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a b s t r a c t 

The emergence of Multiplayer Mobile Gaming (MMG) applications is intertwined with a plethora of Quality of 
Service and Quality of Experience requirements. Resource usage prediction can provide valuable insights into the 
corresponding orchestration and management process in the form of several proactive functionalities in resource 
scaling, service migration, task offloading and scheduling. These processes are crucial in the Cloud and Edge 
environments exploited by MMG applications. Thus, producing accurate resource usage predictions concerning 
these types of applications is of paramount importance. To that end, we propose a resource usage representa- 
tion paradigm based on Graph Neural Networks (GNNs). The novelty of this approach is based on the process 
of leveraging the dependencies that exist among the various types of computational resources. Furthermore, we 
expand upon this representation approach to develop a GNN-based Encoder-Decoder model that caters to the 
complexities of resource usage and can provide multi-step resource usage predictions. This model is compared 
against numerous well-established Encoder-Decoder and Deep Learning prediction models to assess its efficiency. 
Finally, the proposed model is incorporated in a proactive Horizontal Autoscaling solution that manages to out- 
perform a standard reactive Horizontal Autoscaling approach in the context of a large-scale simulation, in terms 
of various performance metrics, while keeping the volume of the required computational resources to a mini- 
mum. The findings of this work showcase the importance of developing novel approaches in order to represent 
resource usage and the numerous benefits in the context of application performance and resource consumption 
that may derive from such scientific endeavors. 
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. Introduction 

During the last decades, we have witnessed the emergence of
ather demanding applications in terms of Quality of Experience
QoE) and Quality of Service (QoS) requirements. Technological
aradigms, such as Multiplayer Mobile Gaming and Extended Reality
XR) applications ( Makris et al., 2021a ), are associated with various
oS ( Theodoropoulos et al., 2022a ) and QoE requirements. These two

ypes of applications are often intertwined regarding their perspective
equirements and actual architectural design ( Taleb et al., 2022 ). The
ackbone of both types of applications is the ability to provide an im-
ersive experience to the end-user. Providing acceptable levels of im-
ersion requires low latencies and high bandwidths. Especially in the
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eld of XR applications, these requirements are stringent. The corre-
ponding scientific literature has shown that for an end-user experience
o be acceptable, the end-to-end latency shall be less than 15ms, and
he bandwidth should be able to scale up to 30 Gbps ( Boos, Chu, &
uervo, 2016 ). Furthermore, the inevitable emergence of faults in task
rocessing may impose dire ramifications on the implementation of im-
ersive experiences since they often result in service delivery disruption

nd thus, the desired immersion is jeopardised. Therefore, these types of
pplications need to be able to manifest fault tolerance characteristics.
inally, both types of applications are extremely demanding in terms of
omputational resources as they are associated with rendering complex
D models, highly defined graphics, and various advanced assets. Tra-
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1 https://kubernetes.io/ 
2 https://prometheus.io/ 
itional monolithic development approaches would require incorporat-
ng the essential computational resources into the end-user equipment,
hus making it expensive and bulky. In the case of multiplayer mobile
aming, this setback directly contrasts with the core principles of mo-
ile gaming. These principles require that mobile gaming applications
un on hardware to be mobile and relatively inexpensive. Cloud comput-
ng environments provide computational resources that applications can
se to serve the needs of users through the Internet. The cornerstone of
loud computing is based on the use of shared computational resources,
hich may be distributed over multiple locations. By enabling end-users

o access the necessary computational resources remotely, the burden of
omputational adequacy is transferred to these remote resources, thus
llowing the end-user devices to be aligned with the main concepts of
obile gaming. Unfortunately, Cloud infrastructures alone cannot fully

upport immersive applications associated with requirements in terms
f low latency and high bandwidth. The main reason is that end devices
re usually distant from the Cloud servers, thus adding processing and
etwork overhead, resulting in high latency, low bandwidth and overall
erformance degradation. 

A conceptual approach that combines the Cloud’s benefits and the
ecentralised processing of services on edge devices is known as Edge
omputing. Edge computing has attracted a lot of attention both from

ndustry and academia in recent years ( Hao, Novak, Yi, & Li, 2017; Hu,
atel, Sabella, Sprecher, & Young, 2015; Makris, Psomakelis, Theodor-
poulos, & Tserpes, 2022; Patel et al., 2014; Satyanarayanan, 2017 ).
t is considered a key enabler for addressing the increasingly strict re-
uirements of the next-generation applications ( Sabella et al., 2019 ).
n general, Edge computing aims to establish decentralised topologies
nd allow the relocation of various computational and storage resources
loser to the Edge of the network. Doing so is expected to provide ser-
ice delivery and content with better response times, transfer rates, and
igher scalability and availability. In addition, Edge computing signifi-
antly reduces the amount of data in transit towards remote clouds and
nables data processing near the data sources. Ultimately, expanding
he possibilities for more delay-sensitive and high-bandwidth applica-
ions that would not be feasible using Cloud and far remote processing
lone ( Makris et al., 2021b ). Within the context of immersive applica-
ions, Edge computing enables the processing to take place closer to the
nd-user devices. By doing so, the overall end-to-end latency is signifi-
antly reduced. This inherent characteristic of Edge Computing is vital
o these modern paradigms since they both present the need for low
nd-to-end latency. End-to-end latency is the time required for a task to
e processed upon arriving at a specified computational node. There-
ore, Edge Computing Infrastructures need sufficient computational re-
ources to process tasks within the acceptable time specified by the QoS
equirements. If not enough computational resources are allocated, then
verheads in task execution are expected to occur. 

The resource allocation process is closely intertwined with resource
sage metrics such as CPU, Memory and the number of bytes sent or
eceived throughout the network that correspond to the allocated pro-
essing nodes. Resource usage metrics may serve as indicators towards
hether a set of processing nodes is adequate to handle the incoming

asks in the frame of the next time-steps or whether an orchestration
ool should allocate additional computational resources ( Roy, Dubey,
 Gokhale, 2011 ). Scaling down is the reverse process and refers to

he de-allocation of redundant processing nodes in order to reduce en-
rgy consumption and monetary charges. Autoscaling is the automated
rocess that consists of the scale-up and scale-down actions that are
erformed, based on the incoming workloads and the pre-defined QoS
equirements. The autoscaling may take place either reactively, mean-
ng that after the degradation of a QoS metric the orchestration tool can
equest for a scale-up action to take place, or proactively, in order to
revent the QoS degradation from occurring at the first place. Despite
heir many benefits, one significant drawback of proactive autoscaling
olutions is that they tend to result in the over-provisioning of computa-
ional resources. A well established heuristic approach is the Horizontal
2 
od Autoscaler ( Vohra, 2017 ). This approach was introduced in the con-
ext of Kubernetes 1 , where pods refer to the smallest, most basic deploy-
ble objects in Kubernetes and represent a single instance of a running
rocess in a distributed infrastructure. 

Even though there is a plethora of autoscaling solutions already in
roduction, such as Kubernetes, unfortunately they do not incorporate
he sophistication required in order to manifest the desired properties
hat are vital in Edge & Cloud environments. The scale-up actions should
e implemented in a timely manner before a bottleneck occurs, while
lso minimizing deployment and startup delays. This motivated us to
ropose a mechanism that is capable of establishing accurate resource
sage predictions that can be incorporated in a proactive autoscaling
olution. The resource usage metrics for a processing node exhibit a
ime-series format and most of the times a non-linear behaviour, thus
aking the use of Recurrent Neural Network (RNN) a seemingly ideal

ption. 
Monitoring and predicting the capacity under which the Edge nodes

re operating in terms of resource usage can be a valuable piece of in-
ormation in implementing the decision-making processes mentioned
bove in a proactive manner. Resource usage predictions that derive
rom time-series characteristics of historical data are an essential source
f information. Such predictions are a strong indicator regarding the
dequacy of the available computational nodes, either when consider-
ng a scenario in which additional workloads will arrive or as a way
o predict potential QoS degradation that may occur in the near future.
ublicly available monitoring tools, such as Prometheus 2 , can provide
he resource metrics in a stream format. These time-series streams can
e leveraged to produce datasets appropriate for the prediction models’
raining process. Time-series forecasting has been proven to be a quite
owerful tool when periodic phenomena are involved ( Ensafi, Amin,
hang, & Shah, 2022a ). The dynamic characteristics intrinsic to Cloud
 Edge infrastructures derive from the fluctuation of application re-
uests and the associated workloads. The number of requests per time
nterval changes at different time-frames and is affected by many peri-
dic phenomena. Thus, resource usage presents highly serial and cross-
orrelation values, making the use of time series approaches quite effec-
ive ( Nisar & Ahmed, 2020 ). 

Recurrent Neural Networks (RNN) ( Shiva Prakash, Sanjeev, Prakash,
 Chandrasekaran, 2019 ) that leverage time-series characteristics via
ated Recurrent Units (GRU) ( Shen, Tan, Zhang, Zeng, & Xu, 2018 )
nd Long Short-Term Memory (LSTM), can be used to predict the vari-
us resource usage metrics accurately. The typical time series models
nd the simple RNNs are mainly utilised to formulate only one-step
redictions. Multi-step prediction approaches consist of a sequence of
alues that correspond to sequential time steps. The multi-step predic-
ion in the context of time series for modelling resource usage is im-
ortant because it can be leveraged to achieve enhanced granularity of
esource orchestration and management compared to single-step predic-
ion approaches. The resource orchestration and management entities
an implement more sophisticated real-time strategies when leveraging
ulti-step insight ( Theodoropoulos, Makris, Violos, & Tserpes, 2022b )

ecause each virtual device and service function has a different deploy-
ent time. The Encoder-Decoder architectural paradigm can be used to

acilitate multi-step time series forecasting. Encoder-decoder structures
re Deep Learning (DL) architectures consisting of two Neural Networks
nteracting via intermediate representations and producing sequence-to-
equence predictions. 

Encoder-Decoder topologies have shown great promise in the context
f surpassing other prediction models and as a result, the authors of
his paper have chosen to dedicate a significant part of this paper to
hem. The encoder part of the Encoder-Decoder topologies receives as
nput a variable-length sequence and transforms it into a state with a

https://kubernetes.io/
https://prometheus.io/
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xed shape which can then be leveraged by the decoder part in order to
ormulate the desired predictions. However it is questionable whether
he encoders that have been used up this point in the context of resource
sage prediction can optimally encapsulate the underlying intricacies of
esource usage. As a matter of fact, the main research questions that the
uthors attempt to address in this paper are as follows: 

• Can the use of encoder topologies that may encapsulate the dependencies

that exist between the resource usage metrics assist towards establishing

more accurate prediction models in the field of resource usage prediction?
• Can the incorporation of the subsequent prediction model in a proactive

autoscaling operational pipeline significantly improve the efficiency of the

underlying Cloud & Edge infrastructure across a number of performance

metrics? 

The facts mentioned above served as a motivation for proposing an
dvanced resource usage representation paradigm that leverages Graph
eural Networks (GNNs). According to this paradigm, each monitored

esource usage metric is represented as a node of a Graph Convolution
etwork. This novel representation approach was then expanded upon
y incorporating it into a resource usage prediction model based on
he Encoder-Decoder paradigm, which can produce accurate multi-step
redictions. This Encoder-Decoder model is called GCN-LSTM in this pa-
er’s context. The main advantage of the proposed methodology com-
ared to other approaches, is that the graph representation allows us to
ake advantage of the interdependencies between the input variables.
urrent proactive autoscaling mechanisms employ prediction models
hat forecast workloads of multiple metrics based on identified trends
f their past behavior. On the other hand, the proposed approach can ex-
loit not only the past trends, but the possible dependencies that might
xist between the metrics and their respective trends. This is achieved
y iteratively updating the graph node representations through the ex-
hange of information with their neighbors. By developing a more ac-
urate prediction model, the authors of this work aspire to introduce
ore sophisticated and refined proactive autoscaling solutions that can

reatly enhance the performance of contemporary types of applications,
uch as Multiplayer Mobile Gaming, while keeping the volume of the re-
uired computational resources at a bare minimum. 

Given the relatively recent emergence of this type of applications
hat are intertwined with a plethora of rather demanding QoS require-
ents, the need to facilitate them has become quite significant. As such,

he findings of this work are expected to be of interest to a wide range of
arties. These parties include entities such as Cloud providers, applica-
ion owners and Deep Learning researchers. Through accurate resource
sage prediction, Cloud providers are capable of keeping up with QoS
equirements that are often stated in the form of Service Level Agree-
ents which are legal contracts that are established between them and

pplication owners. Furthermore, resource usage prediction may enable
pplication owners to provide a more refined experience to end-users.
inally, the scientific community that explores Deep Learning method-
logies and their potential applications on Cloud & Edge computing en-
ironments is expected to gain valuable insights on the aforementioned
opics. 

To that end, the four major contributions of our research are: 

• the use of Graph Neural Networks for representing resource usage.
Furthermore, we expand upon this representation paradigm and pro-
pose using a GNN-based Encoder-Decoder model to predict resource
usage. To the best of our knowledge, we are the first to try both
approaches. 

• the analysis of the complexities of resource usage prediction in the
context of contemporary applications that are associated with a
plethora of rather demanding QoS and QoE requirements. 

• the analysis of various state-of-the-art Encoder-Decoder topologies. 
• the experimental evaluation that compares the GCN-LSTM model to

other well-established prediction models. 
3 
• the experimental evaluation that compares a proactive scaling ap-
proach that leverages the aforementioned proposed solution against
a reactive one. 

The rest of the paper is structured as follows: Section 2 high-
ights the related work in resource usage prediction, time-series and DL
ethodologies. Section 3 analyses different basic and Encoder-Decoder
L prediction models. Section 4 provides an analysis of Graph Neu-

al Networks, Graph Convolution, the GCN-LSTM model and the pro-
osed problem formulation. Section 5 analyses the case of multiplayer
obile gaming. Section 6 describes the experimental process under-

aken to evaluate the efficiency of the proposed methodologies. Finally,
ection 7 draws the final remarks on the paper, reports the current lim-
tations and suggests future directions. 

. Related work 

Over the years, machine/deep learning has been successfully
pplied in a wide variety of applications. Tameswar, Suddul, &
ookhitram (2022) presented a hybrid deep neural network model,
hich combines Nature-Inspired Algorithms with DNN for enhanced
rediction of software bugs. In Sridevi & Suganthi (2022) , an AI-based
ystem is developed to measure and predict suitable candidates for avail-
ble jobs. Parviero et al. (2022) presented a new data-driven agent based
odel whose parameters can be estimated by maximum likelihood, for
redicting the results of a new product or service in the market. An-
ther research ( Walid, Ahmed, Zeyad, Galib, & Nesa, 2022 ) examined
he reasons behind the failure of undergraduate admission seekers us-
ng different machine learning strategies. The models are able to provide
risk ” warnings in advance in order to advise applicants for the univer-
ity’s undergraduate admissions test. Chondrodima, Georgiou, Pelekis,
 Theodoridis (2022) introduced a novel data-driven approach based
n Radial Basis Function neural networks for predicting public trans-
ort mobility. Al-Sulaiman (2022) developed a feed-forward deep neu-
al network to predict stock prices at a given time. In Ensafi, Amin,
hang, & Shah (2022b) , various classical and advanced time-series
orecasting models are applied to predict the future sales of furniture.
ang, McEwen, Ong, & Zihayat (2020) proposed a data-driven end-to-
nd depression detection framework which utilizes machine learning
echniques, to provide a mechanism for mental health professionals in
onitoring the depressive behaviors of people. Gellert, Florea, Fiore,
almieri, & Zanetti (2019) used Markov chains, stride predictors and a
ybrid predictor in modelling the evolution of electricity production
nd consumption in buildings, aimed at reducing uncertainty about
he demand of electricity and its production from renewable sources.
olle, Luettgen, Seeliger, & Mühlhäuser (2022) introduced a recurrent
eural network, for real-time multi-perspective anomaly detection in
usiness process event logs. Xiong, Yu, Zhang, & Leng (2021) proposed
 deep learning approach which incorporates an attention mechanism
ased on the attractiveness and timeliness of individual terms contained
n a news article for predicting news clicks. Nguyen, Tran, Thomassey,
 Hamad (2021) proposed two data-driven approaches to provide bet-

er decisions in supply chain management, a Long Short Term Memory
LSTM) network-based method for forecasting multivariate time series
ata and an LSTM Autoencoder network-based method combined with
 one-class support vector machine algorithm for detecting anomalies in
ales. Brusch (2022) utilized a combination of image analysis methods
nd fuzzy cluster algorithms, including support vector machines and
onvolutional neural networks, to predict user preferences. Liu, Mai,
han, & Wu (2020b) proposed a text analytics deep learning framework
o automatically extract patterns for prediction potentially opportunistic
nsider trading. 

In addition, deep learning methods offer a lot of promise in resource
sage prediction. Predicting the volume of data traffic on a network
nd the number of service requests at specific time frames is of utmost
mportance for an optimal resource management plan ( Serhani et al.,
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020 ). Accurate traffic prediction methodologies are fundamental for
nsuring an effective strategy for load balancing and resource allocation,
hus fulfilling the QoS requirements. With the increasing development of
ata centres, novel large-scale network traffic prediction methods need
o be developed to handle complex higher dimension properties and
on-linearity ( Cao et al., 2018 ). 

To this end, several well-established algorithms have been pro-
osed and leveraged to achieve high-accuracy predictions of net-
ork utilization. One example is the usage of the time series models,
amely Autoregressive–Moving-Average (ARMA) and its variations Au-
oregressive Integrated Moving Average (ARIMA) and Seasonal ARIMA
SARIMA). Eramo, Catena, Lavacca, & di Giorgio (2020) minimized the
peration cost by exploiting SARIMA models and by taking into account
wo factors: i) the Cloud resource costs which occur when non-essential
esource provisioning is performed due to traffic overestimation, and
i) the QoS degradation cost which occurs when the traffic is underesti-
ated, resulting to fewer resources than needed to be allocated and thus

eopardizing the satisfaction of the users of the data services. Liu, Guo,
i, & Luo (2020a) developed a forecasting methodology of workload
ased on error correction that exploits the ARMA model in combination
ith an Elman Neural Network (ENN). The authors initially used the
RMA model for forecasting. Then, the forecasting error of each value
roduced by the ARMA model in the sequence was calculated and fed
nto the ENN. Consequently, the ENN exploited the forecasting error
equence to correct and optimize the forecasting values. 

Another example of well-established algorithms used for resource
sage prediction involves deep-learning models ( Duc, Leiva, Casari,
 Östberg, 2019 ). Specifically, GRU and LSTM neural networks have
een used for forecasting CPU usage Janardhanan & Barrett (2017) .
oreover, comparisons between the two neural network architectures

or their forecasting ability have also been made ( Violos, Psomakelis,
anopoulos, Tsanakas, & Varvarigou, 2020 ). Violos et al. (2021b) de-
eloped a Gated Recurrent Neural Network combined with a Hybrid
ayesian Evolutionary Strategy algorithm for the resource usage pre-
iction over the edge. Their novelty lies in using the Evolution Strategy
lgorithm to fine-tune the network’s hyper-parameters. Furthermore,
till, Violos, Pagoulatou, Tsanakas, Tserpes, & Varvarigou (2021a) in-
luded another hyper-tuning technique to develop a Convolutional Neu-
al Network optimized for predicting the resource usage in the edge.
hey developed a hybrid method for optimisation that exploits par-
icle swarm optimization and Bayesian optimization, leading to supe-
ior experimental results compared to other machine learning meta-
redictors and state-of-the-art resource usage models. Fujimoto, Fujita,
 Hayashi (2021) exploited the concept of reservoir computing which

s suitable for handling the dynamics of time series data. They used an
cho State Network (ESN) architecture ( Luko š evi čius, 2012 ) for short-
erm load forecasting tasks. ESN is a type of RNN that can describe the
onlinear behaviour of temporal dynamics based on a simple learning
ule. The ESN architecture enables the development of flexible forecast-
ng models with limited computational resources, making it suitable for
dge implementation. Another approach to forecasting time-series data
n the Edge computing environment was proposed by Pesala, Paul, Ueno,
raneeth Bugata, & Kesarwani (2021) where an incremental forecast-
ng algorithm was presented. Due to limited resources and processing
apabilities, Edge devices cannot process vast volumes of multivariate
ime-series data. Therefore, the authors developed a new forecasting
ethod called Incremental Learning Vector Auto Regression (ILVAR).

LVAR minimizes the differences in variance between the actual and the
orecasted values as a new chunk of time-series data arrives sequentially,
hus updating the forecasting model incrementally. Their approach was
valuated on some Raspberry Pi-2 behaving as Edge devices and was
ompared with the Vector Auto Regression (VAR), Incremental Learn-
ng Extreme Learning Machine (ILELM), and Incremental Learning Long
hort-Term Memory (ILLSTM) methods, yielding superior results. 

Even though forecasting the resource usage over a network has been
idely studied, optimal resource allocation and forecasting in edge and
4 
obile gaming is now at the forefront of research as an increasing num-
er of mobile devices with low computing capabilities are being used
very day. Only in recent years have researchers tried to tackle mobile
nd Edge gaming challenges. Xu, Mehrotra, Mao, & Li (2013) developed
he PROTEUS system that uses regression trees to forecast future net-
ork performance. In their research, PROTEUS was used to predict the
ccurrence of packet loss and system delays and managed to reduce the
erceptual delay in a gaming application by up to 4s. Similarly, Basiri
 Rasoolzadegan (2018) developed a delay-aware cost-minimizing re-

ource allocation framework that can satisfy the delay requirement of
he connected users in simulated environments of real-time online gam-
ng. Sharif, Jung, Razzak, & Alazab (2021) developed an Edge Comput-
ng (EC) mechanism that dynamically allocates resources by considering
he nature of the incoming requests and surpassing other EC schemes for
esource utilization, average response time, task execution time, and en-
rgy consumption. Violos et al. (2022b) introduced a Double Tower Neu-
al Network architecture that is capable of predicting resource usage in
dge computing environments in order to perform proactive autoscal-
ng. This solution managed to improve various performance metrics,
owever it increased resource consumption when compared to a reac-
ive approach by about 5% . Theodoropoulos et al have explored proac-
ive fault tolerance methodolies for Edge and Cloud computing environ-
ents that leverage Deep Learning ( Theodoropoulos et al., 2022c ) in

he context of resource usage prediction. Despite improving various fault
olerance metrics, this approach increased resource consumption when
ompared to a reactive approach by 3 . 2% . Li et al. (2019) developed a
ovel methodology called GAugur that accurately predicts the perfor-
ance interference among games collocated in the Cloud. The authors
se a classification model to identify the QoS requirement of a game co-
ocated with a set of other games and a regression model to predict the
erformance degradation of a game. Their experiments demonstrated
hat their methodology could improve the overall performance by 15%
nd increase the resource utilization by at least 20% . A summary of the
pproaches discussed above, organized by subject area, is presented in
able 1 . 

Unfortunately, the aforementioned scientific works, despite their nu-
erous merits, exhibit certain drawbacks that this work aspires to mit-

gate. These drawbacks are the following ones: 

• Up until now, the various attempts at predicting resource usage have
been mainly focused on capturing the temporal patterns that are in-
herent in the input sequences. This work, however, focuses on the
importance of encapsulating multi-variate input sequences in a man-
ner that is capable of capturing both the temporal and the structural
relations that are present. 

• One more significant issue that is present at the majority of the afore-
mentioned intelligent resource allocation approaches is that they of-
ten tend to result in the over-provisioning of resources in order to
improve the various performance metrics. As a matter of fact, in
some cases the resource usage prediction models are designed in a
manner that deliberately overestimates the resource demand that is
expected to take place in the near future. It is rather obvious that
the greater the volume of allocated computational resources is, the
easier it shall be to improve the various performance metrics such
as latency, due to the fact that there are more processing nodes to
handle the incoming tasks and thus the formation of task execution
overheads becomes a rare occurrence. However, by increasing the
volume of allocated computational resources, the operational costs
are also increased. The trade-off between improving performance
metrics and reducing the underlying operational costs may be re-
garded as the cornerstone of the resource allocation optimization
problem. 

• Finally, the efficiency of many of the aforementioned approaches
was examined using data that do not derive from real-world appli-
cation usage scenarios. During these works, the authors chose to use
datasets that correspond to generic computational processes, whose
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Table 1 

Summary of the different approaches, classified by subject area. 

Subject areas Reference 

Network Traffic Prediction/Network Performance Forecasting ( Cao et al., 2018 ), ( Eramo et al., 2020 ), ( Xu et al., 2013 ) 
Reliable Resource Provisioning ( Duc et al., 2019 ), ( Basiri & Rasoolzadegan, 2018 ), ( Sharif et al., 2021 ) 
Workload Forecasting ( Janardhanan & Barrett, 2017; Liu et al., 2020a ) 
Resource Utilization Prediction ( Theodoropoulos et al., 2022c ), ( Violos et al., 2021b ), ( Violos et al., 2021a ), ( Violos et al., 2022b ), 
Performance Prediction ( Li et al., 2019 ) 
Short-term Demand Forecasting ( Fujimoto et al., 2021 ), ( Luko š evi čius, 2012 ), ( Pesala et al., 2021 ) 
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Fig. 1. LSTM unit architecture. 
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underlying resource consumption patterns do not reflect the resource
intricacies that associated with contemporary applications. As a re-
sult, the actual efficiency of implementing the proposed solutions in
real-world use-cases comes into question. 

The proposed intelligent resource allocation presented at the context
f this work aims at incorporating a prediction model that is capable of
ccurately predicting the resource usage consumption that is expected
o take place in the near future. By doing so, it is capable of making
ptimal scaling up decisions when it is required in order to avoid task
xecution bottlenecks and the degradation of QoS. On top of that, the
roposed model shall be able to accurately predict decreases in resource
emand and to release the appropriate computational resources in or-
er to avoid resource over-provisioning. Finally, the proposed intelligent
esource allocation approach is tested using real-world data that corre-
pond to a contemporary MMG application, in the context of providing
ccurate predictions results and enhancing the resource orchestration
rocess in a manner that boosts application performance while prevent-
ng any potential over-provisioning of resources to taking place. 

. Resource usage prediction 

Concerning resource usage prediction, the scientific community has
argely investigated the statistical models like Poisson, Autoregressive–
oving-Average (ARMA), and Autoregressive Integrated Moving Av-

rage (ARIMA). However, the recent advances in DL have drastically
ransformed the landscape of data analytics and, as a consequence,
he decision-making processes. Especially in the case of time series
rediction, Recurrent Neural Networks (RNNs) tend to surpass well-
stablished statistical forecasting models significantly. For this reason,
he authors of this paper chose to focus only on DL-based prediction
odels. The following section consists of two parts. The first describes

lassic recurrent neural network models, while the second focuses on
ncoder-Decoder architectures that derive from these models. 

.1. RNN topologies 

Long Short-Term Memory (LSTM) is a non-linear time series model
nitially introduced by Hochreiter & Schmidhuber (1997) to overcome
he vanishing and exploding gradients problems and the short-term
emory occurring in standard RNNs when dealing with long-term de-
endencies. The former issues make the earlier layers of RNN incapable
f being trained sufficiently. The latter makes RNN incapable of car-
ying information from earlier time observations to later ones, and,
s a result, an RNN network tends to forget too fast what has been
earnt ( Violos et al., 2020 ). In the standard RNN, the overall neural net-
ork is a chain of repeating modules formed as a series of simple hidden
etworks. In contrast, the hidden layers of LSTM introduce the concepts
f gate and memory cell in each hidden layer. The gates in an LSTM unit
nable it to preserve a more constant error that can be back-propagated
hrough time ( Chauhan & Palivela, 2021; Patterson & Gibson, 2017 ). 

More specifically, to establish temporal connections, LSTM main-
ains an internal memory cell state throughout the whole life cycle. The
emory cell state interacts with the intermediate output and the sub-

equent input to determine which elements of the internal state vector
5 
hould be updated, maintained or forgotten on the basis of the outputs
f the previous time step and the inputs of the present time step. 

In addition, the LSTM structure also defines three gates: an input gate

hich controls the entry of the activations to the memory cell, a forget

ate which is in charge of resetting the memory cells by forgetting the
ast input data and, finally, an output gate which determines the value
f the next hidden state. The architecture of LSTM neworks is depicted
n Fig. 1 . 

The Gated Recurrent Unit (GRU) model was first introduced by
 Cho et al., 2014 ) in 2014 and represented a variant of LSTM. While
STMs have two different states passed through the cells, cell state and
idden state, GRUs only contain one hidden state transferred between
ime steps. Furthermore, a GRU cell contains only two gates, update gate

nd reset gate . The update gate determines the amount of information
tored in the previous hidden state that would be retained for the future.
t is quite similar to the input and forget gate in the LSTM. However, the
ontrol of new memory content added to the network is presented only
n GRUs. The model uses the reset gate to decide how much of the past
nformation to forget. As GRU presets a simpler architecture than LSTM,
t requires less computation and can be trained faster. 

Bidirectional Long Short-Term Memory (BI-LSTM) neural networks
re similar to the LSTM networks with the difference that the input flows
n two directions. Specifically, in a standard LSTM network, the input
an flow in one direction, either backwards or forward, but in a BI-
STM, the input flows in both directions to preserve the future and the
ast information, namely backwards (future to past) or forward (past
o future). BI-LSTM networks use two models: i) one model that learns
he sequence of the input provided, and ii) a second model that learns
he reverse of that sequence. Finally, the two networks are combined
nto one in a process called the Merge step, and it can be achieved by
ne of the following methodologies: sum, multiplication, averaging or
oncatenation which is the default methodology. 

.2. Encoder-Decoder (ED) topologies 

The encoder-decoder architecture can handle inputs and outputs that
re both variable-length sequences and thus is suitable for sequence-to-
equence prediction. This functionality is the result of the model’s ar-
hitecture. The encoder takes as input a variable-length sequence and



T. Theodoropoulos, A. Makris, I. Kontopoulos et al. International Journal of Information Management Data Insights 3 (2023) 100158 

t  

c  

a  

s  

t  

d  

o  

t  

e  

c  

t  

o  

F  

p  

T  

c  

e

3

 

L  

t  

r  

n  

a  

u  

e  

V

3

 

p  

(  

c  

a  

p  

I  

f  

H  

N  

s  

i  

e  

s  

d  

3  

n  

s  

l  

w  

s  

a  

g  

i  

t  

C  

t

3

 

l  

b  

o  

s  

u  

t  

p  

a  

r  

i  

m  

l  

s  

t

3

 

T  

r  

c  

T  

t  

p  

a  

L  

c  

t  

a  

u  

p

4

 

l  

i  

l  

t  

a  

t  

d  

m  

c  

c  

t  

e  

c
 

w  

(  

t  

o  

w  

v  

n  

d  

i  

t  

t  

N  

f  

a  

t  

s  

p

4

 

g  

n  
ransforms it into a state with a fixed shape. The decoder is appropriately
onfigured using the final states of the encoder. It is trained to gener-
te the output based on the information gathered by the encoder. More
pecifically, the decoder is implemented using an LSTM model, which is
rained to generate the output sequence. The initial hidden state of the
ecoder is the final hidden state procured from the encoder. Each part
f the decoder is expected to output a value for each of the numerous fu-
ure time steps being examined. For this reason, a Repeat-Vector layer is
mployed. Furthermore, two additional layers are incorporated, a fully
onnected and an output layer. The fully-connected layer interprets each
ime step in the decoder output sequence and sends the product to the
utput layer, resulting in a single-step prediction in the output sequence.
or predicting the next time-steps, it is essential to wrap both the im-
lementation and the output layers inside a time-distributed wrapper.
he output provided by the decoder will be processed by the same fully-
onnected output layer, thus enabling the wrapped layers to be used for
ach time step by the decoder. 

.2.1. LSTM & Bidirectional LSTM ED 

For the Encoder part of the architecture, an LSTM / Bidirectional
STM model was utilized. This model receives an input sequence over
ime and produces a 𝑁 element output vector which entails an internal
epresentation of the input sequence. The size of 𝑁 corresponds to the
umber of LSTM / Bidirectional LSTM units used. The Decoder part is
lso constructed by leveraging an LSTM / Bidirectional LSTM layer. Each
nit that belongs to the Decoder part is designed to output a value for
ach of the future time steps being examined. In order to do so, a Repeat-
ector layer is leveraged. 

.2.2. CNN-LSTM ED 

Feature extraction can generate meaningful information for the
rediction model, thus allowing it to perform accurate predictions
 Khalid, Khalil, & Nasreen, 2014 ). Time-series problems are not an ex-
eption in this regard. In addition, feature extraction is time-consuming,
nd the various methodologies vastly differ from application to ap-
lication ( Chauhan, Palivela, & Tiwari, 2021; Hira & Gillies, 2015 ).
n recent years, researchers have been using convolution operations
or automatic feature extraction ( Elmaz, Eyckerman, Casteels, Latré, &
ellinckx, 2021 ),( Nasir, Khan, & Varlamis, 2021 ). Convolution Neural
etworks (CNN) are not designed to accommodate input in the form of

equences. However, a 1-dimensional CNN layer is capable of receiv-
ng input and then learning the salient features. Both CNNs and LSTMs
xpect a 3-dimensional input. As far as CNNs are concerned, this de-
ign characteristic is formulated in order to be able to receive the three
istinct Red-Green-Blue channels. LSTMs, on the other hand, require a
-dimensional input corresponding to a) the number of samples, b) the
umber of time steps to examine, and c) the number of features. More
pecifically, two 1-dimensional convolution layers are utilized. The first
ayer reads the input sequence and projects the result onto feature maps,
hile the second layer receives the output of the first and performs the

ame function in order to amplify any salient features. Subsequently,
 max-pooling layer is utilized to accumulate features from the maps
enerated by the previous two layers. In the final step, a flattened layer
s employed to reshape the encoder output into the desired shape that
he decoder can process. The CNN-LSTM architecture generally involves
NN layers for feature extraction on input data combined with LSTMs
o support sequence prediction. 

.2.3. Hybrid LSTM ED 

This model ( Theodoropoulos, Maroudis, Violos, & Tserpes, 2021 ) uti-
izes a bidirectional and an unidirectional LSTM. The input layer is a
idirectional LSTM. Then, a unidirectional LSTM layer is stacked on top
f the bidirectional one. The bidirectional layer will provide one hidden
tate output for each time-step in a 3-dimensional form which is then
tilized as input by the unidirectional layer. The model can exploit the
6 
emporal correlations present in the various time series in a more so-
histicated way than the classic models. In addition, as multiple layers
re utilized, the features of the input sequence can be more robustly
epresented. The same design logic is implemented in the decoder part
n order to mirror the encoder morphology. Instead of the basic LSTM
odel used in the previously explored decoders, the hybrid model uti-

izes a bidirectional layer stacked on top of a unidirectional layer. This
tructural symmetry enables the decoder to reconstruct the underlying
emporal motifs of the input sequence properly. 

.2.4. Hybrid LSTM attention ED 

This architecture ( Violos, Theodoropoulos, Maroudis, Leivadeas, &
serpes, 2022a ) also leverages two Self-Attention layers on top of the
ecurrence-based ones. The first one, located at the Encoder part, re-
eives as input the output produced by the bidirectional LSTM layer.
he output of this layer shall be leveraged as input by the unidirec-
ional LSTM layer. The second Attention layer is located at the Decoder
art. It receives the output of the unidirectional LSTM layer as input,
nd its produced output shall be leveraged as input by the bidirectional
STM layer. This architecture uses Attention mechanisms inside the en-
oder and the Decoder parts, respectively. Furthermore, in this par-
icular architecture, the Attention layer is leveraged in a manner that
ims to enhance the ability of the aforementioned Hybrid bidirectional-
nidirectional LSTM structures to encapsulate the various temporal de-
endencies. 

. Graph neural networks 

The modus operandi of the Encoder-Decoder topologies heavily re-
ies on accurately encapsulating the various dependencies found in the
nput sequence. In order to do so, the different types of encoder entities
everage various feature extraction techniques. Unfortunately, the struc-
ural characteristics of the encoders mentioned above prevent them from
dequately encapsulating the latent interdependencies created among
he various variables that form the input sequence. This inability intro-
uces significant limitations in the case of multivariate forecasting. The
ultivariate forecasting paradigm assumes that each input variable is

orrelated with the prediction produced. Subsequently, it is safe to con-
lude that specific correlations are formed among the variables that form
he input sequence. These limitations dictate the need to re-examine the
ncoder entities’ structural characteristics to establish architectures that
an exploit these dependencies more efficiently. 

Graphs are data structures that hold great expressive power for
hat concerns the encapsulation of relationships among various entities
 de Fernando, Pedronette, de Sousa, Valem, & Guilherme, 2022 ). During
he last decades, the scientific community has witnessed the emergence
f Graph Neural Networks. The modus operandi of Graph Neural Net-
orks is based on encapsulating the spatial dependencies among the
arious nodes that constitute graph-like structures in an advanced man-
er. According to the Graph Neural Network paradigm, each node’s state
epends on its neighbours’ states. The goal of Graph Neural Networks
s to capture this type of spatial dependency. To that end, numerous
ypes of Graph Neural Networks have been proposed. Despite the struc-
ural differences that are inherent in the various types of Graph Neural
etworks, all of them carry out the same functionality but leverage dif-

erent methods in order to establish it. The functionality shared across
ll of them is the encapsulation of a node’s abstract representation via
he process of passing information from its neighbours to the node it-
elf. This process can be achieved via information propagation, message
assing or graph convolution. 

.1. Graph convolutions 

Graph Convolutional Networks (GCNs) ( Kipf & Welling, 2016 ) can
eneralise classical Convolutional Neural Networks (CNN) in a man-
er that is compliant with graph-structured data. According to the GCN
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aradigm, each node extracts feature information from its neighbours
nd from itself. Each node is assigned a dedicated feature vector. These
alues are then passed through a mean, average or max function, and the
nd-product is provided as input to a fully connected neural network.
ince the concept of graph convolution is integral to the main concepts
xplored within the context of this work, it is of paramount importance
o analyse the specifics of this concept. 

Given an undirected graph 𝐺 with 𝑁 nodes and 𝐸 edges ( 𝑢 𝑖 , 𝑢 𝑗 ) and
he following matrices: 

• an adjacency matrix 𝐴 ∈ 𝑅 

𝑁∗ 𝑁 : this matrix could be either weighted
or binary. It represents the ”relations ” that are established among the
various nodes. 

• a degree matrix 𝐷 𝑖,𝑖 ∈ 𝑅 

𝑁∗ 𝑁 : this matrix equals 
∑

𝑗 𝐴 𝑖,𝑗 . Only the
diagonal elements of this matrix are non-zero values. Each diagonal
element corresponds to a node, and its value signifies how many
”relations ” this node has. 

• a feature matrix 𝑋 ∈ 𝑅 

𝑁∗ 𝐶 : 𝐶 is the dimension of each feature vec-
tor. The feature matrix consists of various feature vectors. 

Since 𝐴 is not designed to contain the “relation ” that a node forms
ith itself, it is necessary to create an updated 𝐴 matrix that entails this

eature. To that end, one must add the identity matrix 𝐼 to the 𝐴 matrix,
hus performing 𝐴 = 𝐴 + 𝐼 . As a result of this process, it is required to
se an updated 𝐷 matrix that will be referred to as 𝐷 . For each node
o extract the feature representations of its neighbours, one has to mul-
iply 𝐴 and 𝑋. The product is a feature matrix 𝑌 ∈ 𝑅 

𝑁∗ 𝐶 that contains
he aggregated feature representations. In other words, the aggregated
eature representation of each node is the summation of the various fea-
ure vectors of its neighbours and its own. Then it is essential to scale
 according to the degrees of the nodes. The next step is to pass the
ggregated feature representations through the function as mentioned
arlier. In the context of this work, we chose the 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 function, and as
uch, the same one will be used in this analysis for consistency reasons.

n order to produce this function, one has to create the 𝐷 

−1∕2 
matrix.

ach element in the 𝐷 

−1∕2 
matrix is the reciprocal of its corresponding

lement following the 𝐷 matrix. The scaled version of 𝐴 is referred to

s 𝐴̂ , and it equals 𝐷 

−1∕2 
∗ 𝐴 ∗ 𝐷 

−1∕2 
. 𝑋 ∗ 𝐴̂ is the scaled aggregated

eature representation. The scaled aggregated feature representation is
hen multiplied by 𝑋, and the result is provided as input to a fully con-
ected neural network, thus producing the final feature representation.
he final feature representation is calculated in Eq. 1 . 

 𝑒𝑎𝑡𝑢𝑟𝑒𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑅𝑒𝐿𝑈 ( 𝐴̂ ∗ 𝑋 ∗ 𝑊 ) (1)

The GCN paradigm leverages an additional trainable weight matrix
hat is referred to as 𝑊 . Furthermore, 𝑅𝑒𝐿𝑈 corresponds to the Rectified
inear Unit activation function 3 . 

It is worth mentioning that the number of GCN layers that can be
tacked on top of each other corresponds to the number of hops in terms
f neighbours that can be performed each time the aggregation process
s carried out. For instance, when leveraging a GCN consisting of only
ne convolution layer, the nodes only have access to their immediate
eighbours in terms of aggregating representation information. 

.2. GCN-LSTM 

From its conception ( Gori, Monfardini, & Scarselli, 2005 ) until
owadays, there have been many variations to the Graph Neural Net-
ork paradigm. The most drastic differentiation that has been recorded
mong these variations is in regards to whether the Deep Learning
ethodologies are being applied on static or dynamic graphs. Currently,

wo paradigms facilitate the use of Deep Learning methodologies on
ynamic graphs. The first one is referred to as Discrete-time dynamic
raphs (DTDG), and the second one is referred to as Continuous-time
3 https://en.wikipedia.org/wiki/Rectifier_(neural_networks) 

 

s  

f  

7 
ynamic graphs (CTDG) ( Rossi et al., 2020 ). The authors of this pa-
er chose to implement the DTDG approach. According to the DTDG
aradigm ( Yu, Yin, & Zhu, 2018 ), a dynamic graph structure can be
epresented as a sequence of snapshots of a static graph taken during
ifferent time intervals. A DL model designed to be implemented on dy-
amic graphs can be viewed as an Encoder-Decoder. The encoder is a
unction that formulates mappings of a dynamic graph to node-specific
mbeddings. The Decoder leverages as input these embeddings in order
o produce predictions. 

Long short-term memory networks have been successfully used in
umerous resource usage prediction endeavours to encapsulate the tem-
oral characteristics of time series data. Unfortunately, the graph struc-
ure characteristics inherent in the multivariate time-series format were
ot considered in these works. In this paper, a Graph Convolution Net-
ork layer is embedded in a Long Short Term Memory layer to predict

esource usage utilization. This amalgamation of spacial and temporal
L layers will be referred to as GCN-LSTM in the context of this pa-
er. The architecture of the GCN-LSTM model is depicted in Fig. 2 . The
CN layer is leveraged in order to extract the structural characteris-

ics of the resource usage graph. This layer produces an intermediate
epresentation product referred to as Feature Representation. The Fea-
ure Representation is then leveraged as input by the LSTM layer. The
STM layer is used to capture the temporal characteristics of resource
onsumption at the graph snapshot level. Finally, the LSTM layer that
cts as a decoder shall provide the desired predictions. This architec-
ural paradigm closely resembles the CNN-LSTM topology explored in
 previous section. The only difference is that the ability of the Graph
onvolution paradigm to encapsulate the relations between the node
ariables shall enable richer representations and, consequently, more
ccurate predictions. Up to this point, there has been only another at-
empt at establishing multivariate time-series forecasting using Graph
eural Networks ( Wu et al., 2020 ) that leverages a different architec-

ural paradigm. Our approach was chosen to be aligned with the other
ncoder-Decoder topologies being examined in this paper’s context. 

.3. Problem formulation 

One of the main scientific contributions of this work is the formu-
ation of the Cloud and Edge resource usage prediction problem in a
anner that is aligned with the format of graph structures. Cloud and
dge infrastructures can be modeled as complex systems that consist of

processing nodes. Each processing node exhibits a resource consump-
ion behavior based on its hardware, as well as the number and charac-
eristics of the incoming tasks that are being offloaded to this specific
ode for processing. The authors of this paper propose the following
roblem formulation to facilitate the representation of resource usage
n a manner that is compliant with the Graph Neural Network paradigm;
ccording to our proposed representation methodology, each resource
sage metric corresponds to a distinct node of a graph. The resource
onsumption behavior of each processing node may be regarded as a
eature matrix and is represented by the set 𝐵 = { 𝑏 1 , 𝑏 2 ., 𝑏 𝑏 } , where 𝑏 𝑏 
ndicates the 𝑏 𝑡ℎ feature, where 1 ≤ 𝑏 ≤ 𝐵. In the context of this work,
ach feature matrix consists of three resource usage metrics examined.
hese resource usage metrics are the percentage of the server CPU load,
he percentage of the server memory usage and the amount of data re-
eived and sent over the network. The proposed topological represen-
ation is depicted in Fig. 3 . As stated in the previous subsection, the
uthors of this paper chose the Discrete-Time Dynamic Graph approach
n regards to representing resource usage in a dynamic manner. At each
redefined time-interval a new snapshot of the feature matrix 𝐵 is be-
ng established. 𝐵 𝑡 refers to the feature matrix that corresponds to the
esource consumption that is present at a specific processing node, at a
pecific timestamp 𝑡 . 

Each timestamp corresponds to a snapshot of a static graph that con-
ists of three nodes. The relations among these metrics are found by
ormulating the appropriate correlation matrix. This correlation matrix

https://en.wikipedia.org/wiki/Rectifier_\050neural_networks\051
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Fig. 2. GCN-LSTM architecture. 

Fig. 3. Resource Usage Representation using Graph Neural Networks. 

Fig. 4. Co-relation matrix between the three resource usage metrics. 
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4 https://firebase.google.com 

5 https://aws.amazon.com/gamelift 
6 https://unity.com/solutions/gaming-services 
s then used to create the adjacency matrix 𝐴 that was mentioned previ-
usly in this section. The process of constructing the adjacency matrix
 , by using a correlation matrix and a threshold value, is described in
lgorithm 1 . The correlation matrix was created using historical time-
eries data. The specifics of this data will be explored later in the Exper-
mental Evaluation Section. The correlation matrix between the three
esource usage metrics is depicted in Fig. 4 . As one can see in this fig-
re, there is a significant correlation between the memory and CPU vari-
8 
bles, while the amount of data received and sent over the network does
ot seem to affect the rest of the resource usage metrics. The adjacency
atrix was constructed in a way that reflects these relations. Each in-
ut consists of 𝑖 𝐵 𝑡 sets, where 𝑖 corresponds to the length of the input
equence. Each input is represented by the set 𝐼 = { 𝑖 1 , 𝑖 2 ., 𝑖 𝑖 } , where 𝑖 𝑖
ndicates the 𝑖 𝑡ℎ time-step of the input sequence, where 1 ≤ 𝑖 ≤ 𝐼 . The
hallenge we address is to predict future CPU values based on previ-
usly recorded CPU, Memory and Network values. Each produced CPU
rediction can be regarded as a set 𝑃 = { 𝑝 1 , 𝑝 2 , 𝑝 𝑝 } , where 𝑝 𝑝 indicates
he prediction that corresponds to the 𝑝 𝑡ℎ time-step, where 1 ≤ 𝑝 ≤ 𝑝 .
ncoder-Decoder topologies are ideal for implementing sequence-to-
equence modeling. In the context of this work, length of the input se-
uence is equal to 𝑖 time-steps and the length of the output sequence is
qual to 𝑜 time-steps. The GNN-based Encoder-Decoder model is based
n the concept of receiving as input the last 𝑖 resource consumption be-
aviour values and producing an output that corresponds to the next 𝑜
nticipated CPU values. Furthermore, 𝐼 𝑡 and 𝑂 𝑡 refer to the input and
utput that correspond to a specific processing node, at a specific times-
amp 𝑡 . This model requires a training process based on a set 𝑇 , where
 = {( 𝐼 1 , 𝑂 1 ) , ( 𝐼 2 , O 2 ) , … , ( 𝐼 𝑡 , 𝑂 𝑡 ))} consists of pairs of resource consump-
ion behavior inputs and their perspective CPU predictions outputs. With
he training process we can find a function 𝑓 ( 𝑟 ) ∶ 𝑅 

𝑈 → 𝑇 that can pre-
ict the next 𝑜 CPU values. The aforementioned function is the proposed
CN-LSTM model. 

. Use case: Multiplayer mobile gaming 

While the multiplayer games market relies merely on PC and con-
ole games, it still struggles to have a significant presence in the mo-
ile gaming market. Multiplayer experiences on mobile devices are usu-
lly simplified to turn-based gameplay types or even faked (like in.io
ypes of games). The mobile gaming market slowly leans towards ma-
urity. In a few years, game developers will be able to provide a solid
ser experience for the players attributed to Mobile technologies: mo-
ile devices, and mobile connectivity, as these have recently reached a
evel that allows mobile game developers to explore multiplayer types
f games. New multiplayer solutions, like multiplayer frameworks and
ame server hosting solutions, are created. Nowadays there are several
ignificant ready-to-use solutions on the market, the most important are
oogle Firebase 4 , AWS GameLift 5 and Unity Gaming Services 6 . These

olutions are relatively new on the market, but they already offer a wide
ange of services for building multiplayer games. Considering the effort
f the companies in providing these solutions, it can be assumed that
hey will soon become a solid competition in the market. 

https://firebase.google.com
https://aws.amazon.com/gamelift
https://unity.com/solutions/gaming-services
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7 https://www.orbitalknight.com/ 
8 https://github.com/RevenantX/LiteNetLib 
9 https://aws.amazon.com/dynamodb/ 
In casual and hyper-casual games, achieving a positive Return On
nvestment (ROI) is very hard since the margin between the user acqui-
ition cost and per-user income is minimal. Compensating that with an
nvestment on a pretty expensive backend server only increases the diffi-
ulty. Developers tend to create game systems where one of the client’s
evices also plays the role of the game host. This solution limits the
umber of concurrent users as it comes at the cost of the computation
erformance of a single device. Unlike PC or console games, mobile
aming players are incredibly demanding; they expect the applications
nd games they use to run immediately, without delay or waiting for
aunch. Mobile games are very often launched only for a short period
f time, on the way to work or school, during breaks and generally in
etween activities. Therefore, the time of launching a mobile game and
he delays in its operation become much more critical than in the case of
C or console games. The market is still relatively young, and there are
o go-to solutions for all these issues. Thus, backend service providers
nd game developers are further exploring solutions to overcome these.
n the case of real-time mobile multiplayer games, network communi-
ation is the critical element of the whole game system. It is crucial to
rovide minimal server response time so the player will have an impres-
ion of uninterrupted gameplay. This will allow the user to immerse into
he game’s world. Additionally, the game system must be able to handle
ultiple users while ensuring complete and rapid synchronization of all

ame entities, environment elements and players. 
In an attempt to achieve low response times and a seemingly unin-

errupted game experience, several techniques could be exploited, such
s the prediction of resource utilization, e.g., the user is expected to de-
and more resources (CPU, RAM requirements) and the system should
roactively be able to deliver. A high-accuracy resource prediction al-
orithm means that the system can effectively know the demands of a
ser beforehand, thus allowing for more resources to be used by the
ser at a specific time. Therefore, the synchronization of resources per
ser is optimized, and the users have the impression that minimal or
o delays occur while playing the game. As such, multiplayer gaming
s better synchronized, and the system can handle more users per game
ession. 

Horizontal Autoscaling refers to the process that enables Cloud &
dge infrastructures to be scalable in terms of providing resources on
emand in order to ensure the QoS objectives. In other words, Horizon-
al Autoscaling enables the underlying infrastructure to operate with-
ut the occurrence of phenomena such as under-provisioning or over-
rovisioning of resources. Horizontal Autoscaling is an integral part of
he resource orchestration process, in terms of adding or removing pro-
essing nodes in response to changes that occur in the context of vari-
us monitored metrics. Processing nodes can be physical machines, vir-
ual machines, containers or pods. The Horizontal Autoscaling process
s based on the use of rules to add or remove the required processing
odes in accordance with appropriate thresholds following the replica-
ion methodology. The scaling decisions can be conducted in a reactive
r a proactive manner. In this work, we experimentally compare a proac-
ive approach that leverages the proposed GCN-LSTM model against a
eactive one, since reactive approaches are the most widespread Au-
oscaling methods in the Cloud & Edge computing domains. Reactive
orizontal Autoscaling approaches are designed to add processing nodes

f a current metric exceeds a certain threshold value. These threshold
alues correspond to resource usage metrics such as CPU, Memory, or
etwork or workload related metrics such as the number of applica-

ion requests. In this work we chose to use the CPU, since it is the most
idely used metric in the context of contemporary orchestration frame-
ork, such as Kubernetes. 

Proactive Horizontal Autoscaling approaches are designed to re-
pond to metric predictions that are provided by dedicated forecasting
odels. These changes have a direct impact on the required utilization

f various computational resources. By closely monitoring the current
esource utilization on the available processing nodes, it is possible to
orm accurate estimation regarding the computational burden that is ex-
9 
ected to take place during the next time-steps. Based on these predic-
ions, the burden can be alleviated in a proactive manner by allocating
dditional computational resources. It is of paramount importance to
ighlight the fact that the Virtual Machine or pod replication process
equires a start up time that may span from few seconds to few minutes,
epending on factors such as the virtualization mechanisms, the appli-
ation and the underlying infrastructure. Thus, the aim of proactive ap-
roaches is to surpass the reactive ones, by reducing or even avoiding
he delays that are associated with start-up times and the subsequent
oS deterioration. 

. Experimental evaluation 

.1. Model implementation, frameworks and dataset 

All the examined DL models are implemented in Python 3 using
umPy, pandas, statistics, Scikit-learn, SciPy, Scikit-Optimize, Tensor-
low 2 and its higher-level API Keras. The environment we used is the
upyter notebook. In order to examine the efficiency of the proposed
olution, 2 datasets and 1 large-scale simulation were used. The first
ataset that was used to train and evaluate the various DL models was
rovided by Orbital Knight 7 . Orbital Knight is a Polish independent
ame studio focused on making high-quality mobile games and provides
everal metrics for resource usage prediction in multiplayer mobile gam-
ng. The ORBK game system consists of three elements: Game Server,
obile Application/game and Game Servers Status DB, as illustrated in

ig. 5 . 
In order to gather the resource utilization metrics, Orbital Knight

uilt a testbed, in which 32 simulated players (bots) were simulated on
 separate machine and connected to the game server. Data collection
an continuously for around 4.5 hours, with 2 seconds intervals. The
ame server has been equipped with an additional dedicated module
hat allows the collecting of the necessary data: 

• timestamp of each data sample (date-time) 
• the current percentage of the server CPU load (%) 
• the current percentage of the server memory usage (%) 
• the amount of data received and sent over the network (bytes/sec) 

Data collection begins as soon as the client app connects to the game
erver. Peers are pinged every 2 seconds and the received values are
ecorded. After each 2 minute time interval the collected ping data are
ent to the online database and the 2 second pinging process contin-
es. This way one can easily gather a large number of samples with-
ut the threat of data overflow in the client application. In addition,
t is also guaranteed that the data sent during each single run is small
nough to continue the measurement without any delay. In order to
stablish maximum possible reliability the LiteNetLib 8 library was uti-
ized as it is proven to deliver valid and stable results. Furthermore,
WS DynamoDB 

9 was used as a database system to gather and store
easurement results as it also provides stable and reliable services. 

In the context of the experimental process, the authors of this paper
hose to implement a multi-step CPU usage scenario. The prediction
odels receive the three latter resource usage metrics corresponding to

he last ten-time steps and can provide predictions corresponding to the
ext ten time steps. Each time-step has a duration of 2 seconds. The use
f such short time-intervals between predictions was examined in or-
er to evaluate the proposed solution’s ability to detect sudden bursts
n service demand, in the context of CPU prediction. However, aside
rom the aforementioned sudden bursts, service demand is also influ-
nced by periodic phenomena that may manifest across several days. In
rder to examine the efficiency of the proposed approach in the con-
ext of both types of phenomena, the authors of this paper perform a

https://www.orbitalknight.com/
https://github.com/RevenantX/LiteNetLib
https://aws.amazon.com/dynamodb/
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Fig. 5. ORBK game system. 
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arge-scale experimental evaluation in a simulated cloud computing en-
ironment using CloudSim Plus 10 framework. The duration of the simu-
ation reached the 4-day mark in order to facilitate the periodic service
emand phenomena that span across multiple days. Furthermore, it in-
luded more than 1,600,000 tasks that were generated and offloaded to
he available processing nodes. The tasks were generated by a mixture of
oisson probability distributions and various statistical properties that
orrespond to the task production rate that is present in the dataset that
as provided by Orbital Knight. On top of that, in order to optimally

epresent the characteristics of service demand inherent in Multiplayer
obile Gaming, application requests fluctuate throughout the day until

hey start to significantly increase right after the end of typical working
ours, at 17:00 pm. Task production rates reach their peak at around
0:00 pm and then they start to gradually decrease. 

The simulation begins with a singular available processing node and
here are 9 more backup nodes for potential replication. During each
oment of the simulation, numerous tasks are being produced. These

asks are then assigned to the corresponding processing nodes. The se-
ection process in regards to which task will be sent to which computa-
ional node is being made based on the task scheduling algorithm that
s being leveraged. In this work we are considering a standard Round
obin task scheduling approach. The resource usage metrics that corre-
pond to each processing node are being collected in order to formulate
he aforementioned predictions. Depending on these predictions, a cor-
esponding signal will be sent to the broker entity of the CloudSim Plus
ramework. The broker serves as an orchestration mechanism that is
ble to allocate or de-allocate resources depending on the decision scal-
ng paradigm that is being deployed. Each time the broker entity de-
ides to allocate additional computational resources, there is a certain
imeframe that is required for the new processing nodes to be deployed.
rocessing nodes can be either Virtual Machines or Kubernetes pods.
ince pods are far more lightweight, they tend to be able to deployed
n a far more timely manner. As a matter of fact, pods usually take sec-
nds to be deployed, while the deployment process of Virtual Machines
ay take up to several minutes. It is rather apparent that the longer the
eployment times are, the more drastic the effect of leveraging a proac-
ive approach shall be, since potential task execution overheads shall
e greater since it would take longer for the infrastructure to react to
udden bursts in resource demand. Nevertheless, we chose to simulate
 Kubernetes pod deployment scenario, since the Multiplayer Mobile
aming industry has already widely adopted this deployment paradigm
10 https://cloudsimplus.org/ 

t  

10 
nd it shall be able to provide an adequate evaluation process in order
o showcase the efficiency of the proposed approach. To that end, the
eployment time for new processing nodes is set to the 3 second mark,
n order to correspond to the actual time that is required to deploy a new
od that facilitates ORBK’s component. Finally, there are two Horizon-
al Autoscaling strategies that are being examined in the context of the
imulation process. The first one is a reactive Horizontal Autoscaling ap-
roach is compared against a Proactive one that leverages the proposed
CN-LSTM model in order to construct accurate CPU predictions based
n which the scaling decisions are established. 

The reactive approach included a decision process that takes place
very 60 seconds, based on whether the infrastructure should allocate
dditional processing nodes or release some already allocated nodes or
ontinue with the same topology. This decision is being made in a reac-
ive manner and is based on its average CPU utilization recorded during
he last minute. The main objective is to ensure that each processing
ode operates in the 40%-70% CPU usage zone in order to avoid under-
rovisioning and over-provisioning of resources. If the current CPU uti-
ization exceeds the 70% upper threshold, the broker entity in CloudSim
lus decides to allocate additional nodes. If the predicted value is be-
ow 40%, the scaling mechanism decides to release the under-utilized
odes, after all of its running tasks have been completed. Because the
caling decisions take place after the resource metrics exceed the thresh-
ld, there will be a significant delay in the deployment of the newly
llocated processing nodes. 

The incorporation of a proactive Horizontal Autoscaling approach
n our experiments requires the integration of the proposed GCN-LSTM
odel in the CloudSim Plus framework. In the same way as with the

eactive approach, once every 60 seconds information regarding re-
ource consumption is gathered. Furthermore, similarly to the reactive
pproach, the objective of this approach is to maintain the CPU uti-
ization in the 40%-70% zone. The fundamental difference is that the
roactive approach utilizes the predicted CPU values in order to proac-
ively make the scaling decisions, contrary to the reactive approach that
tilizes the ongoing CPU metrics. The GCN-LSTM model receives as in-
ut the last 10 resource consumption behavior metrics and produces a
rediction that describes the CPU consumption that is expected to take
lace during the next 10 time-steps. Similarly to before, these resource
onsumption metrics include the CPU, Memory and Network demand.
ontrary to the 2 second time-steps that are leveraged in the context of
he resource usage prediction experiments, during the Horizontal Au-
oscaling experiments we chose to use time-steps that are 60 seconds

https://cloudsimplus.org/
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Table 2 

Experimental results in terms of CPU pre- 
dictions. 

RMSE MAE 

LSTM 6.007 5.049 
BD-LSTM 6.735 5.300 
GRU 6.507 5.129 
LSTM ED 6.239 4.908 
BD-LSTM ED 6.157 4.964 
HYBRID LSTM ED 6.040 4.755 
HYBRID LSTM ATT ED 6.134 4.952 
CNN-LSTM ED 6.729 5.288 
GCN-LSTM ED 5.922 4.665 
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ong, in order to explore the long-term temporal dependencies that are
resent in resource demand. 

.2. Experimental results for resource usage prediction 

In order to evaluate the performance of the proposed model, we
sed the Mean Absolute Error (MAE) and the Root Mean Squared Error
RMSE) metrics since they are considered the most notable metrics in
valuating time series forecasting and ML regression models. The MAE
easures the average absolute deviation between the target and pre-
icted values. Thus, it provides an insight into the magnitude of overall
rror that occurred because of the forecasting process, by squaring the
rediction errors and then averaging the squares, the RMSE is produced.
he RMSE expresses the standard deviation of the errors emphasizing
he spread out of the errors, and subsequently penalizes extreme errors
hat occur during the forecasting process. MAE is used in cases where all
he errors bear the same gravitas, while RMSE is used when the penal-
zation of significant errors should be more severe, regardless of their
requency of occurrence. The results in terms of RMSE and MAE cor-
espond to the average of the ten time-step related predictions. In our
xperiments, the current percentage of the server CPU load and the cur-
ent percentage of the server memory usage were represented in per-
entages and the amount of data received and sent over the network
n bytes/sec. Finally, these values were scaled accordingly in order for
heir impact to be represented in a balanced manner. The experimental
esults corresponding to CPU predictions regarding RMSE and MAE are
epicted in Table 2 . As one can see, the proposed approach produced
uperior results in terms of RMSE and MAE compared to the other DL
odels. 

.3. Experimental results for proactive horizontal autoscaling 

In the previous subsection, the superiority of the proposed GCN-
STM approach, in terms of resource usage prediction accuracy, was
howcased. In this subsection, we shall continue with the evaluation
utcomes of a proactive Horizontal Autoscaling approach that incor-
orate the aforementioned prediction model in order to conduct more
fficient autoscaling decisions. To that end, we provide a comparison
etween the proactive approach and a reactive one. This comparison is
valuated in the context of different versions of the execution time and
umber of resources. The outcomes of this comparison are presented in
able 3 . The execution time has been evaluated through different sta-
istical measurements. Average Execution time (Avg. Ex. time) declares
he mean time for all the tasks of the experiment. Median Ex. time refers
o the middle values. Standard deviation declares how much the execu-
ion times of the tasks differ from the average value. Maximum (Max.)
nd Minimum (Min.) Execution time (Ex. time) refer to the maximum
nd minimum recorded task execution times. Two additional statistical
easures are the skewness and kurtosis. Skewness indicates the symme-

ry of the values in execution time and a right skewed distributions is
etter than a left. Kurtosis indicates if the distribution of the time val-
es is heavy-tailed or light-tailed. A rather significant evaluation metric
11 
s the tail latency. Tail latency corresponds to the 98th percentile and
epresents the 2% longest response times. It is a metric of paramount
mportance since the longest response times affect QoS in a significant
ay. The units in the different types of execution times and latency in

he following tables are in seconds. In this subsection, we also compar-
tively explore the metric of active nodes which refers to the number of
orker nodes that are active. This metric is intertwined with the cost of
sing the corresponding resources. 

Incorporating the GCN-LSTM model into the Horizontal Autoscaling
trategy makes it easier to speed up all tasks in general. This claim is
upported by the results across all explored types of execution times.
he noticeable improvement in task execution times means that tasks
an be processed faster in general, regardless of their inherent computa-
ional needs. On top of that, the significantly lower standard deviation
howcases that the proposed approach provides consistency in terms of
xecution time, thus supporting our claim regarding the need to have
ewer outliers in terms of delayed tasks. This establishes a sense of deter-
inism to the infrastructure and enhances the ability of being in control

f the involved computational resources. Furthermore, the tail latency
etric also highlights the efficiency of the proposed solution, since it is

mproved by a factor of 12%. That implies a noticeable improvement in
he context of the computationally intensive tasks, which can really af-
ect end-user experience. This claim is also supported by the impressive
mprovement in terms of the maximum execution time of the methods
ested, where the proposed solution provides an improvement of over
8%. 

Both reactive and proactive approaches have positive kurtosis. This
eans that both response time distributions present peaks with the re-

ctive approach to have more peaks compared to the proactive. In ad-
ition, they both have positive skewness with the reactive approach to
ave a longer right tail than the proactive one. These facts show that the
roactive method renders the workload execution more predictable and
asily controlled by the task offloading and resource allocation mecha-
isms. This conclusion is also supported by the results that are presented
n Fig. 6 and comparatively evaluate the Task Execution Time across the

lgorithm 1 Adjacency Matrix Constructor Algorithm. 

𝐴𝑑 𝑗 𝑎𝑐 𝑒𝑛𝑐 𝑦𝑀𝑎𝑡𝑟𝑖𝑥𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐 𝑡𝑜𝑟 ( 𝐸, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐 𝑒𝑀𝑎𝑡𝑟𝑖𝑥 ) 
Edge List is a list of edges where each edge corresponds to two types
of computational resources. These edges correspond to all potential
pairs of computational resources and thus the size of this list is equal
to K*K. K is defined as the number of different computational re-
sources that are being examined 
Resource Matrix is a |K| x |T| matrix where T is defined as the num-
ber of timesteps that the available dataset consists of. 
Description 

The Adjacency Matrix Constructor Algorithm generates a binary value
for each edge of the provided edge list. The values of the are calculated
based on the results a co-relation function that are then compared
against the 0.5 threshold. 
Definition - Resource Matrix 

𝑋 , 𝑋 𝜖𝑅 

|𝐾 |∗ |𝑇 | ← 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 _ 𝑀𝑎𝑡𝑟𝑖𝑥 

Begin 

1. 𝐴 : Adjacency Matrix 
2. For Each 𝑒 𝑖 𝜖𝐸 do: 
3. 𝑟 𝑗 , 𝑟 𝑘 ← 𝑒 𝑖 
4. 𝑣 𝑗 ← 𝑋 𝑗 #Matrix index refers to the column of the Resource
Matrix that is attributed to Resource j 
5. 𝑣 𝑘 ← 𝑋 𝑘 #Matrix index refers to the column of the Resource
Matrix that is attributed to Resource k 
6. 𝐴 𝑗𝑘 ← 𝑐𝑜𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ( 𝑣 𝑗 , 𝑣 𝑘 ) 
7. 𝑖𝑓𝐴 𝑗𝑘 > 0 . 5 , 𝑡ℎ𝑒𝑛 ∶ 𝐴 𝑗𝑘 ← 1 , 𝑒𝑙𝑠𝑒 ∶ 𝐴 𝑗𝑘 ← 0 
8. End For 
End 



T. Theodoropoulos, A. Makris, I. Kontopoulos et al. International Journal of Information Management Data Insights 3 (2023) 100158 

Table 3 

Experimental Evaluation of Horizontal Autocaling Approaches. 

Autoscaling Method Tail latency Avg. Ex. time Std. Ex. time Median Ex. time Num. Tasks Max. Ex. time Skewness Ex. time Kurtosis Ex. time 

Reactive 5.610 1.767 1.944 1.539 1,624,817 47.849 9.385 129.665 
Intelligent 5.060 1.525 1.123 1.260 1,624,735 18.909 3.513 20.166 

Fig. 6. Comparative analysis of Task Execution 
Times. 
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wo Horizontal Autoscaling approaches. Finally, we can arrive at this
ame conclusion by using the average value and the standard deviation
f execution time as well. 

Finally, the proposed model leveraged less than 0.7% more computa-
ional resources throughout the simulation when compared against the
tandard reactive approach. 

.4. Discussion regarding the experimental results 

The fact that the GCN-LSTM model leverages relation-based rep-
esentations allows it to better encapsulate the dependencies that are
ormed between the variables of the input sequence when compared
o the other models. This claim is supported by the fact that the GCN-
STM model produced superior results in terms of RMSE and MAE com-
ared to the other DL models. This is especially interesting consider-
ng that the GCN-LSTM model shares many structural similarities with
he CNN-LSTM model, which produced the worst results out of all the
ncoder-Decoder models. This proves that the representation capabili-
ies of graph convolution are significantly greater than those provided
y typical convolution when the representation process is performed
n the context of non-structure entities. Finally, even the rest of the
ncoder-Decoder models, despite being more capable of encapsulating
emporal relations since they deploy a greater number of recurrent neu-
al network layers, did not manage to surpass the overall predictive
rowess of the GCN-LSTM model. 

The proposed GCN-LSTM model is capable of providing accurate pre-
ictions regarding the CPU utilization of each processing node that is
xpected to take place during the next time-steps. These predictions are
everaged by the broker entity that performs the scaling decisions. The
mall errors in MAE and MSE evaluation metrics mean that the model
s able to contribute towards making optimal scaling up decisions when
t is necessary in order to avoid performance bottlenecks and the poten-
ial degradation of QoS. Furthermore, the model is able to accurately
redict potential drops in resource demand and to subsequently release
he required resources in order to avoid the resource over-provisioning
henomenon. This results to significantly reduced resource consump-
ion compared to the other intelligent resource allocation approaches
hat were examined in the Related Work section (2) of this work. 

The average number of utilized processing nodes throughout the sim-
lation serves as an important indicator towards examining how accu-
ate the proposed model is in terms of predicting potential decreases in
esource demand. As stated in the Related Work section (2) , it is a rather
ommon practise for resource usage prediction models to overestimate
12 
n purpose future resource demand in order to allocate an abundance
f computational resources and thus to facilitate the QoS requirements
n a safer manner. The point of constructing a more accurate prediction
odel is significantly enhance the aforementioned performance metrics
hile leveraging a similar volume of computational resources. Towards

his goal, we consider the proposed model a success since it leverages
ess than 0.7% more computational resources throughout the simulation
hen compared against the standard reactive approach. As a matter of

act, even this insignificant increase may be attributed to the fact that
he proactive approach scales up earlier than the other approach, which
esults in more resources being used on average, albeit slightly. 

Up until now, the various attempts at predicting resource usage have
een mainly focused on capturing the temporal patterns that are inher-
nt in the input sequences. These results highlight the importance of
ncapsulating multi-variate input sequences in a manner that is capa-
le of capturing both the temporal and the structural relations that are
resent. The findings that derive from this work aim at expanding the
ody of literature that explores resource usage representation & pre-
iction. Hopefully, this work shall serve as a stepping stone towards
roadening this rather important field of study that has attracted the
ttention of academia & industry alike. Due to that interest, the authors
f this work decided to focus their efforts towards developing a solu-
ion that caters to the intricacies of real world applications. To that end,
he proposed approach was developed using real-world use-case data
arvested from a contemporary MMG application. 

. Conclusions 

In this paper, we proposed the use of Graph Neural Networks in the
eld of resource usage representations. This novel approach was fur-
her expanded upon by incorporating it into a resource usage predic-
ion paradigm based on Graph-Based Encoder-Decoder. Furthermore,
e compared numerous DL models in the context of resource usage
rediction. The examined GCN-LSTM Encoder-Decoder architecture sur-
assed all other DL approaches in terms of RMSE and MAE. Our next
teps are to find ways to enhance the representation ability of the GCN-
STM model in terms of being able to encapsulate the temporal de-
endencies more robustly to provide even better results. The proposed
odel was then incorporated in a proactive Horizontal Autoscaling so-

ution. This approach managed to significantly outperform a standard
eactive Horizontal Autoscaling one, across a plethora of in the context
f a large-scale simulation, in terms of a plethora of performance met-
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ics, while keeping the volume of the required computational resources
o a minimum. 
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