting feature of PageRank is the fact that it can be seen as a
random-walk problem: the Google matrixG built from A is a stochastic matrix,
thus representing a random walk, and the ranking score of a node is the asymp-
totic probability of �nding the walker in that node. This is an example of the
important role that random walks play in many ranking methods.

The increasing development of research in quantum computation has
sparked an interest in �nding quantum-formulated ranking algorithms for net-
works. The relation between node-ranking algorithms and classical random
walks suggests that it may be useful to explore the theory of quantum walks
on networks, for ranking purposes. On the theory of quantum walks, we men-
tion, among others, the seminal papers [7�10] and the review [11]. A good
introduction can be found, for instance, in the recent book [12]. Among other
features, quantum walks exhibit faster di�usion w.r.t. classical random walks,
thus allowing for algorithmic speedup [13, 14].

In contrast to classical random walks, unitary quantum walks typically do
not converge to a stationary distribution, because of unitary evolution. There-
fore, time-averaging is expected to be required for the extraction of centrality
scores, unless one resorts to the use of mixed quantum-classical evolution [15] or
tunable time-dependent Hamiltonian for adiabatic computations [16]. Another
remarkable feature is that the average occupation of each node may depend on
the initial state, i.e., the prescription of the initial state is part of the ranking
method.
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Like classical random walks, quantum walks can be de�ned either in a
discrete-time (DTQW) or a continuous-time (CTQW) framework [17, 18]. Here
we focus on the continuous-time case, which has the merit of taking place in
a Hilbert space of dimension equal to the number of nodes, whereas DTQW
typically require a dimension of the order of the number of edges.

The formulation of a quantum method for centrality measures based on
DTQW or CTQW has been explored by several authors [19�27]. [20] proposes
a method, called Quantum PageRank, based on a DTQW that evolves in a
Hilbert space of dimension n2, where n is the number of nodes. In CTQW-
based methods such as [21, 22], the quantum walk takes place in a Hilbert space
of dimension n; however, such methods are applicable to undirected graphs
only. The authors of [23] have circumvented the di�culty of obtaining an
evolution operator from a non-symmetric A by forgoing unitarity, and adopting
instead non-standard PT-symmetric Hamiltonians.

In a recent work [28], three unitary-CTQW-based centrality measures for
directed networks were introduced and discussed. Unitarity was obtained by
de�ning the CTQW on the associated bipartite graph, following the idea
behind [29], hence with a number of degrees of freedom equal to 2n. One
of the methods proved to be especially robust and its rankings were very
well related to HITS rankings; however, no satisfactory results were obtained
when trying to design an algorithm well-related to PageRank. Moreover, the
doubling of the dimension of the Hilbert space is a drawback, only partially
mitigated by the fact that two of the three proposed methods compute hub-
and authority-centrality in a single run.

However, doubling the dimension of the Hilbert space could be unnecessary.
Classical HITS and PageRank methods can both be reframed as eigenvector
problems on n × n symmetric matrices. This fact suggests the idea of using
such matrices as Hamiltonians to de�ne a unitary n-dimensional CTQW on
the network. Rankings obtained by such a CTQW can be expected to yield
results similar to HITS and PageRank, respectively.

In this paper we explore this possibility, proposing two evolution opera-
tors for CTQW in n dimensions, based on a (slightly modi�ed) HITS-derived
Hamiltonian and on a PageRank-derived Hamiltonian. As mentioned above,
the initial state must be supplied as well, in order to properly de�ne the
method. Two choices were studied: a uniformly occupied initial state and an
initial state with occupation numbers weighted w.r.t. node degrees (in-degrees
for authority centrality or out-degrees for hub centrality). On the whole, we
propose four new algorithms, combining the two choices for the Hamiltonian
and the two initial states.

Section 2 provides the background to understand the problem and recalls
the HITS and PageRank algorithms, formulating them as eigenvector problems
on symmetric n× n matrices. It also outlines the main ideas behind quantum
centrality algorithms. Our CTQW-based methods are presented in Section 3.
Section 4 is devoted to numerical experiments: tests on simple toy models,
which allow us to discuss certain features of the methods, are followed by tests
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on more than 5000 larger graphs of di�erent sizes (from 128 to 1024 nodes).
These tests are designed to check whether the obtained rankings are in good
accordance with the results of the classical methods they are derived from.
Three indicators are used: the probability of �nding the same top-ranked node,
the number of common nodes in the top-ten ranking, and Kendall's τ [30].
Sections 5 and 6 contain a discussion of the results and concluding remarks.

2 Background

A (directed) graph G is a pair (V,E), where V is the set of nodes, labeled
from 1 to n, and E = {(i, j)|i, j ∈ V } is the set of edges. The graph is called
undirected if (i, j) ∈ E implies (j, i) ∈ E. The graphs we consider are weakly
connected, unweighted and contain no loops (i.e., edges from one node to itself)
or multiple edges.

The adjacency matrix associated with G is the n×n matrix A = (Aij) such
that Aij = 1 if t(i, j) ∈ E, and Aij = 0 otherwise. Clearly A is symmetric if
and only if G is undirected.

The in-degree degin(i) of node i is the number of nodes pointing to node i,
whereas its out-degree degout(i) is the number of nodes pointed to by node i.
It holds degin(i) = (1TA)i and degout(i) = (A1)i, where 1 ∈ Rn is the vector
with all entries equal to 1.

2.1 Classical centrality measures for directed graphs

Among the many centrality measures proposed in the literature for directed
graphs, we recall two popular ones that inspired the present work. Both of
them were originally developed for ranking web pages.

HITS (Hyperlink-Induced Topic Search) [3].

This is an iterative scheme that computes an authority score and a hub score
for each node. Each iteration takes the form

x(k) = AT y(k−1), y(k) = Ax(k), (1)

followed by normalization in 2-norm, where x(k) and y(k) are the vectors of
authority and hub scores, respectively, at the k-th step. Authority and hub
centralities are de�ned as the limit values of the corresponding scores for k →
∞. The initial vector is usually chosen as 1√

n
1.

This process can also be reframed as a power method, yielding the dominant
eigenvector of the symmetric matrices ATA (for authorities) and AAT (for
hubs).

PageRank [4, 31].

Here we recall the PageRank method for authority scores, as originally con-
ceived for web page ranking. Hub centralities can be obtained via Reverse
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PageRank [5, 32], that is, PageRank applied to the �reversed graph� with
adjacency matrix AT .

In the PageRank algorithm, the adjacency matrixA of the graph is modi�ed
to obtain the so-called patched adjacency matrix Ã, which is row-stochastic:

Ãij =

{
Aij/degout(i) if degout(i) > 0,
1/n otherwise.

This can be seen as the transition matrix of a random walk: each entry Ãij
is the probability, for a walker placed at node i, to reach node j, with the
assumption that from each dangling node � i.e., a node with zero out-degree
� the walker can reach all other nodes with uniform probability. Next, one
introduces a teleportation e�ect by adding a rank-one correction:

G = αÃ+
1− α
n

11T , (2)

where α ∈ [0, 1] is a parameter, usually chosen as α = 0.85. The Perron-
Frobenius theorem ensures that 1 is the (simple) eigenvalue of maximum
modulus for GT . The associated eigenvector x > 0 such that GTx = x yields
the PageRank scores, and it can be computed e�ciently via the power method.

The Google matrix G as de�ned above yields authority rankings. For hub
rankings, one can de�ne a matrix Gh in the same way, starting from AT instead
of A. Note that Gh 6= GT .

The PageRank method can be rewritten in terms of the symmetric matrix

HG = (I −G)(I −G)T .

Indeed, it is easily seen that the problem of �nding the dominant eigenvec-
tor of GT is equivalent to the problem of �nding a vector in the null space
of HG. Obviously the dominant eigenvector of GT belongs to the null space
of HG, since it has eigenvalue 1. On the other hand, if x ∈ Ker(HG), then
0 = xTHGx = ((I − G)Tx)T (I − G)Tx = ‖(I − G)Tx‖22, which implies
(I − G)Tx = 0, i.e., x is an eigenvector of G with eigenvalue 1; therefore it
is the dominant eigenvector. This fact is used, e.g., by [16] in order to rede-
�ne the PageRank method as a ground-state method suitable for a quantum
adiabatic computation.

2.2 Quantum centrality

Much of the literature on quantum centrality methods relies on discrete-time
quantum walks. One notable example is the (discrete) Quantum PageRank,
here abbreviated as DQPR [20]. For a graph with n nodes, these methods
typically work in an n2-dimensional state space, as required by the coined or
Szegedy formulations of the DTQW, although it can be proved that in DQPR
the non-trivial component of the dynamics actually takes place in a subspace
of dimension at most 2n.
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However, continuous-time quantum walks [33�35] have also been used to
de�ne notions of graph centrality, mostly for undirected networks [22]. A
CTQW on a graph G with n vertices takes place in a complex Hilbert space
of dimension n; a generic state of the system takes the form

|ψ〉 =
n∑
j=1

aj |j〉,

where |j〉, with j = 1, . . . , n, is the basis state associated with a walker localized
at node j, and the amplitudes a1, . . . , an ∈ C are such that

∑n
j=1 |aj |2 = 1.

Note that it holds aj = 〈j|ψ〉. The square modulus |aj |2 is the occupation
of node j, i.e., the probability of �nding the system in the state |j〉 after a
measurement.

The time evolution of a CTQW on a graph is described by the Schrödinger
equation

i
∂|ψ(t)〉
∂t

= H|ψ(t)〉, (3)

where |ψ(t)〉 is the state of the system at time t. The Hamiltonian operator H
encodes the structure of the graph and is often chosen as the graph Laplacian
or the adjacency matrix, which are symmetric when G is undirected; see [36]
for motivation and a comparison.

If H does not depend explicitly on time, the solution of (3) is

|ψ(t)〉 = U(t)|ψ(0)〉, U(t) = e−iHt. (4)

Here U(t) is the unitary evolution operator of the system and |ψ(0)〉 is the ini-
tial state. Quantum properties of the CTQW include superposition of states
and time reversibility; the latter is a consequence of the unitarity of the
evolution operator and implies that there is no limit state.

For this reason, one typically resorts to limits of time averages (limit-
ing distribution) in order to de�ne centrality and communicability scores. For
instance, in [22] the authors de�ne a CTQW-based centrality measure for undi-
rected graphs where the initial state |ψ(0)〉 is a uniform superposition of all
vertex states, the evolution of the walk is modeled by equation (3) withH = A,
and the centrality score of node j is

Cj = lim
T→∞

1

T

∫ T

0

|〈j|ψ(t)〉|2dt. (5)

The following result, recalled from [28] and adapted from [8], ensures
the well-posedness of the above de�nition and gives an explicit, closed-form
characterization of the time-average limit.

Theorem 1. Let U(t) = e−iHt be a unitary evolution operator in a n-
dimensional Hilbert space, and denote as {θj , |φj〉}j=1,...,n, the eigenvalues and
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eigenstates of the time-independent Hamiltonian H. Recall that the eigenval-
ues and eigenstates of U(t) are {λj(t) = e−itθj , |φj〉}j=1,...,n. Let |ψ(0)〉 =∑n

i=1 aj |φj〉, with a1, . . . , an ∈ C, be the initial state of the system, written in
the eigenstate basis, and denote as |ψ(t)〉 the state of the system at time t.
Then for any state |ξ〉 it holds

lim
T→∞

1

T

∫ T

0

|〈ξ|ψ(t)〉|2dt =
∑

j,kwith θj=θk

aja
∗
k〈ξ|φj〉〈φk|ξ〉, (6)

where the asterisk ∗ denotes the complex conjugate.

Note that the limit depends on the initial state and on the eigenstates of
H, but not on the eigenvalues of H, except for their multiplicity structure.

3 Centrality for directed networks based on
unitary CTQW

It was mentioned in Section 2.1 that both HITS and PageRank for directed
networks can be seen as eigenvector problems on certain symmetric matri-
ces. This suggests that we can de�ne unitary CTQW-based centrality scores
derived from classical HITS and PageRank, by using suitable modi�cations of
these symmetric matrices as Hamiltonians.

The new methods proposed here follow a similar general scheme as in [22]:

1. Prepare the initial state (the �walker�) in a state |ψ(0)〉.
2. Propagate the walker for a su�ciently large time t:

|ψ(t)〉 = e−iHt|ψ(0)〉. (7)

3. Compute the time-average probability distribution of �nding the walker at
each vertex j; this is the centrality score of node j:

Cj = lim
T→∞

1

T

∫ T

0

|〈j|ψ(t)〉|2dt. (8)

These centrality measures are well-de�ned, as a consequence of Theorem 1.
Di�erently from [22], however, H here is not the adjacency matrix; moreover,
the initial state can be di�erent from the equal superposition of all vertex
states.

3.1 HITS�derived CTQW

HITS looks for the dominant eigenvector of ATA (authority) or AAT (hubs).
It is therefore quite natural to investigate the use of such matrices as Hamil-
tonians to de�ne evolution operators for hub and authority rankings. We will
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describe the method for authority rankings; for hub rankings, simply exchange
A and AT .

In fact, some di�culties arise if the matrix ATA is chosen as a Hamiltonian
for authority rankings. Indeed, ATA might have a block-diagonal structure; for
instance, it is diagonal for a path graph. In this case, the resulting CTQW will
be �trapped� in separate subspaces. This means that the quantum walk cannot
explore the whole space and the resulting rakings might not be meaningful. In
the example of a path graph, with a diagonal Hamiltonian, there is no evolution
at all of the occupation of the nodes, because the states |j〉 are eigenvectors of
the Hamiltonian, and the resulting ranking vector will be equal to the initial
state. This is clearly not a desirable behaviour. For this reason we borrow from
PageRank the idea of adding a rank-one correction to the adjacency matrix:

Ã = αA+
1− α
n

11T , (9)

where α ∈ [0, 1] is a suitably chosen parameter. Now de�ne the following n×n
symmetric matrix:

HH = ÃT Ã. (10)

The matrix HH represents our Hamiltonian operator, which will be used to
model a CTQW in a Hilbert space of dimension n according to (7). In our
experiments we take α = 0.85 as is often done for classical PageRank.

3.2 PageRank�derived CTQW

Direct PageRank (for authorities) seeks a vector in the 1-dimensional null
space of HG = (I−G)(I−G)T , where G is de�ned as in Section 2.1. As above,
we will describe our PageRank-like method for authorities, and hubs can be
found replacing G with Gh.

Matrix G already contains corrections that ensure the irreducibility of HG;
so, no further corrections are introduced. The Hamiltonian is

HG = (I −G)(I −G)T . (11)

The Hamiltonian HG will be used to model a CTQW in a Hilbert space of
dimension n according to (7). The parameter α that de�nes the matrix G is
set to 0.85.

3.3 Initial state

As already mentioned, the choice of the initial state is required to properly
de�ne a quantum walk and its limiting distribution. In [28] it was shown that
the same evolution operator may give remarkably di�erent rankings, depending
on the choice of the initial state. Two options have been considered here for
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the initial state. The �rst one is simply a uniformly occupied state:

|ψu(0)〉 =
1√
n

n∑
k=1

|k〉. (12)

The second choice is an initial state where each node has occupation pro-
portional to its in-degree (for authority centrality) or to its out-degree (for hub
centrality):

|ψw(0)〉 =
1√∑n

k=1 degin(k)

n∑
k=1

√
degin(k) |k〉 for authority,

|ψw(0)〉 =
1√∑n

k=1 degout(k)

n∑
k=1

√
degout(k) |k〉 for hub. (13)

This choice of initial state is mainly motivated by the fact that |ψw(0)〉 is at
the same time easy to compute and strongly correlated with the HITS score
vector. Numerical experiments [28] also con�rm its e�ectiveness.

Combining the two Hamiltonians de�ned above with these two choices of
the initial state, we obtain four quantum centrality methods:

� CQHITSu: Hamiltonian HH (10), initial state |ψu(0)〉 (12);
� CQHITSw: Hamiltonian HH (10), initial state |ψw(0)〉 (13);
� CQPRu: Hamiltonian HG (11), initial state |ψu(0)〉 (12);
� CQPRw: Hamiltonian HG (11), initial state |ψw(0)〉 (13).

4 Numerical experiments

The four proposed methods have been tested on small graphs, where clear
hub / authority results can be expected, in order to spot possible drawbacks
of the methods, and then tested on a large sample of larger graphs generated
using the Python package NetworkX [37]. All the methods were implemented
in Octave and run on a laptop equipped with a 4-core Intel i7-7500U 2.70GHz
processor, with 16 GB of RAM. In this paper we do not attempt a quantum
implementation of the proposed centrality measures: all the numerical tests
involve classical computations. The limit in (8) is computed via Theorem 1.

This section summarizes the main results obtained for the various methods.

4.1 Small graphs

The small graphs chosen for the initial test are:

Example 1: path graph, i.e., a simple chain of nodes.
Example 2: diamond graph, i.e., a graph with a �main hub� (node 1) with n−2
outgoing edges directed towards nodes 2, 3, ..., n − 1, and a �main authority�
(node n) with n− 2 incoming edges from nodes 2, 3, ...n− 1.
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Fig. 1 Simple graphs used for testing the ranking methods (examples 1-4).

Example 3: star graph, i.e., a central hub (node 1) connected to all the other
nodes, and no other edge present.
Example 4: tailed graph, i.e., n1 initial nodes connected as in a path graph,
followed by n2 nodes that form a complete subgraph. Node n1 is connected to
all the n2 nodes in the complete subgraph.

These graphs are shown in Figure 1. The computed centrality scores for
Examples 1�3 and the rankings for Example 4 are shown in Tables 1�6. The
rankings provided by the quantum methods are typically similar to the rank-
ings given by their classical counterparts. However, some details are worth
discussing.

Table 1 Hub scores for Example 1, with 4 nodes. Authority scores can be read by
inverting the order of the nodes.

Node CQHITSu CQHITSw HITS CQPRu CQPRw PR

1 0.2683 0.3301 0.5774 0.4541 0.4479 0.3701
2 0.2683 0.3301 0.5774 0.2795 0.3147 0.2988
3 0.2683 0.3301 0.5774 0.1820 0.1636 0.2149
4 0.1952 0.0097 0.0000 0.0844 0.0737 0.1161

In [28], a �quantum pathology� a�ecting almost all the tested quantum
methods (including DQPR) was spotted in small examples similar to these
ones. When a graph contains �no-hub� nodes, i.e., nodes with zero out-degree,
or �no-authority� nodes, any sensible ranking should place them at the bottom
of the respective rankings. However, this is not always the case for quantum
methods, and this problem sometimes also appears in the four centrality mea-
sures presented here. CQHITSu and CQPRu fail in Example 2: node 5, which
has no outgoing edges, is placed second in hub rankings instead of being in the
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Table 2 Hub scores for Example 2, with 5 nodes. Authority scores can be read by
exchanging node 1 and node 5.

Node CQHITSu CQHITSw HITS CQPRu CQPRw PR

1 0.4055 0.4886 0.5000 0.5606 0.6787 0.4683
2 0.1400 0.1695 0.5000 0.0955 0.0879 0.1407
3 0.1400 0.1695 0.5000 0.0955 0.0879 0.1407
4 0.1400 0.1695 0.5000 0.0955 0.0879 0.1407
5 0.1746 0.0028 0.0000 0.1528 0.0578 0.1096

Table 3 Hub scores for Example 3, with 5 nodes.

Node CQHITSu CQHITSw HITS CQPRu CQPRw PR

1 0.2599 0.9906 1.00000 0.5685 0.7162 0.5238
2 0.1850 0.0023 0.00000 0.1079 0.0710 0.1190
3 0.1850 0.0023 0.00000 0.1079 0.0710 0.1190
4 0.1850 0.0023 0.00000 0.1079 0.0710 0.1190
5 0.1850 0.0023 0.00000 0.1079 0.0710 0.1190

Table 4 Authority scores for Example 3, with 5 nodes.

Node CQHITSu CQHITSw HITS CQPRu CQPRw PR

1 0.1850 0.0007 0.0000 0.1491 0.2484 0.1709
2 0.2037 0.2498 0.5000 0.2127 0.1879 0.2073
3 0.2037 0.2498 0.5000 0.2127 0.1879 0.2073
4 0.2037 0.2498 0.5000 0.2127 0.1879 0.2073
5 0.2037 0.2498 0.5000 0.2127 0.1879 0.2073

last position, and the same happens to node 1 for authority rankings. CQPRw
fails in the authority ranking in Example 3: node 1, the central node of the star
(with no incoming edges) is ranked �rst instead of last. No evident pathologies
emerge from Examples 1 and 4.

The only method that seems to be immune to �quantum pathologies� is
CQHITSw. In fact, the introduction of the initial weighted state was aimed
at correcting this pathology; it is e�ective for HITS-derived methods, but the
behaviour of PR-derived methods seems to be more erratic, since in Example 3
the pathology unexpectedly appears as an e�ect of the weighted initial vector.

We add some more remarks:

� In path graphs, di�erent behaviours are observed for HITS, which isolates
the last node (hub) or the �rst node (authority) placing the other ex-aequo,
and for PR, which outputs descending hub scores and ascending authority
scores, without ties. Both behaviours are acceptable; it is interesting to see
which one is reproduced by the new methods. It appears that the two HITS-
derived methods have the same behaviour as HITS, and the two PR-derived
methods have the same behaviour as PR, as expected.

� Classical HITS shows a notable failure on Example 2 (it does not isolate the
�rst-ranked node, both in hub and authority rankings) and a less signi�cant
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Table 5 Hub rankings for Example 4, with n1 = n2 = 4.

CQHITSu 4 1,2,3 5,6,7,8
CQHITSw 4 5,6,7,8 1,2,3
HITS 4 5,6,7,8 1,2,3
CQPRu 1 2 3 4 5,6,7,8
CQPRw 1 2 3 4 5,6,7,8
PR 1 2 3 4 5,6,7,8

Table 6 Authority rankings for Example 4, with n1 = n2 = 4.

CQHITSu 5,6,7,8 2,3,4 1
CQHITSw 5,6,7,8 2,3,4 1
HITS 5,6,7,8 1,2,3,4
CQPRu 5,6,7,8 3 4 2 1
CQPRw 5,6,7,8 4 3 2 1
PR 5,6,7,8 4 3 2 1

Table 7 Number of scale-free graphs used in numerical tests and corresponding number
of nodes.

Number of nodes 128 256 384 512 640 768 896 1024
Number of graphs 800 400 267 200 160 133 114 100

failure in Example 4 (node 1 is given the same authority as nodes 2, 3 and
4). In Example 2, these problems are likely linked to the degeneration of the
dominant eigenvector. Note that the two CQHITS method do not su�er from
these drawbacks and correctly spot the �rst-ranked node in Example 2 (and
also the last-ranked node in Example 4), isolating them from the others.

� An interesting feature of Example 4 is the fact that classical PR and HITS
output di�erent hub rankings: PR places node 1 �rst, followed by the other
nodes of the �tail� � thus emphasizing the fact that all the following nodes
can be reached from them � while HITS privileges node 4, emphasizing the
number of direct connections. It is noteworthy that the quantum versions
reproduce this di�erent behaviour.

� In Example 4, CQHITSu identi�es the same top hub as HITS, but it places
nodes 1-3 above nodes 5-8, contrarily to HITS (and CQHITSw); in the
same example, there is a curious inversion of nodes 3 and 4 in the authority
ranking for CQPRu.

4.2 Tests on larger graphs

4.2.1 Scale-free graphs

Here we test ranking algorithms on 2174 larger scale-free graphs authomati-
cally generated by the scale_free_graph command in NetworkX [37]. These
are directed graphs built according to a preferential attachment process. The
number of graphs generated for each choice of the number of nodes is given in
Table 7. Tests are repeated for hub and authority rankings, so each graph is
used twice.
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Table 8 F1, F10 and Kendall's τ for scale-free graphs.

Nodes
CQHITSu CQHITSw CQPRu CQPRw

F1 F10 τ F1 F10 τ F1 F10 τ F1 F10 τ
128 0.841 6.22 0.0288 0.900 7.68 0.7000 0.917 8.27 0.3198 0.978 9.23 0.5658
256 0.804 6.69 0.0026 0.893 8.09 0.6940 0.933 8.29 0.2652 0.984 9.19 0.5225
384 0.768 6.54 0.0019 0.869 7.85 0.6697 0.901 8.26 0.2718 0.963 9.15 0.5118
512 0.758 6.67 -0.0205 0.855 7.87 0.6754 0.910 8.23 0.2321 0.970 9.16 0.4894
640 0.731 6.68 -0.0088 0.872 7.87 0.6671 0.922 8.07 0.2363 0.972 9.05 0.4850
768 0.695 6.42 -0.0024 0.831 7.56 0.6508 0.914 7.95 0.2520 0.970 8.96 0.4878
896 0.667 6.55 -0.0123 0.851 7.80 0.6523 0.882 7.89 0.2406 0.961 8.95 0.4750
1024 0.685 6.51 -0.0088 0.865 7.87 0.6545 0.920 7.78 0.2296 0.975 8.91 0.4705

Table 8 shows the comparison of the four centrality methods with their
corresponding classical counterpart (HITS for CQHITSu and CQHITSw, PR
for CQPRu and CQPRw), showing

� the fraction F1 of tests in which the �rst node is the same as found in the
corresponding classical algorithm,

� the average number F10 of the top 10 nodes that appear in both the quantum
and classical rankings, and

� the Kendall's τ [30] of the overall ranking, w.r.t. the ranking obtained by
the classical algorithm.

We see that HITS-derived algorithms perform quite well, with a signif-
icant improvement of CQHITSw over CQHITSu. CQHITSw �nds the same
�rst node as HITS in 83�90% of the tests, with an average coincidence of
more than 7 nodes in the top 10. Results for CQHITSu are still acceptable
but clearly worse. Note the marked di�erence in Kendall's τ parameter for the
two methods: about 0 for CQHITSu, and above 0.65 for CQHITSw. The τ
value for CQHITSu indicates that, although the method is generally able to
�nd top-ranked nodes, the overall rankings are weakly related to HITS rank-
ings. This is almost certainly due to the above-mentioned quantum pathology,
which disrupts rankings in lower positions; see [28] for an extensive discussion.
CQHITSw, on the contrary, exhibits the highest values of τ among the four
methods.

PR-derived methods perform even better than HITS-derived methods in
�nding top-ranked nodes: these are correctly identi�ed in about 90% of the
cases for CQPRu and in more than 96% of the cases for CQPRw. The number
of �correct� nodes among the top ten is also remarkable: about 8 for CQPRu
and about 9 for CQPRw. Kendall's τ , however, is not high (usually below 0.3
for CQPRu and around 0.5 for CQPRw). The improvement achieved adopting
a weighted initial vector is signi�cant, but it is less marked than for HITS-
derived methods. A possible explanation might come from the fact that the
HITS ranking is known to be strongly correlated to the simple degree ranking,
while the correlation is weaker for PR.

A regular trend can be spotted in the F1 parameter for CQHITSu, as it
appears to decrease when increasing the size of the graphs. Such a behaviour
is not observed in other methods.
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Table 9 F1, F10 and Kendall's τ for random graphs.

CQHITSu CQHITSw CQPRu CQPRw
F1 F10 τ F1 F10 τ F1 F10 τ F1 F10 τ

Hub 0.923 9.43 0.8877 0.923 9.42 0.8854 0.958 9.59 0.8955 0.959 9.60 0.9007
Auth. 0.972 7.19 -0.0640 0.991 9.12 0.8136 0.785 7.67 0.4174 0.988 9.72 0.7944

4.2.2 Random k-out graphs

Another test was performed on random graphs built via preferential attach-
ment, with the constraint that all nodes have (nearly) the same outdegree.
These graphs were generated by the random_k_out_graph command in Net-
workX [37] and then modi�ed by removing multiple edges, which is the reason
for the slight deviation from uniform outdegree. A sample of 3000 graphs of 128
nodes each was considered. The same quantities F1, F10 and τ are computed
for the four methods, as in 4.2.1. Since the roles of hubs and authorities are
asymmetrical due to the outdegree constraint, separate averages are computed.
Results are shown in Table 9.

For hub rankings, results for weighted methods are almost identical to
results for a uniform initial vector, as can be expected. The correspondence
with classical methods seems to be very good, even � quite unexpectedly �
for Kendall's τ (around 0.9). In authority ranking, uniform methods give good
results � except for Kendall's τ , as expected � but the improvement from uni-
form to weighted methods is signi�cant: the weighted methods show a striking
99% probability of spotting the same �rst-ranked node as their classical coun-
terparts, an average coincidence of more than 9 among the �rst 10 nodes and
a Kendall's τ around 0.8.

5 Discussion

One remarkable feature of the methods presented here is their overall good
(sometimes very good) accordance with classical methods such as HITS or
PageRank. One may ask why, since the classical methods seek the eigenvector
associated with a speci�c eigenvalue (the dominant or the null eigenvalue),
whereas from Theorem 1 it is clear that eigenvalues have no role at all in
the quantum rankings, except possibly for their multiplicity structure. Indeed,
suppose for simplicity that the Hamiltonian matrix H has distinct eigenvalues:
then the limiting distribution of the associated CTQW only depends on the
eigenvectors of H and on the initial state. Why should CTQW-based centrality
give similar results to the classical case, if CTQWs do not �see� eigenvalues?

The explanation we found to be most convincing is the following. The
classical ranking vector, say φ1, is positive by the Perron-Frobenius theorem.
Now, recall that coe�cient a1 from Theorem 1 is the (possibly weighted) sum
of the elements of φ1. Then one can typically expect that |a1| � |aj | for j > 1,
thus amplifying the contribution of eigenvector φ1 in the quantum ranking.
Figures 2 and 3 show the behaviour of the coe�cients |aj |2 for a scale-free
and for a k-out graph, respectively, for the CQPRu method. In both cases a1
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Fig. 2 Coe�cients |aj |2 for the CQPRu authority ranking of a scale-free graph with 128
nodes and parameters α = 0.557, β = 0.136, γ = 0.307. Here |a1|2 = 0.5078, whereas the
other coe�cients are in the [0, 0.0608] range.
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Fig. 3 Coe�cients |aj |2 for the CQPRu hub ranking of a k-out graph with 128 nodes and
parameters α = 0.3, k = 5. Here |a1|2 = 0.9249, whereas the other coe�cients are in the
[0, 0.0077] range.
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is the coe�cient associated with the classical PageRank eigenvector and it is
clearly larger than the others. Note that both rankings are quite faithful to
their classical counterparts: they identify the same top-ranked node and the
same set of top-ten nodes.

This remark may also help explain why hub rankings for k-out graphs are
in extremely good accordance with classical PageRank: since the PageRank
vector is close to being uniform (as shown in Figure 4), the value of a1 is
nearly maximised, so in Theorem 1 the term associated with the PageRank
eigenvector is strongly dominant.



Springer Nature 2021 LATEX template

16 Ranking nodes in directed networks via CTQW

Fig. 4 Entries of a few eigenvectors of the Hamiltonian matrix for the CQPRu hub ranking
of a k-out graph with 128 nodes and parameters α = 0.3, k = 5. The �rst eigenvector
(thick blue line) is the classical PageRank vector, i.e., it is associated with eigenvalue 0. Also
depicted are the eigenvectors associated with eigenvalues 0.2908, 0.9517 and 1.4143, that is,
columns of indices 3, 50 and 100 in the eigenvector matrix computed by MATLAB. Clearly
the �rst eigenvector has a comparatively uniform behaviour, whereas the other eigenvectors
are much more localized.
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One may also ask whether the behaviour of the quantum methods is related
to localization properties of eigenvectors. One may conjecture, for instance,
that quantum approaches amplify the contribution of localized eigenvectors.
Localization of eigenvector centrality is a well-known phenomenon: see, e,g.,
[38�40]. However, in our experiments the classical ranking eigenvector does
not appear to be remarkably more localized than others. Moreover, the various
eigenvectors tend to be localized over di�erent sets of indices, so they do not
necessarily reinforce the contribution of the classical ranking eigenvector. Hub
rankings for k-out graphs are a good counterexample for this conjecture: the
classical ranking eigenvector is typically much less localized than other eigen-
vectors (see Figure 4), but, as noted above, the quantum rankings are in very
good accordance with classical rankings.

Another notable phenomenon is the fact that, for the CQPRu method,
many coe�cients ai may be zero, and therefore the associated eigenvectors of
the Hamiltonian do not contribute to the ranking. For instance, in the example
of Figure 2, aj is numerically zero for j = 21, 22, 43 to 80, 98, 107, 108. More
precisely, the Hamiltonian has many eigenvectors with eigenvalue 1 that are
orthogonal to the initial uniform state. In fact, in such cases G and GT both
have large-dimensional null spaces, so it is not surprising that the intersection
of these null spaces also has a comparatively large dimension. Now Ker(G) ∩
Ker(GT ) is an eigenspace of H associated with the eigenvalue 1, and each
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vector in this subspace has zero average, i.e., it is orthogonal to the uniform
vector. Indeed, let e be the vector with all entries equal to 1. Since G is row-
stochastic we have eTGT = eT . Then for any v ∈ Ker(G) ∩Ker(GT ) it holds
eTGTv = eTv. But GTv = 0 and therefore eTv = 0.

6 Conclusions

We tested node-ranking methods based on continuous-time quantum walks,
obtained by reframing two well-known classical methods (HITS and PageRank)
as eigenvector problems on symmetric matrices, and using such matrices (with
a slight modi�cation for HITS) as Hamiltonians for the quantum walk. Each
Hamiltonian was tested on two initial vectors (uniform and degree-weighted),
yielding four quantum ranking methods. Numerical results are in good agree-
ment with their classical counterparts in �nding the top-ranked nodes, with
a signi�cant improvement in weighted methods w.r.t. the uniform ones. For
instance, CQPRw �nds the same top-ranked node as classical PageRank in
more than 95% of the cases, and the average number of common top-10 nodes
is always above 8.9, for all sets of test graphs. CQHITSw seems to be immune
to the anomalous rankings of no-authority or no-hub nodes that are frequently
encountered when using quantum methods, and has the best performance for
the overall agreement of the rankings, as measured by Kendall's τ . Analysis of
the results shows that the reason for this agreement is not related to localiza-
tion of the dominant (or null) eigenvector found in the classical case. It is more
likely due to the Perron-Frobenius theorem, which ensures that the initial pos-
itive state (uniform or weighted) has a large component along the eigenvector
corresponding to the classical ranking vector.
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