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A B S T R A C T   

Residential battery storage to perform load shifting and demand side management has become of utmost 
importance to improve hosting capacity, increase renewable energy penetration and meet environmental targets, 
especially with energy community policies. As the lifetime of electrochemical batteries depends upon their 
scheduling and environmental conditions, the multi-year effects of operational strategies can affect the eco-
nomics of the investment. However, rarely complete long-term simulations of the operation of storage systems 
are performed to assess the battery profitability including the operational effects of aging, and limited studies 
account for a large statistics of consumers. In this study, we propose a multi-year sizing methodology for resi-
dential applications, where the complete lifetime of batteries is simulated at 15-min time resolution till complete 
degradation using an improved non-linear non-convex degradation model; the photovoltaic plant aging is also 
considered. An extensive analysis on the economics and commercial size best suited for 399 real load profiles in 
Italy is proposed. Results suggest that the break-even price of the storage is about 400 €/kWh, which is lower 
than the average commercial price, and that, as reviewed, current market components may be unfit for con-
sumers with low energy demand. Net Present Value (NPV) and Discounted PayBack Time (DPBT) can reach 500- 
1500 € and 8-11 years.   

1. Introduction 

1.1. Motivation 

Energy investments are well known to be long-lasting, so their eco-
nomic profitability must be assessed in a multi-year perspective. In this 
way, it becomes of primary interest to understand and properly model 
the aging mechanisms along the time of the system under consideration. 
Given the pressure for increasing the renewable penetration and meet 
environmental targets, the promotion of smart residential houses is of 
utmost importance, but their optimal sizing has rarely accounted for 
multi-year considerations, including the simulation of the battery 
degradation. In particular, degradation processes covering the battery, 
photovoltaic system and converter need to be carefully analysed, to 
correctly model how the system operation is affected over time. Among 
them, modelling the battery is one of the most complicated items. 

Therefore, it is timely to address the optimal multi-year sizing of 

residential battery systems based on a detailed model of battery degra-
dation model and realistic data to give a picture of the state-of-the art in 
the profitability of BESS systems for the Italian scene using 399 real load 
profiles. A detailed literature analysis to identify the most proper 
degradation models for all the system components has been performed 
and a modified version has been derived and implemented. 

1.2. Battery degradation 

The literature in battery modelling is very rich and long-lasting. 
While first studies regarding power systems focused on lead acid bat-
teries [1], recent technology development lead to a variety of studies on 
different battery chemistries [2,3], among which lithium batteries 
represent the state-of-the-art for battery storage solutions in residential 
applications [4]. 

In the literature, studies related to battery degradation modelling 
span between theoretical and empirical approaches: in the former, the 
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model is derived by known chemical dynamics and properties of the 
materials [5,6], while the latter approaches are based on correlations 
between stress and lifetime of the batteries [7,8]. Theoretical models 
involve a large number of parameters, which are often difficult to 
collect, and they are computationally more expensive [9], thus empir-
ical or hybrid models may be more suitable for optimization purposes 
[10]. 

The main factors affecting the lifetime of batteries are: time, tem-
perature, and the operating power profile (current and number of cy-
cles) [11]. The different effects are often modelled as the combination of 
the so-called calendar life, referring to the aging effect involving time, 
and cycle life, related to the cyclical operating conditions of the battery. 
Among the simplest models rely on simple functional fitting (e.g. with a 
polynomial function) to capture the relationship between the capacity 
fading and the stress under consideration [9]. Other hybrid models, 
partially accounting for the chemical dynamics, are based on Arrhenius 
equation [12], which is widely used in chemistries to model velocity of 
chemical reactions, both for standard cyclical operation of the same 
cycle [13] and multiple operating conditions [14]. 

Given the significant complexity of modelling battery degradation, 
studies have often focused on a selected stress at a time, i.e. the Depth- 
of-Discharge (DoD) [7], the State-of-Charge (SoC) [15], or the temper-
ature. However, battery ageing is a fatigue-like process where the re-
petitive application of the stress components affect the State-of-Health 
(SoH). Subsequently, models that consider multiple stresses have been 
introduced [9], also considering the cyclicities in production processes 
or meteorological conditions. Again, while initial studies have usually 
focused on the simple repetitive application of the same stress over time 
[7], methodologies for combining multiple stresses over time have been 
then developed [10,14,16]. Authors in [14] introduced an iterative 
formulation for the evaluation of the degradation effects. In [16], the 
authors proposed a degradation model based on a weighted sum of 
exponential functions, where the capacity fade is computed by 
combining N degradation events, based on the average SoC of the bat-
tery, the normalized standard deviation of SoC with respect to the 
average value, and the temperature. Furthermore, the empirical 
formulation described in [10] aims at capturing the effects of the re-
petitive stresses due to cycling, temperature effects and calendar life by 
means of equations: Arrhenius function, polynomial and exponential 
fitting. This modelling is able to capture a variety of different operating 
conditions and the cycling operation by means of the rainflow counting 
method, widely adopted in fatigue analysis [17] and introduced also for 
optimization techniques [10,18]. Moreover, the degradation model 
described in [10] is supported by quantitative data to replicate the 
methodology, therefore, has been used in this study. 

1.3. PV and power converters degradation 

Similarly to the batteries, the degradation of photovoltaic modules 
and power converters is generally related to technology, time, envi-
ronmental conditions and the cycling operation of the devices [19–22]. 

When proper maintenance and operation of the system is in place, 
the degradation of photovoltaic modules is mainly linked to meteoro-
logical conditions [21,23] and weakly linked to the operation of the 
system. In particular, typical datasheets of PV systems usually guarantee 
a maximum yearly capacity fading, whose numeric values are aligned to 
the experimental studies by the National Renewable Energy Laboratory 
(NREL) of United States [24]. The findings of [24] showed that 
non-linearities occur in PV degradation, but they are difficult to model, 
tend to be mostly located in the early life and, thereafter, a linear trend 
can be a good approximation of the general ageing process, as also 
suggested by [21,23,25]. In this study, for simplicity and in agreement 
with data made available by producers, we considered a linear degra-
dation of PV modules. 

Similar ageing patterns occur also for power electronic degradation, 
as suggested in [22,23,26], however studies have traditionally focused 

on the identification of the time till failure, rather than on capacity or 
efficiency degradation. The experimental study in [23] proposed a 
methodology for assessing the lifetime of a power converter, over-
looking its capacity degradation. Similarly, Sintamarean et al. [26] 
proposed a tool for the optimal reliability-oriented design of 
grid-connected PV inverters; no evidence on efficiency degradation of 
the power converter has been reported. Furthermore, in the empirical 
research activity discussed in [27] for a practical implementation of a 
solar inverter in Malaysia, the authors highlighted that in 3-years 
(2016–2019) no efficiency degradation has been noted for a variety of 
PV converters. A similar finding has independently been obtained in 
[28]. For these reasons, we preliminarly regarded efficiency degradation 
as a secondary effect for the power converter section, whereas the ca-
pacity fading of the PV modules is considered. 

1.4. Multi-year optimization methods 

Traditional optimization methodologies have usually focused on the 
identification of the optimal sizing of a system by using representative 
year profiles [29], sometimes modelled by means of representative days 
[30]. However, energy systems change over time: demand may grow 
and the generation assets age, thus affecting the economics of the in-
vestments [31]. 

Multi-year planning is a well-known topic for generation plans in 
large power systems [32,33], but assets degradation has often been 
overlooked as of secondary importance, also considering that traditional 
power plants may be less subject to operational degradation especially 
when adequate maintenance is implemented. On the other hand, despite 
capacity fading of renewable sources, converters and batteries has 
higher dynamics; it has often been neglected in microgrid or residential 
planning [34]. Conversely, in this study, which is focused on battery 
storage for residential application, the use of accurate battery system 
modelling is a must-have. 

Multi-year optimization is a tough problem whose computational 
requirements are significant, often exceeding hours for 10-year prob-
lems [31,35], because of the large number of variables and constraints. 
Moreover, when complex non-linear constraints and objective functions 
are in place, the complexity can grow even further and traditional 
mathematical programming, i.e. Mixed-Integer Linear Programming, 
may be difficult to apply, unless optimization tolerances are increased 
significantly, even beyond 5–10% [36]. This is the reason why heuristic 
approaches, able to simulate the actual system operation and non-linear 
system behavior, have been proposed [31], or sometimes the main 
long-term period is decomposed in multi-steps [37]; yet full methodol-
ogies, accounting for uncertainties in the demand [31] or not [35], 
better capture the long-term economics of renewable investments. In 
particular, in [31], the authors quantified that multi-year optimization 
algorithms can reduce by 25–50% the initial investment costs (CAPEX) 
and even by 16-20% the Net Present Cost of the investment; assets 
degradation can play an additional 6% forecasting error costs when not 
considered in the optimization process. The findings are also quantita-
tively aligned to the results in [37], although the paper focused on 
country-wide system optimization. Acknowledging these needs, com-
mercial tools have been proposed to address multi-year methodologies 
[38], yet significant improvements are required. 

Recently, multi-year dynamics have been proposed also for resi-
dential applications [18,39–41], but often in a limited way. Authors in 
[40] used a simple model based on calendar life and energy throughput, 
whereas in [18] a more complex algorithm based on rainflow counting 
has been considered; however, the operational effects due to the 
degradation have not been properly taken into account with long-term 
simulations, as the degradation model has been considered to estimate 
the lifetime of the battery, and PV degradation was neglected. Moreover, 
typical residential users can only choose the optimal system according to 
a number of commercial options, which depend on the specific user. In 
traditional studies, the modularity of the commercial options is only 
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limited and a specific load profile is considered. In this study, instead, 
we aim to develop a methodology for the selection of the best compo-
nent, out of a list, for 399 household in the Italian context. 

1.5. Main contributions 

According to the proposed literature analysis and to the authors’ best 
knowledge, the main contributions of this paper are listed below: 

1. Development of a methodology for the selection of the battery en-
ergy storage system most suited for a residential application out of a 
number of commercial options, including the simulation of the 
operational effects of battery and PV degradation and the detailed 
analyses with two objective functions: Net Present Value (NPV) and 
Discounted PayBack Time (DPBT).  

2. Improvement of the degradation model introduced in [10], to better 
detail the calendar and cycling aging of the battery.  

3. Estimation of the household BESS needs for the Italian market, by 
considering a large Italian case study, based on 399 load profiles 
collected from different regions of Italy, to represent a realistic 
overview of the Italian domestic consumption patterns. 

1.6. Organization 

In Section 2, the proposed methodology including assets degradation 
is described. The case study is discussed in Section 3 and in Section 4 the 
results are reported. Finally, conclusions are drawn. 

2. Sizing methodology 

2.1. Optimization procedure 

The procedure used to identify the optimal size of the storage to be 
installed for a residential user is depicted in Fig. 1. 

The main goal of the formulation is identifying the BESS that maxi-
mizes the profitability of the investment until it ages, chosen among a 
pre-defined set of commercially available BESS. Given the non- 
linearities in the converter and in the battery degradation dynamics, 
which also lead to non-homogeneous life of the components spanning 
several years, the proposed iterative approach described in Fig. 1 is 
regarded as a suitable option for the analysis [18,31]. The approach is 
based on a three-loop nested methodology: in the most inner loop (Time 
step loop), the simulation of the BESS operation is performed at 15-min 
resolution, in the mid loop (Simulation period loop) the degradation 
effects of the BESS are iteratively estimated by a rainflow algorithm, and 
finally in the external loop (BESS configuration loop) multiple BESS 
configurations are tested to select the most profitable one. The profit-
ability, evaluated in terms of Net Present Value and Discounted PayBack 
Time, is based on simulations of the battery operation including 
degradation until the End Of Life (EOL) of the battery is reached. 

It is worth noticing that the execution of each rainflow algorithm in 
the simulation period loop is relatively computationally expensive. As a 
compromise between optimality and computational requirements, the 
proposed methodology performs the rainflow algorithm only every a 
given pre-defined period (i.e. 3 months), rather than at any time step of 
the simulation, and within each period it is assumed that no degradation 
occurs. Since the degradation is a slow process, this approximation has 
limited economic and operational effects but enables reducing compu-
tational time. 

The iterative algorithm stops when the actual battery capacity falls 
below a given threshold (βEOL) the capacity of the brand-new BESS 
(BB,N

c ). 
Although the proposed approach is based on estimating the BESS 

profitability for all the investment options of the users, in practical ap-
plications, the number of design options for domestic BESS are relatively 

limited. Therefore, the computational requirements do not rise 
significantly. 

2.2. Objectives 

In the proposed study we consider two main objective functions that 
are widely used in the power systems literature: maximizing Net Present 
Value (NPV) and minimizing Discounted PayBack Time (DPBT). The 
mathematical formulation of NPV for a user i and a specific battery 
system c is reported in (2), where CAPEXi,c represents the investment 
costs for the battery system and DCFi,c,t represents the discounted cash 
flows. DCFi,c,t is defined in (1) where πM,V−

t is the variable component of 
the electricity tariff related to buying electricity from the public market, 
πM,V+

t represents the electricity price applied when the user sells elec-
tricity to the public market, PB+/−

t represents the avoided energy flows 
with the public grid due to the BESS. Ti,c(PB+/−

t ) is the expected lifetime 
of the BESS, dependent on its operation, d represents the discount rate 
and Δ is the time step resolution. The rational of this formulation is that, 
when renewable production exceeds demand, the energy that would be 
normally sold to the grid is stored in the battery (PB−

t > 0); therefore, 

Fig. 1. Flowchart of the simulation model for each user I.  
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avoided profits occur that penalize the return of the investment. How-
ever, the same electricity stored in the BESS can later be used to supply 
the load (PB+

t > 0), that, without the storage, would be met by with-
drawing energy from the grid at a higher cost; this generates avoided 
costs that increase cash flows. yt is the year corresponding to time step t. 
DPBT is instead defined in (3), as the period ŷ in years where the sum of 
the discounted cash flows equals to the investment costs. 

DCFi,c,t = Δ
πM,V −

t PB+
i,c,t − πM,V+

t PB−
i,c,t

(1 + d)yt (1)  

NPVi,c = − CAPEXi,c +
∑

Ti,c(PB+/−

i,c,t )

t=1
DCFi,c,t (2)  

DPBTi,c = ŷ : CAPEXi,c =
∑T (̂y)

t=1
DCFi,c,t (3) 

It is worth noticing that the methodology accounts for the non-linear 
degradation of the battery that affects the lifetime of the project 
(Ti,c(PB+/−

i,c,t )) and its operation, which has been usually neglected in the 
literature. 

2.3. Main constraints 

The electricity balance of the residential user is guaranteed with (4), 
where PPV

i,t is the renewable production at every time step, PL
i,c,t is the load 

demand, and PP+/−

i,c,t represents the power exchanged with the public 
grid. 

PPV
i,t + PB+

i,c,t − PB−
i,c,t − PL

i,c,t = PP+
i,c,t − PP−

i,c,t (4) 

The battery balance is guaranteed with (5), where EB
i,c,t represents the 

energy stored in the battery, and ηB(PB) is the non-linear model of the 
efficiency of the battery, as specified in (6). The maximum power 
dispatch of the aggregator is modelled using (7), where PB,max

c is the 
maximum power of the BESS system, which also accounts for the both 
the converter capacity and the maximum nominal C-rate; no converter 
degradation has been modelled in agreement with the literature [27]. 
Finally, the maximum and minimum energy capacity in the storage are 
accounted for with (8), where EB,AM

i,c,pt 
represents the actual maximum 

capacity of the storage capacity corresponding to the time step t and 
SoCmax/min are the maximum and minimum State-of-Charge of the bat-
tery. It is worth noticing that the value of EB,AM

i,c,p , for the simulation period 
pt corresponding to time step t, is calculated according to the model and 
procedure described in the following subsections. 

EB
i,c,t = EB

i,c,t− 1 + ΔPB−
i,c,tηB

(
PB−

i,c,t

)
− Δ

PB+
i,c,t

ηB
(

PB+
i,c,t

) (5)  

ηB
(

PB
i,c,t

)
= 1 −

a
PB

PB,max
c

− b − c
PB

PB,max
c

(6)  

PB+/−

i,c,t ≤ PB,max
c (7)  

EB,AM
i,c,pt

SoCmin ≤ EB
i,c,t ≤ EB,AM

i,c,pt
SoCmax (8) 

The PV production is formulated in (9) accounting for the specific 
production rate pPV

t , due to environmental and meteorological condition, 
and the actual degraded capacity of the PV system PPV,AM

i,pt
, where pt is the 

simulation period corresponding to time step t, similarly to the battery 
system. 

PPV
i,t = pPV

t PPV,AM
i,pt

(9)  

2.4. Battery aging model 

The degraded capacity of the battery is calculated at the end of each 
simulation period p with Eq. (10), where ξi,pt represents the degradation 
with respect to the brand-new battery for user i at the end of period pt 

and EB,N
i is the capacity of the brand-new battery. ξi,pt is calculated using 

the model reported in (11)–(14), which is a modified version of the one 
in [10], where fd

pt 
represents the quantity combining the degradation 

effects due to the cycling operation (fd,cyc
r ) and of the calendar life (fd,cal

s ) 
of the battery [10]. αsei and βsei are parameters to model the initial 
degradation due to the solid-electrolyte interphase; Rpt represents the 
sets of cycles calculated with the rainflow algorithm in the time period 
till pt, and Spt represents the set of SoC intervals over to calculate the 
degradation due to the calendar life. Function Sδ(δ) models the capacity 
fading component due to the Depth-of-Discharge (DoD), Sσ(σ) describes 
the effect of the SoC, ST captures the effects of temperature, and St de-
notes the effects due to time, as denoted in (15)–(18); kT , kt , kσ , and 
kδ1/δ2/δ3 are experimental parameters, TB

ref is the reference battery tem-
perature (25∘C) and σref is the reference SoC (50%). In particular, as 
denoted in (12), the effects due to cycling operation are decomposed by 
each operating cycle r the battery is subject to, calculated by the rain-
flow algorithm [17] that returns a series of average SoC (σr) and DoD (δr) 
describing the cycling operation of the battery. Eq. (13) describes the 
degradation quantity for a cycle r. In the case of the calendar life, as 
denoted in (12) and (14), the proposed formulation improves the model 
described in [10] by introducing the term fd,cal

s that is specialized in 
different SoC intervals (S), so to account for the specific duration along 
which the battery stays and the corresponding non-linearities. For every 
SoC section s, the algorithm calculates the time period Δs the battery has 
spent within the pre-defined SoC bounds and the corresponding average 
SoC σs performed in the time domain (σs is not the average value of the 
bounds). 

EB,AM
i,pt

=
(

1 − ξi,pt − 1

)
EB,N

i (10)  

ξi,pt = 1 − αseie− βsei f d
i,pt −

(
1 − αsei)e− f d

i,pt (11)  

f d
i,pt

=
∑

r∈Rpt

f d,cyc
r +

∑

s∈Spt

f d,cal
s (12)  

f d,cyc
r = Sδ(δr)Sσ(σr)ST ( TB

r

)
(13)  

f d,cal
s = Sσ(σs)St(Δs)ST ( TB

s

)
(14)  

ST ( TB) = ekT(TB − TB
ref )

TB
ref

TB (15)  

Sσ(σ) = ekσ(σ− σref ) (16)  

St(Δ) = ktΔ (17)  

Sδ(δ) =
(

kδ1δkδ2
+ kδ3

)− 1
(18)  

2.5. PV degradation model 

The degraded capacity of the PV system is modelled using (19), ac-
counting for a linear degradation rate of the modules [23]. The PV ca-
pacity for every simulation period p is modelled with a linear 
degradation rate (αPV,deg) with respect to the time elapsed since the 
initial installation of the PV system tp. PPV,N

i is the non-degraded capacity 
of the PV system. 

PPV,AM
i,p = PPV,N

i
(
1 − αPV,degtp

)
(19) 
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3. Case study 

3.1. Description 

In this case study, we investigate the benefits of adding a battery 
storage system for a number of residential grid-connected application 
with a pre-installed PV system in Italy with NPV and DPBT objective 
functions. Given the system configuration shown in Fig. 2, we consider 
two main cases:  

1. OnlyPV: it is the base case where each user is equiped with a PV 
system only.  

2. PV+Batt: each user is equiped with the same PV as base case and an 
ESS, whose size is chosen among available commercial types at 
minimum cost using the procedure described in Section 2. 

3.2. Load consumption and PV production 

In order to provide generalized results for Italian residential users, an 
extensive measurement campaign was carried out on hundreds of houses 

over one year at 15-min time resolution and 399 real load profiles have 
been collected, spanning between 0.9 MWh/y and 9.6 MWh/y, as shown 
in Fig. 3. The data are a realistic sample of the Italian household con-
sumption as they map the entire Italian territory: 198 households are 
located in the North, 78 in the Center, 94 in the South, and 29 in Sicily 
and Sardinia. Fig. 4 shows the average daily consumption pattern over a 
year, and the corresponding 5th, 50th and 95th percentiles for all users 
under consideration. We considered that each user has a pre-installed PV 
system whose total yearly production corresponds to a given share of the 
annual demand. A sensitivity analysis on this parameter (80%, 100% 
and 120%) has been performed. Since the PV production changes over a 
year due to many aspects (e.g. season, temperature, weather), the 
analysis considers an yearly PV production profile measured in Milan in 
2018 on a real 4-kW PV plant. A PV aging rate of 0.8%/y has been taken 
into account [42]. 

The simulations of the household energy system are performed 
considering the entire multi-year simulations at 15-min time resolution, 
including the seasonalities of the demand and the PV production. 

3.3. ESS characteristics 

Based on a market analysis focused on the main manufacturers of 
residential BESS, listed in Table 1, we normalized the different config-
urations with 12 BESS discrete capacities spanning from 1 to 12 kWh. 
Although this methodology can accommodate custom BESS technology, 
each one with a specific price, peak power and energy capacity, in this 
study we performed a sensitivity analysis on the specific BESS price 
(200, 300 and 400 €/kWh), so to facilitate the comparison between 
multiple assets and cost configurations. The considered price range is 
typically lower than the present market price (spanning from 400 to 
2200 €/kWh, according to authors’ market review and internal sources); 
our values are assumed to include future costs reductions, incentives 
applied by governments, discounts by companies, and economies of 
scale for collective procurement. The BESS is assumed to have 3kW- 
power capacity and the battery is supposed to have a maximum C-rate 
of 1. The degradation parameters, derived from [10], are reported in 
Table 2. 

3.4. Converter model 

The efficiency curve of the power converter has been tailored the real 
behavior of a ESS converter for residential application (SMA SBS2.5- 

Fig. 2. Case study scheme: ESS for residential applications.  

Fig. 3. Number of users per consumption class.  

0 5 10 15 20 25
Time [h]

0

0.5

1

1.5

P
ow

er
 [

kW
] Mean

5%-percentile
50%-percentile
95%-percentile

Fig. 4. Average and statistical properties of the daily consumption pattern of all 399 users.  

Table 1 
List of commercial ESSs for residential application.  

Manufacturer ABB Tesla SOLAX SMA + LG VARTA 

Energy [kWh] 4–12 13.5 3–12 3.3–13 3–13 
Power [kW] 3–5 5 3–7.5 2.5–8 1.6–4  
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1VL-10 [43]). With respect to (6), the numeric values of the converter 
parameters are: a = 0.0068 [-], b = 0.0148 [-] and c = 0.0150 [-]. 

3.5. Electricity tariff 

The market tariffs are chosen according to the Italian standard values 
[44]. In particular, the variable energy cost for purchasing energy 
(πM,V− ) is 16 c€/kWh and the selling price (πM,V+) is 5 c€/kWh. 

It is worth noticing that in this study we considered the future case 
where the Italian policy ”Scambio sul posto” (economic Net Metering) 
will become obsolete [44]. This policy, introduced in 2007, is aimed to 
support renewable sources by granting also to the production that ex-
ceeds the local load a price corresponding to the purchase tariff; in this 
way, the entire production, not only the part self-consumed, counts for 
the avoided purchase price and the grid behaves as a ”virtual battery”. 
Since this subsidy takes out any kind of physical storage, it has not been 
considered in this future-oriented study. 

The discount rate is 2%. 

4. Results 

The main results of the case study are shown in Figs. 5–11. First, we 
discuss the differences in economic results obtained when selecting the 
battery by optimizing NPV or DPBT, based on Fig. 5; then, the technical 
results of the sensitivity analysis are better detailed and finally the dis-
aggregated analyses by user type are reported. The sensitivity analysis 
over the size of the PV system is not reported, as we considered for the 
sake of brevity only the case where the panels are sized to produce the 
same energy as the load, since the results of the other tested cases (80% 
and 120%) where similar or slightly sub-optimal, typically within 2–5% 
on average. 

Each user optimization, testing all 12 battery configurations, typi-
cally requires between 10 and 60 seconds to compute performed on a 16- 
Gb RAM 6-core 2.2-GHz computer, which is regarded as an acceptable 
time interval for practical operations. 

4.1. Effect of the objective function 

Fig. 5 reports NPV, DPBT and the optimal size of the BESS for the 
considered objective functions: pictures on the left refer to the config-
urations that maximize NPV, whose corresponding DPBT is calculated, 
while images on the right are obtained by minimizing DPBT, then NPV is 
calculated. 

The results shown in Fig. 5 highlight that the profitability of adding a 
battery energy system in actual residential applications exists, however 
the break-even cost of the BESS is around 400 €/kWh, yet dependent on 
BESS price and EOL. However, it is worth noticing that current BESS 
market prices for residential application are generally higher (see Sec-
tion 3.3), which suggests that incentives at domestic level are still 

Fig. 5. Values of the objective functions and optimal BESS sizing; error bars denote maximum and minimum values.  

Table 2 
Parameters of the BESS degradation model.  

Symbol Value Symbol Value Symbol Value 

αsei  5.75E-2 [-] βsei  121 [-] kδ1  1.4E5 [-] 

kδ2  -5.01E-1 [-] kδ3  -1.23E5 kσ  1.03 [-] 

σref  0.5 [-] kT  6.93E-2 [-] TB
ref  25 [◦C] 

kt  4.14E-10 [s-1]      
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required, or significant economies of scale through collective procure-
ment, given current load consumption patterns, contract conditions and 
market prices. However, given the current trend in decreasing prices and 
the expected increase in the use of domestic BESS solutions, the 
affordability of these devices can increase significantly. 

According to Fig. 5a, NPV can exceed 500-1000 € in some configu-
rations where NPV is maximized, while the corresponding DPBT is on 
average 12 years, as shown in Fig. 5b. Contrarily, when the optimization 
is performed using DPBT, this reduces to around 8 years on average 
(Fig. 5d), and the corresponding NPV shown in Fig. 5b is significantly 
lower than in Fig. 5a. 

The main reason lays in the optimal sizing of the BESS, which is 
completely different when NPV or DPBT are optimized, as shown in 
Fig. 5e and f, respectively. In the DPBT case, generally the optimal sizing 
of the storage is around 1 kWh, since this capacity leads to a significant 
marginal improvement in the profits even if it does not correspond to 
maximizing NPV. On the contrary, when NPV is maximized, the optimal 
size of the BESS is generally 3–5 kWh on average, which leads to both 
higher NPV and DPBT. 

4.2. Technical results 

The profitability of the investment is strictly dependent on battery 
lifetime. When EOL of the battery is 80% the nominal capacity, the 
battery lasts about 10 years and the portion of users that receive benefits 
from BESS is still high, but their NPV is very limited, as shown in Fig. 6. 
On the other side, when EOL is 70%, NPV can reach 500 € on average, 
and up to 1500 € for most energy-intensive, when NPV is maximized. 
NPV and DPBT shown in Fig. 5 reflect this behavior, however the battery 
lifetime is generally lower in the DPBT case, as battery is subject to more 
frequent and deeper cycling. 

Economic benefits are mainly related to the self-consumption that 
increases from about 30% in the OnlyPV case without BESS, up to 47- 
64% on average when NPV is maximized, and up to about 80% in some 
cases (Fig. 7a). When DPBT is minimized (Fig. 7b), instead, self- 
consumption is no higher than 48% on average, as the BESS is sized 
with a lower capacity. 

Fig. 7. Average self-consumption rate.  

Fig. 8. NPV by user class and battery price, with 75% EOL and 200-€/kWh BESS; error bars denote maximum and minimum values.  

Fig. 6. Average battery lifetime.  
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4.3. Disaggregated data 

When looking at the results disaggregated by user category, as in 
Figs. 8–10 for the case at 75% EOL and BESS price 200 €/kWh, it is 
possible to highlight how the demand capacity affects the technical 
parameters and the economics of the investment. Fig. 8 highlights that 
NPV increases with demand requirements but, interestingly, a 200- 
€/kWh BESS storage is profitable for most users even with demand 
below 2 MWh/y. Similar results can be found also at a BESS price of 300 
€/kWh, but the profitability is lower. In particular, as shown in Fig. 9, 
the optimal BESS size of each user category usually corresponds to a 
specific BESS capacity with little variations (usually within ±1 kWh and 
sometimes ±2 kWh). However, the commercial battery sizes available 
on the market tend to have a larger resolution, so they may not 
accommodate the specific needs of small consumers, at current electric 
demand. This suggests that there are possible market opportunities for 
BESS to accommodate needs for low-demand consumers. The increased 
profitability of BESS is justified by an increased self-consumption rate up 

to about 80%, as shown in Fig. 10 and the final share is generally 
invariant with the user category. In particular, the users with the lowest 
energy demand increase their self-consumption rate from 24% to about 
50–80%, which is an increase higher than in other categories, because 
they have a lower fraction of activities located in daily hours. 

The disaggregated value of the battery lifetime shows that in all 
applications the battery tends to reach EOL after around 15 years, 
depending on the specific user profile and demand category. This value 
is in agreement with the literature and is in agreement with the calcu-
lated DPBT that is around 10 years, with variations of 1-3 years. Given 
the flat behavior, the plots have not been included. 

4.4. Profitability by battery capacity 

To further clarify the effect of different battery capacities on the 
objective function, Fig. 11 shows the average profitability (NPV and 
DPBT) of the BESS for all the tested battery capacities (1kWh to 12kWh) 
by selected classes of Users by Optimal Battery Capacity (UOBC), each one 

Fig. 9. Optimal battery size by user class and battery price, with 75% EOL and 200€/kWh-BESS; error bars denote maximum and minimum values.  

Fig. 10. Self-consumption rate by user class and battery price, with 75% EOL and 200-€/kWh BESS; error bars denote maximum and minimum values.  

Fig. 11. Average profitability (y-axis) by battery capacity (x-axis) and Users by Optimal Battery Capacity (UOBC) categories (legend) with 75% EOL and 200€/kWh 
BESS, where each group UOBCX selects users whose optimal battery capacity is X and the dot specifies the maximum profitability by group. 
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gathering consumers with the same optimal battery capacity. For 
example, UOBC3 corresponds to all users whose optimal battery capacity 
is 3kWh, according to Fig. 9. In particular, as shown in Fig. 11a, the peak 
value of each UOBC curve corresponds to the expected optimal battery 
capacity for each UOBC category, e.g. 3kWh for the UOBC3 curve, and 
that other battery capacities tend to be sub-optimal. This confirms that 
our approach successfully selects the optimal battery capacity that 
maximize NPV for each user among the tested configurations. The same 
also applies for the DBPT objective function, as shown in Fig. 11b. Note 
that in Fig. 11b only UOBC1 and UOBC3 are reported because all users 
install a 1-kWh or a 3-kWh batteries only, as shown in Fig. 9. 

5. Conclusions 

This study proposes a novel methodology for sizing battery energy 
storage systems for residential applications, using detailed multi-year 
simulations of the entire lifetime of the battery including an improved 
degradation model that accounts for battery operation, temperature and 
calendar life. The novel methodology is applied for the case of 399 
Italian households in different regions (North, Center, South and 
islands) and the results give a broad picture for the BESS needs for Italian 
residential users. Sensitivity analysis over the battery prices, end of life 
and size of the PV system, also accounting for a brief review of the 
market. 

The proposed analysis suggests that BESS can be cost-effective so-
lutions for increasing self-consumption by about 30% to even beyond 
80% in some cases, over the entire lifetime of the BESS, considering not 
only BESS but also PV degradation. The increased self-consumption rate 
enables consumers to economize on the purchase of electricity and leads 
to a NPV even up to 500-1500 € when NPV is optimized, depending on 
the BESS cost, but high DPBT (around 10 years, on average). However, 
when DPBT is minimized, its value can decrease to 8 years. Furthermore, 
the results suggested that 400 €/kWh represents the break-even price for 
residential BESS, given the current consumer demand and contractual 
subscription. Therefore, the break-even cost for the BESS tends to be still 
below current market prices, which suggests that cost reductions, 
economies of scale for collective procurement and incentives are still 
required. However, the current decreasing trend of battery costs and the 
expected uptake in the market for domestic BESS can reduce the need for 
incentives. 

This work can lay the basis for further studies in the multi-year sizing 
of residential systems with battery degradation and can give insights to 
developers and policy makers on current market needs for domestic 
systems. 
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