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atypical parkinsonian disorders. Therefore, there is an urgent need for neuroimaging biomarkers to
help with the early detection of neurodegenerative processes, the early differentiation of the
underlying pathology, and the objective assessment of disease progression. However, there currently
is not yet a consensus in the field on how to describe utility of biomarkers for clinical trials in atypical
parkinsonian disorders.
Methods: To promote standardized use of neuroimaging biomarkers for clinical trials, we aimed to
develop a conceptual framework to characterize in more detail the kind of neuroimaging biomarkers
needed in atypical parkinsonian disorders, identify the current challenges in ascribing utility of these
biomarkers, and propose criteria for a system that may guide future studies.
Results: As a consensus outcome, we describe the main challenges in ascribing utility of
neuroimaging biomarkers in atypical parkinsonian disorders, and we propose a conceptual
framework that includes a graded system for the description of utility of a specific neuroimaging
measure. We included separate categories for the ability to accurately identify an intention-to-treat
patient population early in the disease (Early), to accurately detect a specific underlying pathology
(Specific), and the ability to monitor disease progression (Progression).
Discussion: We suggest that the advancement of standardized neuroimaging in the field of atypical
parkinsonian disorders will be furthered by a well-defined reference frame for the utility of biomarkers.
The proposed utility system allows a detailed and graded description of the respective strengths of neuro-
imaging biomarkers in the currently most relevant areas of application in clinical trials.
� 2019TheAuthors. Published byElsevier Inc. on behalf of theAlzheimer’sAssociation. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Parkinsonian disorders are the most common neurodegen-
erative diseases after Alzheimer’s disease [1]. In about 20%
of patients, parkinsonism is not due to Parkinson’s disease
(PD) pathology, which then is commonly referred to as an
atypical parkinsonian disorder (AP) [2,3]. The most frequent
forms of underlying neurodegenerative pathologies in AP
are progressive supranuclear palsy (PSP), multiple system
atrophy (MSA), and corticobasal degeneration (CBD).
Neuronal degeneration is generally much more aggressive
and symptomatic therapy is much less effective in these
disorders than in PD [4]. This does not only lead to a signifi-
cantly shorter survival but also to a dramatically steeper loss
of function, for example, in activities of daily living [5–7]
(see Fig. 1). From a neuropathological perspective,
parkinsonian disorders are proteinopathies and distinguish-
able with regard to the form and localization of pathological
protein aggregates. In PD, alpha-synuclein accumulation in
the form of intraneuronal Lewy bodies occurs progressively
and probably largely in an ascending order from the brainstem
to thecerebral cortex [8]. MSA is also considered an
alpha-synucleinopathy, although protein aggregates mostly
appear as cytoplasmic oligodendroglial inclusion bodies [9].
PSP on the other hand is characterized by intracerebral
aggregation of tau proteins, predominantly involving isoforms
on
with four microtubule-binding region repeats (4R-Tau), in
neurofibrillary tangles, oligodendrocytic coils, and astrocytic
tufts [10]. This pathology generally occursfirst in themidbrain
and the basal nuclei and later also in the cerebral cortex
(typically starting in the frontal lobe). In contrast to PSP, 4R-
tau pathology in CBD appears more in the form of astrocytic
plaques than tufted astrocytes but can also be found as neural
inclusions as well as threads in gray and white matter [10].
Importantly, there is considerable clinical and neuropatholog-
ical overlap between the diseases particularly within subtypes,
such as the parkinsonian (MSA-P) and cerebellar variants of
MSA (MSA-C) [11] and between PSP-spectrum tauopathies,
such as the Richardson’s syndrome (PSP-RS), parkinsonism-
variantPSP (PSP-P), andpuregait freezing, amongothers [12].

Current pathophysiological theories propose that a central
mechanismof disease progression is the spread of deleterious
protein pathologies along functional brain networks [13–15],
which opens up the possibility to block this pathogenic
cascade by therapeutic intervention. Indeed, new molecular
therapy strategies targeting protein aggregations are ready
for clinical trials and hold the promise to dramatically
improve the prognosis of AP [16,17]. However, the
identification of candidates for clinical trials is problematic
because accurate early diagnosis of the type of underlying
pathology can be extremely difficult. A main reason for
s L
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Fig. 1. Illustration of the prototypical clinical trajectories in Parkinson’s

disease (blue) and atypical Parkinsonism (orange). The trajectories account

for the fact that neuronal degeneration is much more aggressive and

symptomatic therapy is much less effective in atypical Parkinsonism, which

leads to steeper slopes for survival (dashed lines) and even more dramatic

drop in functional abilities (solid lines).
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this is a strong mismatch between clinical presentation and
pathological entity and the existence of a variety of
overlapping syndromes [12,18]. Although some clinical
entities highly correlate with the underlying pathological
entity, it is increasingly recognized that in AP, the clinical
entity can have limited overlap with a pathological entity
and vice versa.

In sum, there is an urgent need for instruments to help
with the early detection of neurodegenerative processes,
the early differentiation of the underlying pathology, and
the objective assessment of disease progression. In this
article, we lay down a conceptual framework aiming to
characterize in more detail the kind of neuroimaging
biomarkers needed, identify the current challenges in
ascribing utility of these biomarkers, and propose criteria
for a system that may guide future studies to overcome these
challenges.
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2. Neuroimaging biomarkers for diagnosis

There is plenty of evidence for a relatively large
mismatch between clinical and pathological disease entities.
While in some cases the clinical syndrome is highly
indicative of the underlying pathology (e.g., clinical
PSP-Richardson syndrome with 4R-neuroglial pathology),
predicting a pathological entity based only on the clinical
presentation of the patient is highly problematic in most
cases, particularly during the early clinical stage of the
disease. In the relatively large cohort of Lee and colleagues,
only 35% of patients with corticobasal syndrome actually
had CBD as a pathological substrate, while 23% had AD
pathology and 13% had PSP pathology [19]. Conversely,
the same pathological entity can be associated with a large
variety of different syndromes. In their seminal paper,
Williams and Lees have described various syndromes and
variants of presentations that can be associated with PSP
pathology [12]. Considering that the large mismatch
between neuropathology and clinical presentation has
translated to suboptimal diagnostic accuracy of parkinsonian
syndromes [20,21], it currently makes sense to differentiate
diagnostic properties of biomarkers according to these
categories.

The ultimate goal of a therapeutic intervention is to stop
and reverse disease progression, or at least to slow it down.
It is increasingly clear that the neurodegenerative cascade
can start many years, or even decades, before first clinical
symptoms. Therefore, a therapeutic intervention targeting
protein aggregation could be more effective, the earlier it is
started. However, diagnostic accuracy for clinical entities
and even more so for pathological entities is generally low
when only few or prodromal symptoms are detectable by
the clinician [9,14]. Neuroimaging biomarkers may help
increasing diagnostic accuracy in this phase. For an
unambiguous definition of what constitutes a diagnostic
biomarker, the FDA-NIH Biomarker Working Group has
published a compendium of definitions [22]: a diagnostic
biomarker is “used to detect or confirm presence of a disease
or condition of interest or to identify individuals with a
subtype of the disease.”

Importantly, the performance of a diagnostic biomarker has
to be tested under defined conditions of use. The biomarker
can only be put to use for patient selection in clinical trials,
if the validity on the individual level in the intention-to-test
population (the kind of group to which the diagnostic test
will be applied to) is known. For example, a biomarker that
distinguishes PSP patients from healthy controls may not be
applicable in a scenario,where the intention-to-test population
is composed of patients with PSP, but also other forms of
parkinsonism. In addition, although it may be helpful to
explore the potential of neuroimaging biomarkers in
convenience samples (i.e., ad hoc clinic cohorts), one cannot
properly infer the performance of the diagnostic biomarker
in studies using other sampling settings (e.g., randomized
controlled trials, or community cohorts). Moreover, the time
point and clinical certainty at which the test is applied should
reflect the intended-use scenario. If a diagnostic biomarker
performs well in patients who already have a (relatively
certain) clinical diagnosis with a fully developed syndrome
(e.g., PSP-Richardson Syndrome), this does not mean that it
will perform well in patients at the very early stage and with
prodromal symptoms or other clinical variants (e.g., PSP-P).
It is self-evident that the performance of a diagnostic
neuroimaging biomarker should be assessed in a way that is
statistically meaningful to be applicable in clinical trials.

The most useful quantifications of diagnostic test
performance are the positive predictive value (PPV, i.e.,
the proportion of positives actually having the condition)
and negative predictive value (NPV, i.e., the proportion of
those tested negativewho actually do not have the condition)
in a realistic intention-to-test population. Indeed, predictive
values tell us what we want to know: given a positive or
negative test, what is the probability, respectively, that the
patient does (PPV) or does not have (NPV) a particular
disease? Importantly, these values very much depend on
the frequency of actual positives or negatives in the study
sample (i.e., the prevalence of the target disorder in the study
s L
icense
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sample) [23]. Therefore, for convenience samples, the
assessment of performance in the form of a receiver
operating characteristic curve, that is, ROC curve, or at least
sensitivity and specificity of a specific discrimination
threshold may be the more sensible choice. Under these
preconditions, the usefulness of diagnostic neuroimaging
biomarkers is not limited to establishing a clinical diagnosis.
A study design, in which the presence of a specific biological
condition is used for sample stratification, can also involve
target verification (e.g., presence of tau pathology),
enrichment strategies, or subtyping of patients (e.g., patients
with mild or severe forms of the disease).
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3. Neuroimaging biomarkers of disease progression

Ultimately, the goal of any therapeutic intervention is to
preserve or improve functional abilities by reducing
symptoms or the impact of symptoms. However, functional
abilities and clinical symptoms have several disadvantages
when considered as the primary end point or outcome
measure used to assess efficacy in clinical trials. Clinical
data can be difficult and costly to generate and are hard to
standardize across centers. Moreover, the prospective
assessment of clinical events (e.g., falls, hospitalization,
nursing home admission) is time consuming and inherently
prone to attrition. Moreover, clinical data (e.g., a score in a
particular clinical test) may be subject to severe day-to-day
or evenwithin-day variability due to unspecific and unrelated
factors, such as quality of sleep in the previous night, the
composition and amount of breakfast or lunch, and so on.
Along similar lines, it is well recognized that life factors,
such as education, that are linked to the concept of
cognitive reserve have a strong influence on the impact of
pathology on clinical performance markers [24,25].
Moreover, clinical scores—such as the PSP-rating scale in
its current form—are typically designed for classical
presentations of the spectrum of clinical phenotypes
associated with a pathological entity (e.g., Richardson
syndrome) rather than variant or atypical phenotypes. Even
more importantly, it is assumed for AP, just like for
practically all neurodegenerative diseases, that the
pathogenic cascade starts years to decades before first
symptoms. This would mean that in a clinical trial for the
preclinical or prodromal phase of AP, waiting for therapeutic
effects in clinical symptoms is impracticable. Of note,
specific challenges for longitudinal trial design in the
preclinical or prodromal phase of neurodegenerative diseases
have been addressed by previous working groups
(e.g., PreNI, BioLoC-PD) of the EU Joint Program of
Neurodegenerative Diseases (JPND; http://www.neuro
degenerationresearch.eu).

For all these reasons, objective and standardized
measures of biomarkers have become an important outcome
in many clinical trials. Such biomarker data could support
clinical efficacy, provide mechanistical evidence of a disease
modifying effect, and may even serve as a primary outcome
measure. The term “surrogate end point” or “surrogate
marker” is frequently applied to describe this specific use
of a biomarker. According to the FDA-NIH definition, “a
biomarker measured serially for assessing status of a disease
or medical condition or for evidence of exposure to (or effect
of) a medical product or an environmental agent” is called a
“monitoring biomarker” [22]. If this monitoring biomarker
predicts or correlates with a clinical outcome, it may
potentially be used as a surrogate end point in a clinical trial.
Evidently, the magnitude of change relative to the statistical
noise (i.e., effect size) should also be similar or greater for
the biomarker measurement than for the clinical
measurement. If the effect size of a biomarker is greater
than the effect size of clinical outcome measures in a given
time period, this may reduce the sample size required to
power a therapeutic trial by an order of magnitude [26].
Ideally, short-term changes in the biomarker could anticipate
long-term clinical outcome, which would be particularly
helpful in presymptomatic or prodromal phase of a disease.
Importantly, the use of a biomarker for accelerated approval
by the FDA requires that the biomarker is at least a
“reasonably likely” surrogate end point. In this case, the
end point has to be supported by clear mechanistic and/or
epidemiologic rationale. For example, radiologic
assessment of tumor size in certain cancer types has been
considered reasonably likely to predict an improvement of
overall survival [22]. It can therefore be essential that a clear
mechanistic rationale is provided, which incorporates the
role of the biological process (quantified by the
neuroimaging biomarker) within the pathogenic cascade
(see Fig. 2).
4. Challenges for ascribing utility of a neuroimaging
biomarker

There currently is not yet a consensus in the field on
which imaging measures have the greatest utility as
biomarkers for clinical trials in AP. Recent systematic
reviews on available neuroimaging biomarkers for diagnosis
and progression of AP disclosed that despite a plethora of
studies, these have not yet yielded sufficiently validated
biomarkers for diagnosis and disease progression, especially
in the early course of disease or newly recognized variants
[27–30]. This is problematic not only for finding a
consensus but also because standard performance
measures for newly developed imaging biomarkers are
missing. In many businesses, the process of comparing to
an industry standard—called benchmarking—has helped
to accelerate development. We call for an increase in
academic and industrial engagement in providing validated
standards for biomarkers in clinical trials (benchmark).
These standards should preferentially be scalable
(relatively low cost and available) and robust (resistant to
test-retest and multicenter variability). Under these
preconditions, inclusion of these standards in national and
international guidelines will certainly be facilitated.
s L
icense

http://www.neurodegenerationresearch.eu
http://www.neurodegenerationresearch.eu


Fig. 2. Illustration of a mechanistic pathophysiological cascade that may occur in neurodegenerative diseases. A certain biomarker may capture more proximal

or more distal biological substrates along the cascade. Abbreviations: FDG, fludeoxyglucose; DAT, dopamine transporter.
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The main reasons for the current lack of validation are the
limited comparability and generalizability of studies in
combination with a general sparsity of confirmatory reports
and a practical nonexistence of confirmation of type and
distribution of pathology (postmortem) [27]. Comparability
is certainly hindered by a great variability in technical
procedures for acquisition and processing, but also in the
way that the potential utility of the biomarker is described.
Although many studies refer to a potential use as a
biomarker in the conclusions, only a few of them provide
an operational definition as to how exactly the biomarker
should be used. Moreover, the statistical means by which
the utility is described are variable and sometimes
inadequate. For example, although the potential of the
biomarker as a diagnostic tool is discussed, measures of
test accuracy (e.g., area under the ROC curve) are not
reported. Generalizability, on the other hand, is limited by
the fact that studies typically focus on specific phenotypes
(e.g., PSP with Richardson Syndrome, PSP-RS), making
its application in other variants questionable (e.g., PSP
with progressive gait freezing). Another important
limitation of generalizability is relatively small sample sizes,
typically from a single clinical center. In addition, an
exploratory approach in convenience samples—while
certainly sometimes sensible in novel approaches—limits
applicability in a clinical trial due to potential selection
biases. An instrument to address these issues would be to
manage cohorts for imaging studies as a “mock” clinical
trial, including stringent and reproducible study designs
detailed in trial protocols.

We suggest that the advancement of standardized
neuroimaging in the field will be furthered by a
well-defined reference frame for the utility of biomarkers.
We argue that the currentlymost relevant areas of application
include diagnostic biomarkers for early clinical diagnosis,
diagnostic biomarkers for a specific pathology, and
monitoring biomarkers for disease progression that qualify
as surrogate end points.

5. Criteria for a biomarker utility system: the E-S-P
methodology

To resolve these issues and to reach an international
consensus on propositions to overcome the main challenges,
we held two JPND-sponsored workshops (Cologne,
Germany, and Vancouver, Canada) in 2017. As a consensus
outcome, we recommend a formal utility description
system in response to the challenges outlined previously.
As a conceptual framework, we propose a graded system
for the description of utility of a specific neuroimaging
measure.

Our selection process for the categories and grades of
the system was mainly guided by what are currently the
most useful parameters for a clinical trial in AP in the
near future. This approach was chosen to provide the
necessary balance between complexity and applicability
of the system. We therefore included separate categories
for the ability to accurately identify an intention-to-treat
patient population early in the course of disease (Early),
to accurately detect a specific underlying pathology
(Specific), and the ability to monitor disease progression
(Progression). We aimed to provide a relatively intuitive
system with relatively easy operational definitions (see
Fig. 3).

5.1. Early diagnosis

We started from the position that a diagnostic biomarker
has to be more accurate than a quasi-simultaneous clinical
examination for it to be of particular use. Because current
diagnostic criteria are still tailored to clinical entities, we
focused on biomarker properties regarding “the earlier, the
better” diagnosis of clinical entities.We propose three grades:
s L
icense



Fig. 3. Proposition of a graded Neuroimaging Biomarker Utility System for clinical trials. Early: the capability of a biomarker to detect a clinical entity early in

the course of disease. Specific: the capability to increase the likelihood of a specific underlying pathology. Progression: the capability to serve as a surrogate end

point in a clinical trial. Abbreviations: PSP-RS, progressive supranuclear palsy–Richardson Syndrome; PD, Parkinson’s disease.
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1. the biomarker accurately identifies a clinical entity in
absence of clinical symptoms

2. the biomarker accurately identifies a clinical entity in
presence of symptoms but before clinical criteria are
met

3. the biomarker accurately identifies a clinical entity only
after clinical diagnostic criteria aremet. It shouldbenoted
that diagnostic biomarkers of this categorymay still have
utility, for example, when the accuracy with respect to
long-term follow-up diagnosis is increased by including
the biomarker in the assessment of the patient.

5.2. Assessment of accuracy

For a clinical diagnosis in AP, it seems reasonable that the
gold standard should be the diagnosis of a movement
disorders specialist after a long-term follow-up. For optimal
assessment of utility of a biomarker, the specialist should be
blinded to the biomarker outcome, to avoid biasing the
clinical decision. The exact statistical value that
appropriately describes accuracy of the test may vary, but
there are certain rules-of-thumb: (1) specificity may be
more important than sensitivity when the biomarker should
be used for sample stratification in a clinical trial; (2) for
some scenarios, the predictive value of the test is more
informative than its sensitivity and specificity. The
predictive value strongly depends on the a priori probability
of the disease in the patients undergoing the test (which can
be influenced by referral bias and regional prevalence). On
the other hand, the same will apply for the predictive value
of the clinical examination. Therefore, we propose that
the predictive value of the biomarker should always be
seen in relation to the predictive value of the clinical
examination.
5.3. Specific pathological substrate

Because therapeutic strategies are increasingly targeting
an underlying pathology (e.g., tau), it is critically important
to address specificity regarding pathology as a separate
category of utility. Strategies for patient stratification may
vary and using clinical variants with very high specificity
for an underlying pathology (e.g., PSP-RS) may be chosen
by some trial sponsors. Most recent anti-amyloid trials in
AD, however, used negative amyloid-PET scans as an
exclusion criteria to only include patients with significant
amyloid plaque pathology. One may argue that patient
selection criteria in these clinical trials are likely to influence
approval to the point that in a clinical setting, biomarker
positivity is a prerequisite of “on-label” drug application
and possibly remuneration. Along these lines, if efficacy
for antitau therapies has been demonstrated only in
PSP-RS patients, treating patients with other variants,
however plausible, may be considered “off label.” Ideally,
a neuroimaging biomarker would be 100% accurate for a
specific pathology. Realistically, a neuroimaging biomarker
that increases the likelihood of a certain kind of pathology
(enrichment) to an extent that efficacy of the drug may be
demonstrated would still be of great use. Therefore, we
propose a grading system that is oriented at the likelihood
of a certain kind of pathology:

1. the biomarker identifies a specific pathology
regardless of the clinical variant

2. the biomarker identifies a specific pathology only in
the context of a specific clinical variant (e.g., PSP-RS)

3. the biomarker identifies partially differentiating
features of pathology (e.g., synuclein pathology in
PD and MSA vs. tau pathology in PSP and CBD)
s L
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which, although not specific, may still be useful for
some trial contexts.

Our recommendations for measuring accuracy are similar
to those for the previous category. Notable exceptions are the
gold standard, which should be the pathological diagnosis
based on (postmortem) histopathological examination.

5.4. Progression tracking

For this category, we were guided by the potential of a
biomarker to qualify as surrogate end point. As outlined
previously, a biomarker may qualify as a surrogate end point,
if it (1) correlateswith or even anticipates clinical progression
and (2) shows superiority over clinical measurements in
terms of practicability, precision, effect size, or any
combination of these. Importantly, clinical progression may
refer to range or severity of symptoms asmeasured by clinical
examination.

Within this framework, we define “correlation” as
follows: in a given time period, the effect size of the
biomarker change over time significantly correlates with a
clinical measure of progression. We define “anticipation”
as follows: the effect size of the biomarker in a given time
period significantly correlates with the effect size of a
relevant clinical progression measure in a later time period.
In other words, short-term biomarker changes anticipate
long-term changes in clinical outcomes. The latter property
is of critical importance for progression markers in
absence of significant changes of clinical measures (e.g.,
presymptomatic phase). Moreover, a clear mechanistic
rationale will dramatically increase the likelihood of
acceptance of a biomarker as a surrogate end point in a
clinical trial [22]. The main reason for demanding this
property of a biomarker is that a correlation between the
biomarker and clinical measures is not in itself evidence
for a causal relationship but could be a biological
epiphenomenon. The relationship could be due to a shared,
more proximal causal agent along the pathological
cascade or even due to the biomarker representing
protective or compensational mechanisms (see Fig. 2).
Combining these quality categories, we propose the
following grades:

1. the biomarker anticipates clinical progression and a
clear mechanistic rationale for a causal relationship
exists

2. the biomarker anticipates clinical progression, in the
absence of evidence of a causal mechanism

3. the biomarker correlates with clinical progression and
is superior for use in a trial (e.g., larger effect size).

Note that a biomarker conveying information about
future clinical severity in longitudinal data, but taken only
at a single time point, is not included here. This sort of
biomarker belongs in a different category (i.e., prognostic
biomarker, not a progression biomarker) that is not discussed
in this article as it is not based on longitudinal progression.
6. Strengths and limitations

Our aimwas to promote the development of neuroimaging
biomarkers in the field of AP by proposing a conceptual
framework guiding the assessment and description of the
utility of a biomarker in clinical trials. We primarily tailored
our recommendations to current demands, which may very
well be debatable or change over time. We are very
aware that not all aspects of interest for neuroimaging
biomarkers are covered here. We did not cover biomarkers
specifically conveying information about the risk for
developing a medical condition (susceptibility or risk
biomarker), the likelihood of an individual to have faster or
slower disease progression (prognostic biomarker), and
many more potentially useful types of biomarkers. In
addition, we did not specifically discuss the potential of a
combined set of biomarkers (e.g., fluid/“wet” biomarkers
plus neuroimaging). However, our goal was to find an
appropriate balance between the necessary complexity and
an intuitive applicability.

Importantly, the proposed utility system allows for the
fact that a single biomarker may have strengths in one
domain (e.g., as a biomarker for progression) while it may
not excel in others (e.g., specificity). This system
theoretically also allows us to describe the utility of a
combination of different biomarkers. However, the
categories “Specific” and “Progression” may depend on
the time of application with respect to the phase of a disease.

Wewould have liked to compare our conceptual framework
in the field of atypical parkinsonian disorders with systems
developed for the description of biomarker utility in other
neurodegenerative diseases. However, we are not aware of
similar conceptual frameworks.

We would like to emphasize that our propositions are a
conceptual framework that aims to be a stimulus for
continued discussion in the field. Our hope is that
this framework can form a basis for a future
consensus among a wider range of scientists and other
stakeholders.
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RESEARCH IN CONTEXT

1. Future directions: The article proposes a novel
conceptual framework for neuroimaging biomarkers
for clinical trials in atypical parkinsonian disorders.
As the outcome of international consensus meetings,
the proposal includes a graded system of the ability
of a biomarker to accurately identify an
intention-to-treat patient population early in the
course of disease (Early), to accurately detect a
specific underlying pathology (Specific), and the
ability to monitor disease progression (Progression).
This well-defined reference frame for the utility of
biomarkers may stimulate standardized use of
neuroimaging biomarkers in clinical trials.

2. Systematic review: We examined literature on
the description of biomarker utility in general and
in neurodegenerative disorders, with a specific
emphasis on atypical parkinsonian disorders.

3. Interpretation: We did not find applicable definitions
or descriptions in the literature and provide an expert
consensus.
References

[1] Elbaz A, Carcaillon L, Kab S, Moisan F. Epidemiology of Parkinson’s

disease. Rev Neurol (paris) 2016;172:14–26.

[2] Horvath J, Burkhard PR, Bouras C, K€ovari E. Etiologies of Parkin-

sonism in a Century Long Autopsy Based Cohort. Brain Pathol 2013;

23:28–33.

[3] Jellinger K. The pathology of parkinsonism. In: Marsden CD, Fahn S,

eds. Mov Disord. London: Butterworths & Co.; 1987. p. 124–65.

[4] Litvan I. What is an Atypical Parkinsonian Disorder? In: Litvan I, ed.

Atypical parkinsonian disorders: clinical and research aspects.

Totowa, NJ: Humana Press; 2005. p. 1–10.

[5] Wenning GK, Geser F, Krismer F, Seppi K, Duerr S, Boesch S, et al.

The natural history of multiple system atrophy: a prospective

European cohort study. Lancet Neurol 2013;12:264–74.

[6] Constantinescu R, Richard I, Kurlan R. Levodopa responsiveness in

disorders with parkinsonism: a review of the literature. Mov Disord

2007;22:2141–8.

[7] O’Sullivan SS, Massey LA, Williams DR, Silveira-Moriyama L,

Kempster PA, Holton JL, et al. Clinical outcomes of progressive

supranuclear palsy and multiple system atrophy. Brain 2008;

131:1362–72.

[8] Braak H, Del Tredici K, R€ub U, de Vos RA, Jansen Steur EN, Braak E.

Staging of brain pathology related to sporadic Parkinson’s disease.

Neurobiol Aging 2003;24:197–211.

[9] Cykowski MD, Coon EA, Powell SZ, Jenkins SM, Benarroch EE,

Low PA, et al. Expanding the spectrum of neuronal pathology in

multiple system atrophy. Brain 2015;138:2293–309.

[10] Kovacs GG. Invited review: neuropathology of tauopathies: principles

and practice. Neuropathol Appl Neurobiol 2015;41:3–23.
s L
icense

http://refhub.elsevier.com/S2352-8729(19)30015-6/sref1
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref1
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref2
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref2
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref2
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref2
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref3
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref3
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref4
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref4
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref4
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref5
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref5
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref5
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref6
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref6
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref6
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref7
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref7
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref7
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref7
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref8
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref8
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref8
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref8
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref9
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref9
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref9
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref10
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref10


T. van Eimeren et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 11 (2019) 301-309 309

 23528729, 2019, 1, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1016/j.dadm

.2019.01.011 by C
ochraneItalia, W

iley O
nline L

ibrary on [13/12/2023]. See
[11] Gilman S, Wenning G, Low PA, Brooks D, Mathias C, Trojanowski J,

et al. Second consensus statement on the diagnosis of multiple system

atrophy. Neurology 2008;71:670–6.

[12] WilliamsDR,LeesAJ. Progressive supranuclear palsy: clinicopatholog-

ical concepts and diagnostic challenges. Lancet Neurol 2009;8:270–9.

[13] Palop JJ, Chin J, Mucke L. A network dysfunction perspective on

neurodegenerative diseases. Nature 2006;443:768.

[14] Cope TE, Rittman T, Borchert RJ, Jones PS, Vatansever D,

Allinson K, et al. Tau burden and the functional connectome in

Alzheimer’s disease and progressive supranuclear palsy. Brain

2018;141:550–67.

[15] HoenigMC, Bischof GN, Seemiller J, Hammes J, Kukolja J, Onur €OA,

et al. Networks of tau distribution in Alzheimer’s disease. Brain 2018;

141:568–81.

[16] Boxer AL, Yu J-T, Golbe LI, Litvan I, Lang AE, H€oglinger GU.

Advances in progressive supranuclear palsy: new diagnostic criteria,

biomarkers, and therapeutic approaches. Lancet Neurol 2017;

16:552–63.

[17] Castro Caldas A, Levin J, Djaldetti R, Rascol O, Wenning G,

Ferreira JJ, et al. Critical appraisal of clinical trials in multiple system

atrophy: Toward better quality. Mov Disord 2017;32:1356–64.

[18] H€oglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA,

Lang AE, et al. Clinical diagnosis of progressive supranuclear palsy:

the movement disorder society criteria. Mov Disord 2017;32:853–64.

[19] Lee SE, Rabinovici GD, Mayo MC, Wilson SM, Seeley WW,

DeArmond SJ, et al. Clinicopathological correlations in corticobasal

degeneration. Ann Neurol 2011;70:327–40.

[20] Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G.

Accuracy of clinical diagnosis of Parkinson disease: a systematic

review and meta-analysis. Neurology 2016;86:566–76.
[21] Joutsa J, Gardberg M, R€oytt€a M, Kaasinen V. Diagnostic accuracy of

parkinsonism syndromes by general neurologists. Parkinsonism Relat

Disord 2014;20:840–4.

[22] FDA-NIHBiomarkerWorkingGroup. BEST (Biomarkers, EndpointS,

and other Tools) Resource [Internet]. Silver Spring (MD): Food and

Drug Administration (US); 2016. Available from http://www.ncbi.

nlm.nih.gov/books/NBK326791/.

[23] Gallagher EJ. The problem with sensitivity and specificity.. Ann

Emerg Med 2003;42:298–303.

[24] Stern Y. What is cognitive reserve? Theory and research application of

the reserve concept. J Int Neuropsychol Soc 2002;8:448–60.

[25] Hoenig MC, Bischof GN, Hammes J, Faber J, Fliessbach K, van

Eimeren T, et al. Tau pathology and cognitive reserve in Alzheimer’s

disease. Neurobiol Aging 2017;57:1–7.

[26] Jack C, Shiung M, Gunter J, O’brien P, Weigand S, Knopman D, et al.

Comparison of differentMRI brain atrophy rate measures with clinical

disease progression in AD. Neurology 2004;62:591–600.

[27] Whitwell JL, H€oglinger GU, Antonini A, Bordelon Y, Boxer AL,

ColosimoC, et al. Radiological biomarkers for diagnosis in PSP:where

are we and where do we need to be? Mov Disord 2017;32:955–71.

[28] Strafella AP, Bohnen NI, Perlmutter JS, Eidelberg D, Pavese N, Van

Eimeren T, et al. Molecular imaging to track Parkinson’s disease

and atypical parkinsonisms: new imaging frontiers. Mov Disord

2017;32:181–92.

[29] van Eimeren T, Bischof GN, Drzezga A. Is Tau Imaging More

Than Just Upside-Down 18F-FDG Imaging? J Nucl Med 2017;

58:1357–9.

[30] Strafella AP, Bohnen NI, Pavese N, Vaillancourt DE, van Eimeren T,

PolitisM, et al. Imagingmarkers of progression in Parkinson’s disease.

Mov Disord Clin Pract 2018;5:586–96.
 the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://refhub.elsevier.com/S2352-8729(19)30015-6/sref11
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref11
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref11
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref12
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref12
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref13
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref13
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref14
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref14
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref14
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref14
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref15
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref15
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref15
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref15
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref16
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref16
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref16
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref16
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref16
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref17
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref17
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref17
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref18
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref18
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref18
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref18
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref19
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref19
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref19
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref20
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref20
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref20
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref21
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref21
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref21
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref21
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref21
http://www.ncbi.nlm.nih.gov/books/NBK326791/
http://www.ncbi.nlm.nih.gov/books/NBK326791/
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref23
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref23
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref23
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref24
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref24
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref25
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref25
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref25
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref26
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref26
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref26
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref27
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref27
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref27
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref27
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref28
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref28
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref28
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref28
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref29
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref29
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref29
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref30
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref30
http://refhub.elsevier.com/S2352-8729(19)30015-6/sref30

	Neuroimaging biomarkers for clinical trials in atypical parkinsonian disorders: Proposal for a Neuroimaging Biomarker Utili ...
	1. Introduction
	2. Neuroimaging biomarkers for diagnosis
	3. Neuroimaging biomarkers of disease progression
	4. Challenges for ascribing utility of a neuroimaging biomarker
	5. Criteria for a biomarker utility system: the E-S-P methodology
	5.1. Early diagnosis
	5.2. Assessment of accuracy
	5.3. Specific pathological substrate
	5.4. Progression tracking

	6. Strengths and limitations
	Acknowledgments
	References


