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AbstractWe consider a scheduling application in 5G cellular networks, where base
stations serve periodic tasks by allocating conflict-free portions of the available
spectrum, in order to meet their traffic demand. The problem has a combinatorial
structure featuring bi-dimensional periodic allocations of resources. We consider
four variants of the problem, characterized by different degrees of freedom. Two
types of formulations are presented and tested on realistic data, using a general-
purpose solver.
Knapsack Problems invited session

1 Introduction

5G cellular networks provide ubiquitous wireless access on licensed spectrum, with
very low latencies and high reliability, thus being a viable solution for real-time ap-
plications, such as vehicular communications. The Cellular Vehicular-to-everything
(C-V2X) standard for New Radio 5G networks allows vehicles to request exclusive
access to some spectrum resources, which they can use for inter-vehicle communi-
cations. Resource allocation is done centrally by the base station, which is in charge
of a (possibly large) coverage area, and needs to fulfill several such requests simul-
taneously. The base station allocates spectrum resources in both time and frequency.
On every Transmission Time Interval (TTI), in the order of 1 millisecond or less,
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the base station can allocate an airframe, i.e., a vector of several tens of resource
blocks (RBs). Each RB can be allocated to only one requesting entity at a time. The
transmission overhead associated with serving a single request is non negligible, and
– quite often – the communication needs of a vehicle are long-term (imagine a vehi-
cle transmitting to another the live video acquired from its camera). For this reason,
the C-V2X standard allows vehicles to request periodic allocation of resources. This
forces the base station to run complex algorithms to compose requests coming from
different vehicles.

In such 5G Periodic Scheduling, tasks have a period c, expressed in number of
TTIs, and a demand |, expressed as a number of RBs. A base station serves tasks
requested by vehicles by allocating | contiguous RBs in a TTI, and on every c-th
subsequent TTI thereafter. Once the sub-vector is assigned to a task, it will be used
again by the same task in each TTI that it is aired (depending on its period). In other
words, the assignment of a sub-vector of RBs to a task periodically reserves the same
portion of bandwidth to the same task. We recall that an RB can only be assigned
to one task in each TTI – the assignment of a RB to more than one task in the same
TTI is called a “conflict”.

The basic combinatorial problem consists of finding a conflict-freeRB assignment
(aka RB schedule) for a given set of “new” tasks to be served, taking also into account
the resources previously assigned to a set of “old” tasks that are already in place.

We consider four variants of the basic problem by combining two degrees of
freedom: (8) old tasks are either fixed or movable; (88) new tasks are either forced to
be scheduled or their scheduling is optional. These variants are solved in sequence,
starting from the most rigid one, and loosening it up if the current model turns out
to be infeasible. In particular, in the first attempt the old tasks are fixed and all the
new ones are forced to be scheduled. If this has no solution, we then consider the old
tasks to be movable in order to place all the new tasks. Finally, the last two variants
are always feasible, because the scheduling of new tasks is optional (while the old
ones are either fixed or movable).

We propose two types of formulations, called “Conflict-Based” and “Matrix-
Based”, that are solved (for each variant) using the general-purpose MILP solver
CPLEX. The formulations are tested on several instances corresponding to realistic
5G settings. Our results show that the sequential approach is generally more efficient
than immediately solving themost flexible variant (i.e., Movable-Optional), and even
large instances can often be solved in fairly short computing times.

2 System Model

We represent the airframe as a vector of RBs of size " . Let # = {1, . . . , =} be the
set of new periodic tasks to be scheduled. Each task 8 ∈ # corresponds to an ordered
pair (c8 , |8), where c8 is the task period, and |8 is the number of RBs it demands.
The RBs assigned to a task must be contiguous elements of the airframe, i.e., a
sub-vector of size |8 . The assignment of a sub-vector to a task means reserving the
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same sub-vector to the task in each TTI it is aired (according to its period). Given
a task set # , the hyperperiod � is defined as the least common multiple of the task
periods: � = lcm8∈# (c8). The hyperperiod corresponds to the minimum number of
TTI after which the schedule is repeated.

The aim of Periodic Scheduling is to find a RB schedule for the task set # in the
corresponding hyperperiod. A RB schedule ( consists of = ordered pairs (ℎ8 , C8), one
for each task 8 ∈ #:

• ℎ8 ∈ {1, . . . , " − |8 + 1} is the position of the first RB in the sub-vector
{ℎ8 , . . . , " − |8 + 1} of size |8 assigned to task 8;

• C8 ∈ {0, . . . , c8 −1} is the first TTI in which task 8 is aired within the hyperperiod.

Note that given a schedule (, all the (periodic) RB allocations within the hyperperiod
are uniquely defined for all 8 ∈ #: C8 , C8 + c8 , C8 + 2c8 , . . . , C8 +

(
�
c8
− 1

)
c8 .

Each RB can be assigned to only one task in any TTI, hence the challenge is
to avoid simultaneous overlap in time and space, i.e., a conflict. Two tasks 8, 9 ∈
# that are first aired in TTIs C, C ′, respectively, will overlap in time if and only
if there exist =8 , = 9 ∈ N such that C + =8c8 = C ′ + = 9c 9 . This is a Diophantine
equation, where =8 , = 9 are integer unknowns. The equation has a solution if and only
if C ′ − C ≡ 0 (<>3 gcd(c8 , c 9 )). Let ℎ, ℎ′ be the first RB positions in the airframe
for tasks 8 and 9 , respectively. To check space (i.e., frequency) overlap one can just
consider the intersection between the corresponding sub-vectors: [ℎ, ℎ + |8 − 1] ∩[
ℎ′, ℎ′ + | 9 − 1

]
≠ ∅.

Feasibility requires that any two tasks can overlap in at most one dimension.
Indeed, if the overlap is both in time and space, then there exists (at least) one RB
that is assigned to different tasks at the same time, generating a conflict. A schedule
( is feasible for a set # of tasks, if all demands are satisfied without conflicts. A set
of tasks # is said to be schedulable if there exist a feasible schedule ( for it.

In the following, we also assume that a set � of old tasks is already scheduled.
We denote by � = # ∪� the overall set of tasks (old and new). We consider different
scheduling strategies: old tasks can either be fixed in their previous position, or
movable to facilitate the placement of new tasks; new tasks # can either be forced
to be scheduled, or their scheduling can be optional. These strategies generate four
variants of our problem with different levels of “flexibility”.

To our knowledge, the variants with optional scheduling correspond to a new
multiple-period version of the knapsack problem, that has not appeared in the liter-
ature so far [1, 2]. In the problem domain, no works that we know of have addressed
the problem dealt with in this paper. Some works (e.g., [3]) deal with adjusting
the offsets of tasks to minimize the delay between the activation of a periodic task
instance and its scheduling in the hyperperiod. Others (e.g., [4]) try to predict which
tasks should be scheduled periodically and which should not. For the sake of brevity,
we only present the formulations corresponding to the two variants with movable
old tasks.
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3 Conflict-Based (CB) formulations

This formulation uses binary variables to represent overlaps in time and space
between pairs of tasks:

2C8, 9 =

{
1 if tasks 8 and 9 overlap in time
0 otherwise

8, 9 ∈ �,

2ℎ8, 9 =

{
1 if tasks 8 and 9 overlap in space
0 otherwise

8, 9 ∈ �.

To identify time overlaps we define the set) (8, C, 9) that contains all TTIs C ′ for which
task 9 would generate a time overlap in the hyperperiod with task 8 aired in TTI C. The
set is defined for all task pairs 8, 9 ∈ �, and for all possible TTIs C ∈ {0, . . . , c8 − 1}
of task 8:

) (8, C, 9) =
{
C ′ ∈ {0, . . . , c 9 − 1} | C ′ − C ≡ 0 (<>3 gcd(c8 , c 9 )

}
.

Note that we only need to identify the initial TTIs (i.e., in the first period of a
task) because these uniquely define all the subsequent periodic allocation times.
Similarly, the set � (8, ℎ, 9) contains all the initial RB positions ℎ′ for which task 9
would generate a space overlap with task 8 whose first RB position is ℎ:

� (8, ℎ, 9) =
{
ℎ′ ∈ {1, . . . , " − | 9 + 1} | [ℎ, ℎ + |8 − 1] ∩

[
ℎ′, ℎ′ + | 9 − 1

]
≠ ∅

}
.

Next, we use binary variables to represent the assignment to a task of the initial TTI

G8,C =

{
1 if task 8 is first aired in TTI C
0 otherwise

8 ∈ �, C ∈ {0, . . . , c8 − 1},

and the initial RB

H8,ℎ =

{
1 if task 8 has first RB position ℎ
0 otherwise

8 ∈ �, ℎ ∈ {1, . . . , " − |8 + 1}.
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The model for theMovable-Forced (M-F) variant looks as follows:

(CB-M-F) min
∑
8∈�

I8 (1)

s.t.
c8−1∑
C=0

G8,C = 1 8 ∈ � (2)

"−|8+1∑
ℎ=1

H8,ℎ = 1 8 ∈ � (3)

2C8, 9 ≥ G8,C +
∑

C′∈) (8,C , 9)
G 9 ,C′ − 1 8, 9 ∈ �, C ∈ {0, . . . , c8 − 1} (4)

2ℎ8, 9 ≥ H8,ℎ +
∑

ℎ′∈� (8,ℎ, 9)
H 9 ,ℎ′ − 1 8, 9 ∈ �, ℎ ∈ {1, . . . , " − |8 + 1} (5)

2C8, 9 + 2ℎ8, 9 ≤ 1 8, 9 ∈ � (6)
I8 ≥ 1 − G8,C8/2 − H8,ℎ8/2 8 ∈ � (7)
G8,C ∈ {0, 1} 8 ∈ �, C ∈ {0, . . . , c8 − 1} (8)
H8,ℎ ∈ {0, 1} 8 ∈ �, ℎ ∈ {1, . . . , " − |8 + 1} (9)
2C8, 9 ∈ {0, 1} 8, 9 ∈ � (10)
2ℎ8, 9 ∈ {0, 1} 8, 9 ∈ � (11)
I8 ∈ {0, 1} 8 ∈ � (12)

This variant of the problem forces all new tasks to be scheduled, butwe are allowed
to move old ones. In constraints (7) we use variables G8,C8 and H8,ℎ8 to represent the
“original” position in time and space, respectively, of an old task 8 ∈ �. If any of
the two variables is set to zero, the old task is moved (in time and/or in space). The
objective (1) is to minimize the number of old tasks moved, so we define binary
variables I8 , ∀8 ∈ � to keep track of old tasks moved:

I8 =

{
1 if task 8 is moved
0 otherwise

8 ∈ �.

Note that equations (2)–(3), expressing the assignment of an initial TTI and RB
to the tasks, refer to both new and old tasks (8 ∈ �), since old tasks can be as-
signed a different schedule (if they are moved). Constraints (4)–(5) keep track of
time and space overlaps, while inequalities (6) forbid simultaneous overlaps in both
dimensions, hence conflicts.
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Amore flexible variant, calledMovable-Optional (M-O), is obtained by making
the scheduling of new tasks optional, the model is:

(CB-M-O) max
∑
8∈#

c8−1∑
C=0

G8,C −
1

|� | + 1

∑
8∈�

I8 (13)

s.t.
c8−1∑
C=0

G8,C = 1 8 ∈ � (14)

"−|8+1∑
ℎ=1

H8,ℎ = 1 8 ∈ � (15)

c8−1∑
C=0

G8,C ≤ 1 8 ∈ # (16)

"−|8+1∑
ℎ=1

H8,ℎ ≤ 1 8 ∈ # (17)

c8−1∑
C=0

G8,C −
"−|8+1∑
ℎ=1

H8,ℎ = 0 8 ∈ # (18)

(4), (5), (6), (7),
(8), (9), (10), (11), (12)

In this case the objective function (13) consists of two terms, one maximizes the
number of new tasks that are scheduled, while the other minimizes the number of old
tasks moved. The weight of the latter is < 1, thus among the two policies the former
prevails. Note that with respect to the previous variant, the assignment constraints are
slightly different, as one needs to distinguish between old and new tasks. Equations
(14)–(15) guarantee that old tasks are always scheduled, as they either keep their
old schedule or they are moved. The scheduling of new tasks, instead, is optional,
as expressed by inequalities (16)–(17); constraints (18) make sure that if a new
task receives a position in one dimension, it also receives a position in the other
dimension.

4 Matrix-Based (MB) formulations

We use three-index binary variables representing the assignment to both dimensions:

G8,ℎ,C =

{
1 if task 8 has first RB position ℎ and first TTI C
0 otherwise

for all 8 ∈ �, ℎ ∈ {1, . . . , " − |8 + 1}, C ∈ {0, . . . , c8 − 1}.
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To identify conflicts we define a set for each space-time position (ℎ, C), ℎ ∈
{1, . . . , "}, C ∈ {0, . . . , � − 1} containing all the schedules that use RB ℎ at TTI C:

� (ℎ, C) = { (8, ℎ′, C ′) 8 ∈ �, ℎ′ ∈ {1, . . . , " − |8 + 1}, C ′ ∈ {0, . . . , c8 − 1} |
if 8 is in (ℎ′, C ′), 8 has assigned also the RB (ℎ, C) }.

We denote, as before, by ℎ8 and C8 the original space and time positions respectively
of an old task 8 ∈ �. To keep track of old tasks that are moved, we define the following
parameter:

U8,ℎ,C =

{
1 if ℎ ≠ ℎ8 or C ≠ C8
0 otherwise

8 ∈ �, ℎ ∈ {1, . . . , "−|8+1}, C ∈ {0, . . . , c8−1}.

The model for theMovable-Forced (M-F) variant is:

(MB-M-F) min
∑
8∈�

"−|8+1∑
ℎ=1

c8−1∑
C=0

U8,ℎ,CG8,ℎ,C (19)

s.t.
"−|8+1∑
ℎ=1

c8−1∑
C=0

G8,ℎ,C = 1 8 ∈ � (20)∑
(8,ℎ′,C′) ∈� (ℎ,C)

G8,ℎ′,C′ ≤ 1 ℎ ∈ {1, . . . , "}, C ∈ {0, . . . , � − 1} (21)

G8,ℎ,C ∈ {0, 1} 8 ∈ �, ℎ ∈ {1, . . . , " − |8 + 1}, C ∈ {0, . . . , c8 − 1} (22)

Note that the M-B formulation does not need additional variables to represent old
tasks that are moved, since the condition is given by parameter U8,ℎ,C associated to
all assignment variables in the objective function. Assignment in time and space
(for all tasks) is obtained via constraints (20). Conflicts are forbidden by inequalities
(21), which, for each space-time position (ℎ, C), make sure that at most one schedule
in � (ℎ, C) (i.e., a schedule using (ℎ, C)) is selected.
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Next, we give the formulation for the Movable-Optional (M-O) variant, for
which, as we already observed, the scheduling of new tasks is optional:

(MB-M-O)max
∑
8∈#

"−|8+1∑
ℎ=1

c8−1∑
C=0

G8,ℎ,C −
1

|� | + 1

∑
8∈�

"−|8+1∑
ℎ=1

c8−1∑
C=0

U8,ℎ,CG8,ℎ,C

(23)

s.t.
"−|8+1∑
ℎ=1

c8−1∑
C=0

G8,ℎ,C = 1 8 ∈ �

(24)
"−|8+1∑
ℎ=1

c8−1∑
C=0

G8,ℎ,C ≤ 1 8 ∈ #

(25)
(20), (21).

The objective function (23), as already observed for the C-B formulation, maximizes
the number of new tasks scheduled and minimizes the number of old tasks moved.
Assignment constraints (24) guarantee a schedule for all the old tasks 8 ∈ �, while
for new tasks 8 ∈ # the scheduling is optional (25).

5 Computational results

The models are implemented and solved using CPLEX Callable Library. We
generated realistic instances taking into account technical aspects of the application.
An instance of our problem is characterized by the following elements:

• size " of the airframe
• RB demand and period of new tasks (|8 , c8), 8 ∈ # = {1 . . . =}
• set of fixed tasks �

The idea underlying the construction of four variants for the problem is to solve
them in sequence. Namely, if one variant turns out to be infeasible we set to solve
the next one:

1. **-F-F: this is a purely feasibility problem, that checks if all new tasks can be
scheduled without moving the old ones;

2. **-M-F: in this variant we are free to move old tasks if this allows to schedule all
new task, the objective function minimizes the number of old tasks moved;

3. **-F-O: in this variant old tasks are fixed, but the scheduling of new tasks is
optional, which guarantees to find a feasible solution;
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4. **-M-O: this is the most flexible and complex “knapsack-like” variant having
both degrees of freedom (i.e., old tasks can be moved and the scheduling of new
tasks is optional).

In our experiments we compare the sequential approach with the direct solution of
the last variant **-M-O. The comparison is performed for both types of formulations,
so “**” is either CB (Conflict-Based) or MB (Matrix-Based). We use a time limit of
3600 seconds. In the sequential approach the time limit is split among the different
variants:

• 600 seconds for **-F-F
• 1200 seconds for **-M-F
• 1800 seconds for **-F-O

In Tables 1 and 2 we report, for formulations CB andMB respectively, the average
solution times (in seconds) on all the task periods considered, for each value of "
and |# |:

M=10 M=25 M=50 M=100
|# | CB-seq CB-M-O CB-seq CB-M-O CB-seq CB-M-O CB-seq CB-M-O
20 14 32 29 94 6 37 9 70
30 165 141 79 166 108 119 132 108
50 526 866 951 2752 709 1310 1605 1725
60 1803 2925 1450 2376 518 1307 1146 1752
90 3256 3014 3109 2839 3251 2849 3236 2841

Table 1: Solution times (seconds) of sequential approach vs. M-O variant for the Conflict-Based
formulation.

M=10 M=25 M=50 M=100
|# | MB-seq MB-M-O MB-seq MB-M-O MB-seq MB-M-O MB-seq MB-M-O
20 69 902 1229 1814 4 2242 914 –
30 101 1203 545 1850 334 2291 1336 –
50 305 1939 1753 2798 1545 2936 22 –
60 975 2444 1031 2576 1452 3314 1222 –
90 2472 2903 2401 2913 1806 3600 44 –

Table 2: Solution times (seconds) of sequential approach vs. M-O variant for the Matrix-Based
formulation.

These preliminary results show that the sequential approach consistently performs
better than the **-M-O variant for both formulations, except for the largest instances
(|# | = 90) for which CB-M-O has a better performance. Indeed 43% of the tested
instances can be solved by the first two variants (**-F-F and **-M-F) during the
sequential approach. The instances in the last column of Table 2 (“–”) could not be
solved within the time limit.
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