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1. Introduction

We are interested in the billiard problem inside convex bodies in Rd+1, d ≥ 1, with a 
smooth boundary. The unit speed flow dynamics of the pointsized billiard ball is reduced 
to the billiard map. This map relates consecutive elastic reflections at the boundary of the 
body. In this work, we present a way to perturb the body so that the billiard dynamics 
becomes chaotic on a proper subset of the phase space.

We naturally associate a convex body to its boundary, which is the embedding of 
a d-sphere S. Thus we talk about the topology on bodies as the one on embeddings 
S ↪→ Rd+1. Moreover, we say that a convex body with a C∞ boundary is a smooth 
convex body.

Given a body whose billiard map is a diffeomorphism f , an f -invariant and compact 
subset Λ of the phase space is hyperbolic if there is a Df -invariant continuous splitting 
of the tangent bundle restricted to Λ, TΛM = EΛ ⊕ FΛ, and m ∈ N such that for all 
x ∈ Λ the following inequalities hold:

‖Dfm(x)|Ex‖ ≤ 1
2 and ‖Df−m(x)|Fx‖ ≤ 1

2 . (1.1)

A nontrivial hyperbolic basic set Λ is a hyperbolic, infinite, transitive (contains a 
dense orbit) and locally maximal set, i.e. there is an open neighborhood V of Λ such 
that

Λ =
⋂
n∈Z

fn(V̄ )

(cf. [33]). Such a set contains a transverse homoclinic point.
Our main result, proved in section 3, is the following.

Theorem 1.1. There is a C2-open and dense set of smooth convex bodies whose billiard 
maps have a nontrivial hyperbolic basic set.

The complexity of the billiard dynamics can be measured by the topological entropy, 
a numerical invariant which we now define. Let dn(x, y) = max{dist(f i(x), f i(y)) : 0 ≤
i < n −1} where f is the billiard map and dist is the distance induced by the embedding 
corresponding to the smooth convex body. A subset F of the phase space is said to be 
(n, ε)-spanning if the whole phase space is covered by the union of the dynamical balls 
{y : dn(x, y) < ε} centered at the points x ∈ F . Denote by N(n, ε) the minimal cardinality 
of a (n, ε)-spanning set. Roughly, this gives the number of orbit segments that one can 
distinguish up to some precision. The topological entropy is then the exponential growth 
rate of this number as the precision increases,

htop(f) = lim
(

lim sup 1 logN(n, ε)
)
.

ε→0 n→∞ n
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Since a nontrivial hyperbolic basic set Λ contains a transverse homoclinic point, the 
topological entropy is positive. Recall also that the topological entropy gives the expo-
nential growth of the number of periodic orbits in Λ (cf. [33, Theorem 18.5.1]). Therefore, 
we have the following consequence of Theorem 1.1.

Corollary 1.2. There is a C2-open and dense set of smooth convex bodies whose billiard 
maps satisfy

lim sup
n→∞

1
n

logPn = htop(f) > 0,

where Pn is the number of periodic orbits with period n.

Birkhoff in [9] was already interested in the problem of estimating from below the 
number of periodic orbits. The exponential growth that we have obtained improves the 
best presently known estimate [31] (see also [10]), when restricting to generic smooth 
convex bodies.

The proof of Theorem 1.1 is split mainly in the next two theorems, which are of 
independent interest. Define the integer

md := 4
( 2d+3

4

)
.

Theorem 1.3. There is a C∞-residual set R of smooth convex bodies such that the fol-
lowing holds. If a billiard inside a body in R has an elliptic periodic point with period 
≥ md, then it has a horseshoe.

Theorem 1.4. There is a C∞-residual set R of smooth convex bodies such that the fol-
lowing holds. If a billiard inside a body in R has all periodic points with period ≥ md

hyperbolic and this property is C2-stable, then the closure of the set of those hyperbolic 
points contains a nontrivial hyperbolic basic set.

The above theorems are restated in Theorem 3.1 and Theorem 3.2, where all the 
relevant definitions and mathematical objects are thoroughly explained.

The openness property in Theorem 1.1 follows immediately from the structural sta-
bility of hyperbolic basic sets. To show denseness, which is the non-trivial part of the 
proof, we first observe that, among periodic points of sufficiently large period, the bil-
liard inside a generic body either has an elliptic periodic point (A) or all periodic points 
are hyperbolic (B). In case (A) we are in the condition of Theorem 1.3 and there is a 
horseshoe. On the other hand, in case (B), we split again the proof in two alternatives 
(B1) and (B2) according to whether or not the hyperbolicity of all periodic points is 
preserved under C2-perturbations. For (B1) we use Theorem 1.4, whereas in the case 
(B2) we C2-approximate the body by another body verifying (A).

It is worth pointing out that it is an open problem whether or not there exist bodies as 
in Theorem 1.4 for which all periodic points of period ≥ md are hyperbolic. The reason 
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for this theorem is to deal with the possibility of having such billiards in the proof of 
Theorem 1.1.

The proofs of Theorems 1.3 and 1.4 require several perturbation lemmas in the context 
of billiards in bodies. The most important ones are the versions of the Klingenberg-Takens 
theorem (Theorem 4.2) and the Franks’ lemma (Theorem 6.1). These are new results 
that can be applied in further problems.

It is well-known that the dynamics around elliptic periodic orbits depends on high 
order derivatives of the map. In particular, a higher dimensional generalization of the 
twist property for area-preserving maps, the weakly monotonous property, requires up to 
the third derivative of the map. The Klingenberg-Takens theorem for geodesic flows [35]
gives a way to perturb metrics so that the jets of the Poincaré maps of closed orbits are 
inside a given invariant open dense set. We prove here the billiards version of this result 
(see [17] for the Tonelli Hamiltonians case). The local behavior of weakly monotonous 
elliptic points plays a major role in the proof of Theorem 1.3.

The Franks’ lemma first appeared in [25, Lemma 1.1] stating that perturbations of 
the derivative of diffeomorphisms at a finite set are indeed also derivatives of a C1-close 
diffeomorphism (note that the result is no longer true for the C2-topology [44]). This 
lemma is an essential tool to prove a variety of important and fundamental results on the 
stability and generic theories of dynamical systems displaying properties such as shadow-
ing, structural stability, topological stability and expansiveness. Versions of the Franks 
lemma for more restricted classes of dynamical systems are available for flows [40,14], 
volume-preserving diffeomorphisms [13], divergence-free flows [6], symplectomorphisms 
and Hamiltonian flows [1]. The version for geodesic flows due to Contreras [20] is more 
difficult since the C2-perturbations are performed on the metric, so not local in the phase 
space. Further extensions are available in [38]. Here we present the billiards in bodies 
case generalizing the version for planar billiards [49]. Notice that the C2-perturbations 
of the bodies are also not local in the phase space. The ability to realize the perturbation 
of the tangent map is a crucial part of the proof of Theorem 1.4.

For the particular case of planar billiards (d = 1), it is known for r ≥ 3 that a Cr-
generic convex domain has a horseshoe [19,18]. The proof is based on variational methods 
for two-dimensional twist maps which do not extend directly to higher dimensional 
billiards (see [8] for an application of some variational properties in multidimensional 
billiards). For d ≥ 1, several properties related to periodic orbits are known. In particu-
lar, the existence of infinitely many periodic orbits [23,24,31], and some generic properties 
due to Petkov and Stojanov [48,42,41,43] (see section 2.6).

In section 2 we introduce the basic setup concerning billiards in bodies, including 
the computation of the billiard map and its derivative. Theorem 1.1 is proved in sec-
tion 3. The proof follows from Theorems 3.1 and 3.2, corresponding to Theorems 1.3
and 1.4, respectively. The former is proved in section 5, being crucial the version of the 
Klingenberg-Takens theorem given in section 4 and also a multidimensional version of 
a perturbation by Donnay [22] (Theorem 5.7) that creates a transversal heteroclinic in-
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tersection. The latter is proved in section 7, where it is required the use of the Franks’ 
lemma version for billiards on bodies included in section 6.

2. Billiard map

2.1. Smooth convex bodies

Let r ∈ {2, 3, . . . , ∞}, the d-sphere S, d ≥ 1, and the set of Cr maps S → Rd+1 de-
noted by Cr(S, Rd+1). The subset of maps that are embeddings (i.e. Cr-diffeomorphisms 
onto its image) is written as

Cr
emb(S,Rd+1).

The image of an embedding of the sphere is a d-Cr-submanifold of Rd+1. Given 
φ ∈ Cr

emb(S, Rd+1), we denote by Qφ the bounded set whose boundary is Γφ := φ(S).
Throughout, we fix a finite atlas {(ϕi, Ui)}i∈I of S. Let p ∈ Γφ and denote by (ϕ, U)

a chart of S for which p ∈ φ(U). The tangent vectors

tj = tj(p) = D(φ ◦ ϕ−1)(ϕ ◦ φ−1(p)) ej , j = 1, . . . , d, (2.1)

define a basis for the tangent space TpΓφ, where {e1, . . . , ed} denotes the canonical basis 
of Rd. In addition,

Dti(p) tj(p) = d

dr

∣∣∣∣
r=0

[
tj ◦ ϕ ◦ φ−1(rei + ϕ ◦ φ−1(p)

]
= (∂i∂j(φk ◦ ϕ−1)(ϕ ◦ φ−1(p)))dk=1.

So, we are able to deduce the following relation:

Dti(p) tj(p) = Dtj(p) ti(p). (2.2)

By using the Euclidean inner product 〈·, ·〉 and its corresponding norm ‖ · ‖, we de-
note by Nφ(p) ∈ Rd+1 the unit normal vector of Γφ at p which is inward-pointing in 
Qφ. Since Nφ(p) has unit length, the derivative DNφ(p) maps the tangent space TpΓφ

into itself. This follows by differentiating 〈Nφ, Nφ〉 = 1 along u ∈ TpΓφ at p, so that 
〈DNφ(p) u, Nφ(p)〉 = 0.

The shape operator of Γφ at p is the linear map Lφ(p) : TpΓφ → TpΓφ defined by

Lφ(p)u = −DNφ(p)u.

The first fundamental form of Γφ (or of φ) at p is the inner product restricted to the 
tangent space, i.e.
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Iφ(p)(u, v) = 〈u, v〉, u, v ∈ TpΓφ

and the second fundamental form of Γφ at p is the bilinear map

IIφ(p)(u, v) = 〈Lφ(p)u, v〉, u, v ∈ TpΓφ.

By differentiating 〈Nφ, tj〉 = 0 along ti at p one gets the matrix representation of the 
second fundamental form in the basis {tj}dj=1:

IIφ(p)(ti, tj) = 〈Dti(p) tj(p), Nφ(p)〉. (2.3)

From (2.2) the symmetry of IIφ(p) follows, i.e. IIφ(p)(u, v) = IIφ(p)(v, u), and the shape 
operator Lφ(p) is therefore self-adjoint.

Recall that a convex body is a convex, compact with non-empty interior subset 
of Rd+1. We call it Cr-smooth if its boundary is the image of an embedding in 
Cr

emb(S, Rd+1).
The set Qφ is a smooth convex body iff IIφ(p)(u, u) ≥ 0 for every p ∈ Γφ and 

u ∈ TpΓφ. The corresponding class of convex embeddings is denoted by

X r ⊂ Cr
emb(S,Rd+1).

We denote the subset of the embeddings of the sphere corresponding to boundaries 
of bodies satisfying IIφ(p)(u, u) > 0 for every p ∈ Γφ and u ∈ TpΓφ, by

Br ⊂ X r.

Notice that these are strictly convex bodies.
These spaces of embeddings are identified with the corresponding spaces of bodies in 

Rd+1.
We will often drop the subscript φ to simplify notations.

2.2. Cr-topology

Recall the Whitney Cr topology for r ∈ N given by the norm

‖φ‖Cr = max
0≤j≤r

max
i∈I

max
y∈ϕi(Ui)

‖Dj(φ ◦ ϕ−1
i )(y)‖

for any φ ∈ Cr(S, Rd+1). This makes Cr(S, Rd+1) a Baire space. The union of the Cr-
open sets of C∞(S, Rd+1) for r ∈ N form a basis for the Whitney C∞-topology, making 
this also a Baire space.

Furthermore, Br is Cr-open in Cr(S, Rd+1) and also a Baire space for any r ∈ N∪{∞}.
Clearly, Br is Cr open and dense in X r.
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2.3. Perturbing the body

We consider here perturbations of convex bodies along the normal at a boundary 
point. We also relate the respective second fundamental forms.

Lemma 2.1. Let φ ∈ Br, r ∈ {2, 3, . . . , ∞}, p0 ∈ Γ := φ(S), s0 = φ−1(p0) and ψ : S → R

be Cr such that ψ(s0) = 0 and Dψ(s0) = 0. If ‖ψ‖Cr is sufficiently small, then

(1) φ̃ := φ + ψ ·N(p0) ∈ Br,
(2) ‖φ̃− φ‖C� ≤ ‖ψ‖C� for every 2 ≤ � ≤ r,
(3) IIφ̃(p0) = IIφ(p0) + D2(ψ ◦ φ−1)(p0).

Proof. Denote by Ñ the unit normal vector field of Γ̃ where Γ̃ := φ̃(S), and {t̃j(p)}dj=1
the basis of TpΓ̃, p ∈ Γ̃, as in (2.1) now for φ̃. Clearly, p0 = φ̃◦φ−1(p0) ∈ Γ̃, t̃j(p0) = tj(p0)
and Ñ(p0) = N(p0). Hence,

D(t̃j − tj)(p0) ti(p0) = D2(ψ ◦ ϕ−1)(ϕ ◦ φ−1(p0)) (ei, ej)N(p0)

= D2(ψ ◦ φ−1)(p0) (ti, tj)N(p0).

The last equality comes from the computation of D2(ψ ◦ φ−1 ◦ φ ◦ ϕ−1)(ϕ ◦ φ−1(p0))
taking into account that Dψ(s0) = 0.

Finally, by (2.3) we get

IIφ̃(p0)(ti, tj) − IIφ(p0)(ti, tj) = 〈D(t̃i − ti)(p0) tj(p0), N(p0)〉
= D2(ψ ◦ φ−1)(p0) (ti, tj).

For a small ‖ψ‖Cr this implies that φ̃ ∈ Br. �
2.4. The billiard map

Let φ ∈ Br. A convex body Qφ whose boundary Γφ is the image of φ ∈ Br is called a 
billiard domain. The corresponding billiard is the flow on the unit tangent bundle of Qφ

generated by the motion of a free point-particle inside the body with specular reflection 
at Γφ, i.e. the angle of reflection equals the angle of incidence. The billiard map fφ is the 
first return map on Mφ, the set of unit vectors attached to Γφ and pointing inside Qφ. 
More precisely, fφ is a Cr−1-diffeomorphism (it has no singularities because the second 
fundamental form of ∂Qφ is positive definite, see [36]) on the 2d-dimensional manifold

Mφ =
{
(p, v) ∈ Γφ ×Rd+1 : ‖v‖ = 1, 〈v,N(p)〉 ≥ 0

}
.

We will frequently refer to the dynamics of the billiard map fφ on Mφ (or simply on 
φ) as the dynamics of φ. In the following we omit the dependency of Γφ, Mφ and fφ on 
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φ. We also define the projection π1 : M → Γ by (p, v) �→ p. The orbit of a point x ∈ M

under f will be denoted by O(x).
The free flight time τ : M → R between consecutive collisions on Γ is defined as

τ(p, v) =
{

0, v ⊥ N(p)
min{t > 0: p + tv ∈ Γ}, otherwise.

Let (p, v) ∈ M and (p̄, ̄v) = f(p, v). Then

{
p̄ = p + τ(p, v)v,
v̄ = Rp̄v,

where Rp̄ is the reflection in Tp̄Γ, i.e.

Rp̄v = v − 2〈v,N(p̄)〉N(p̄).

The reflection yields that the vector v̄ + v is tangent to Γ at p̄, as given by

〈v̄ + v,N(p̄)〉 = 0. (2.4)

Notice that (p, v) is a fixed point of f whenever v ⊥ N(p).

2.5. The derivative of the billiard map

We introduce a new set of coordinates on TM for which the derivative Df has a 
convenient form. These coordinates are called Jacobi coordinates, induced by the so-
called transversal Jacobi fields [50, Appendix B]. To make the exposition self-contained 
we present here all the details. In the following, we write O(ε) for the usual big-O 
notation, i.e. a quantity that is uniformly bounded in norm by const · ε as ε → 0.

Define the set of billiard directions at a point p ∈ Γ by

Vp = {u ∈ Rd+1 : ‖u‖ = 1, 〈u,N(p)〉 > 0}.

Fix now (p, v) ∈ M such that v ∈ Vp. Since the billiard domain is strictly convex, we 
have (p̄, ̄v) = f(p, v) satisfies v̄ ∈ Vp̄.

Notice that

T(p,v)M = N(p)⊥ × v⊥,

where N(p)⊥ and v⊥ denote the hyperplanes in Rd+1 that are orthogonal to N(p) and 
v, respectively.
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2.5.1. Projections
Let Pv be the orthogonal projection onto v⊥, i.e.

Pvξ = ξ − 〈ξ, v〉v, ξ ∈ Rd+1.

For a unit vector η ∈ Rd+1 which is not orthogonal to v, define also the projection along 
the direction v onto the hyperplane η⊥ by

P v
η u = u− 〈u, η〉

〈v, η〉v, u ∈ Rd+1.

It is simple to check that the adjoint of P v
η is P η

v , i.e. (P v
η )∗ = P η

v , and that

P v
η′ ◦ P v

η = P v
η′ (2.5)

where η, η′ are both unit vectors non-orthogonal to v. Notice also that

P v
η ◦ Pv|η⊥ = I. (2.6)

Recall the definition of the billiard map. The reflection Rp̄ identifies isometrically the 
hyperplanes v⊥ and v̄⊥

Lemma 2.2. Rp̄ restricted to v⊥ equals Pv̄ ◦ P v
N(p̄), it is injective and Rp̄(v⊥) = v̄⊥.

Proof. For u ∈ v⊥ we have

Pv̄ ◦ P v
N(p̄)u = P v

N(p̄)u− 〈P v
N(p̄)u, v̄〉v̄

= P v
N(p̄)u− 〈P v

N(p̄)u, v〉v̄

= u− 〈u,N(p̄)〉
〈v,N(p̄)〉v − 〈u− 〈u,N(p̄)〉

〈v,N(p̄)〉v, v〉v̄

= u− 〈u, v〉v̄ + 〈u,N(p̄)〉
〈v,N(p̄)〉 (v̄ − v)

= u− 2 〈u,N(p̄)〉
〈v,N(p̄)〉 〈v,N(p̄)〉N(p̄)

= u− 2〈u,N(p̄)〉N(p̄)

= Rp̄u. �
2.5.2. Jacobi coordinates

In neighborhoods B of (p, v) and B̄ of (p̄, ̄v) in M consider the respective changes of 
coordinates
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Ψ: B → (p + v⊥) × Vp

Ψ(q, u) = (p + Pv(q − p), u)

and

Ψ̄: B̄ → (p̄ + v̄⊥) × Vp̄

Ψ̄(q, u) = (p̄ + Pv̄(q − p̄), u).

Notice that Ψ(p, v) = (p, v) and

DΨ(p, v) = (Pv, id) : N(p)⊥ × v⊥ → v⊥ × v⊥.

Since Pv ◦ P v
η = id on v⊥,

DΨ−1(p, v) = (P v
N(p), id) : v⊥ × v⊥ → N(p)⊥ × v⊥.

For a sufficiently small neighborhood B of (p, v) in M , let

f̃ = Ψ̄ ◦ f ◦ Ψ−1 : Ψ(B) ⊂ (p + v⊥) × Vp → (p̄ + v̄⊥) × Vp̄.

Consider a curve

(pε, vε) =
(
p + εJ,

v + εJ ′

‖v + εJ ′‖

)
∈ Ψ(B),

where (J, J ′) ∈ v⊥ × v⊥ and |ε| is sufficiently small. Clearly we have

(pε, vε) = (p, v) + ε(J, J ′) + O(ε2).

Now,

Ψ−1(pε, vε) = (p, v) + εDΨ−1(p, v)(J, J ′) + O(ε2)

= (p + εu, v + εw) + O(ε2)

where u = P v
N(p)J ∈ N(p)⊥ and w = J ′ ∈ v⊥.

Moreover,

(p̄ε, v̄ε) = f ◦ Ψ−1(pε, vε)

is given by

p̄ε = p + εu + τ(p + εu, v + εw)(v + εw) + O(ε2) (2.7)

v̄ε = v + εw − 2〈v + εw,N(p̄ε)〉N(p̄ε) + O(ε2). (2.8)
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Lemma 2.3.

p̄ε = p̄ + εP v
N(p̄) (J + τ(p, v)J ′) + O(ε2).

Proof. A convenient decomposition of τ is obtained by using the fact that tangent vectors 
at (p, v) are mapped into tangent vectors at (p̄, ̄v), which are in N(p̄)⊥. That is, 〈p̄ε −
p̄, N(p̄)〉 = O(ε2). Therefore,

〈p̄ε − p,N(p̄)〉 = 〈p̄ε − p̄ + p̄− p,N(p̄)〉

= 〈p̄− p,N(p̄)〉 + O(ε2)

= τ(p, v)〈v,N(p̄)〉 + O(ε2).

On the other hand, from (2.7) one gets

〈p̄ε − p,N(p̄)〉 = 〈εu + τ(p + εu, v + εw)(v + εw), N(p̄)〉 + O(ε2).

So,

τ(p + εu, v + εw) = τ(p, v)〈v,N(p̄)〉 − ε〈u,N(p̄)〉
〈v + εw,N(p̄)〉 + O(ε2)

=
τ(p, v) − ε 〈u,N(p̄)〉

〈v,N(p̄)〉

1 + ε 〈w,N(p̄)〉
〈v,N(p̄)〉

+ O(ε2)

= τ(p, v) − ε

(
τ(p, v) 〈w,N(p̄)〉

〈v,N(p̄)〉 + 〈u,N(p̄)〉
〈v,N(p̄)〉

)
+ O(ε2).

Finally, (2.7) can be written as

p̄ε = p + τ(p, v)v + ε

(
u− 〈u,N(p̄)〉

〈v,N(p̄)〉v + τ(p, v)
(
w − 〈w,N(p̄)〉

〈v,N(p̄)〉 v
))

+ O(ε2)

= p̄ + ε
(
P v
N(p̄)u + τ(p, v)P v

N(p̄)w
)

+ O(ε2).

The claim follows from the definitions of u and w, as well as (2.5). �
Lemma 2.4.

v̄ε = v̄ + ε [KRp̄J + (I + τ(p, v)K)Rp̄J
′] + O(ε2)

where K : v̄⊥ → v̄⊥ is the self-adjoint linear map

K = −2〈v̄, N(p̄)〉(P v̄
N(p̄))∗L(p̄)P v̄

N(p̄).
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Proof. We first expand N(p̄ε) in powers of ε:

N(p̄ε) = N(p̄) + εDN(p̄)P v
N(p̄)(J + τ(p, v)J ′) + O(ε2).

Substituting in (2.8) we obtain,

v̄ε = v̄ + ε
[
K̂J +

(
Rp̄ + τ(p, v)K̂

)
J ′
]

+ O(ε2),

where K̂ : v⊥ → v⊥ is the linear map

K̂(ζ) = 2〈v, L(p̄)P v
N(p̄)ζ〉N(p̄) + 2〈v,N(p̄)〉L(p̄)P v

N(p̄)ζ

and L(p̄) = −DN(p̄).
By the fact that L(p̄)P v

N(p̄) maps tangent vectors to tangent vectors, we have

〈v, L(p̄)P v
N(p̄)ζ〉N(p̄) = 〈v̄, L(p̄)P v

N(p̄)ζ〉N(p̄)

= 〈v̄, N(p̄)〉
〈v̄, L(p̄)P v

N(p̄)ζ〉
〈v̄, N(p̄)〉 N(p̄)

= 〈v̄, N(p̄)〉
(
L(p̄)P v

N(p̄)ζ − P
N(p̄)
v̄ L(p̄)P v

N(p̄)ζ
)
.

Using (2.4), (2.6) and Lemma 2.2,

K̂ = −2〈v̄, N(p̄)〉(P v̄
N(p̄))∗L(p̄)P v

N(p̄)

= −2〈v̄, N(p̄)〉(P v̄
N(p̄))∗L(p̄)P v̄

N(p̄)Rp̄

= KRp̄. �
Denoting (p̃ε, ̃vε) = f̃(pε, vε), by (2.5) and Lemma 2.2 we conclude that

p̃ε = p̄ + εPv̄ ◦ P v
N(p̄) (J + τ(p, v)J ′) + O(ε2) (2.9)

= p̄ + ε (Rp̄J + τ(p, v)Rp̄J
′) + O(ε2), (2.10)

ṽε = v̄ + ε [KRp̄J + (I + τ(p, v)K)Rp̄J
′] + O(ε2). (2.11)

2.5.3. Derivative of the billiard map
Recall that

Df(p, v) = DΨ̄−1(p̄, v̄)Df̃(p, v)DΨ(p, v).

From the above results we only need to compute the derivative of f̃ . Given x = (p, v) ∈ M

let K(x) : v⊥ → v⊥ be the self-adjoint linear map

K(x)w = −2〈v,N(p)〉(P v
N(p))∗L(p)P v

N(p)w, w ∈ v⊥. (2.12)
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Lemma 2.5. Df̃(x) : v⊥ × v⊥ → v̄⊥ × v̄⊥ is given by

Df̃(x) (J, J ′) =
[

I 0
K(x̄) I

] [
Rp̄ 0
0 Rp̄

] [
I τ(x)I
0 I

] [
J
J ′

]
.

Proof. It follows from (2.9) that

Df̃(p, v)(J, J ′) = d

dε
f̃(pε, vε)|ε=0

= (Rp̄J + τ(p, v)Rp̄J
′,KRp̄J + (I + τ(p, v)K)Rp̄J

′). �
Remark 2.6. Denote by Ω the canonical symplectic form on R2d+2. Recall that M ⊂
R2d+2. It follows from Lemma 2.5, that the billiard map f is a symplectomorphism with 
respect to the symplectic form

ω = Ω|M .

2.6. Generic properties concerning periodic orbits

Given any billiard φ ∈ B2, we call a point p ∈ Mφ periodic if its period m is ≥ 2. All 
the points at the boundary of Mφ are the only fixed points, and are not periodic points 
according to our definition.

A periodic point p is called hyperbolic if the eigenvalues of Dfm
φ (p) are all outside 

the unit circle. It is q-elliptic (or simply elliptic) if Dfm
φ (p) has exactly 2q non-real 

eigenvalues with modulus 1 and 1 ≤ q ≤ d. In case q = d it is called totally elliptic. 
When there are eigenvalues ±1 it is called degenerate. Finally, if all eigenvalues are ±1
it is called parabolic.

The number of periodic points is given by the following result.

Theorem 2.7 ([23,24,31]). If φ ∈ B∞, the number of periodic orbits is infinite.

Concerning generic billiards, more can be said about their periodic orbits.

Theorem 2.8 (Petkov, Stojanov). For any r ∈ N ∪ {∞}, there is a Cr-residual set R ⊂
Cr

emb(S, Rd+1) such that the billiard map on φ ∈ R satisfies the following conditions:

(1) every periodic orbit passes only once through each of its reflection points, and any 
two different periodic orbits have no common reflection point [48].

(2) the spectrum of the derivative at any periodic point does not contain roots of 
unity [42].

(3) the number of periodic points with fixed finite period is finite [41,43].
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3. Proof of Theorem 1.1

We start by showing the result for the subset of smooth convex bodies that belong to 
B∞. The set

{φ ∈ B∞ : φ has a nontrivial hyperbolic basic set}

is C2-open by the strong structural stability of hyperbolic sets (see e.g. [33, Theorem 
18.2.1]). It remains to show that it is also C2-dense.

Given φ ∈ B∞, we denote by Perm(φ) the set of periodic points of the billiard map 
fφ with period ≥ m, by E(φ) the subset of q-elliptic points, 1 ≤ q ≤ d, and by H(φ) the 
hyperbolic points.

Define the integer

md := 4
( 2d+3

4

)
and the set of billiards with a q-elliptic point with period ≥ md,

E := {φ ∈ B∞ : Permd
(φ) ∩ E(φ) �= ∅}.

The restriction to large periods comes from the conditions of Theorem 4.2, needed to 
prove Theorem 3.1 below.

The following result implies that any billiard in E is C∞-approximated by another 
one with a horseshoe, an example of a nontrivial hyperbolic basic set. The proof is in 
section 5.

Theorem 3.1. There is a C∞-residual set R ⊂ B∞ such that any φ ∈ R ∩ E has a 
horseshoe.

Consider now the set of billiards for which all its periodic points with large enough 
period are hyperbolic,

H := {φ ∈ B∞ : Permd
(φ) ⊂ H(φ)}

and its interior in the C2-topology,

F2 = intC2 H.

We show next that a C∞-generic billiard that is also in F2 has a nontrivial hyperbolic 
basic set. This is proved in section 7. The reason for the restriction to the C2 topology is 
due to the use of our version for billiards in bodies of the Franks’ Lemma in Theorem 6.1.

Theorem 3.2. There is a C∞-residual set R ⊂ B∞ such that the closure of Permd
(φ)

contains a nontrivial hyperbolic basic set for every φ ∈ R ∩ F2.
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The remaining case, i.e. φ at the C2-boundary of H, is reduced by a C2 perturbation 
to the case inside E . Notice that E ∪ H is C∞-residual (see Theorem 2.8). Thus, the 
above theorems imply that the set of billiards in B∞ with a nontrivial hyperbolic basic 
set is C2-dense. This completes the proof of Theorem 1.1 restricting to B∞.

To deal with billiards in X∞, i.e. on smooth convex bodies, one only needs to notice 
that B∞ is C2 open and dense in X∞.

4. Perturbing the k-jets: Klingenberg-Takens theorem for billiards

Let U be a neighborhood of 0 ∈ Rm and f, g : U → Rm be two smooth maps fixing 
the origin, i.e. f(0) = g(0) = 0. Given k ∈ N, we say that f and g are k-equivalent if 
they have the same Taylor polynomial of degree k at 0. The equivalence class of f under 
this equivalence relation is the k-jet of f at 0 which we denote by Jk

0 f or simply Jkf . 
We denote by J k

s (n) the set of k-jets Jkf of symplectomorphisms f fixing the origin of 
R2n with the canonical symplectic structure. Notice that J k

s (n) is a Lie group with the 
group operation

(Jkf) · (Jkg) := Jk(f ◦ g).

A subset Σ ⊂ J k
s (n) is called invariant if

σ · Σ · σ−1 = Σ, ∀σ ∈ J k
s (n).

Let x ∈ Mφ be a periodic point of period m ∈ N of fφ. Using Darboux coordinates 
about x, we may assume that the k-jet of fm

φ at x, which we denote by Jk
xf

m
φ , belongs 

to J k
s (d). Clearly, if Σ is invariant, then the property Jk

xf
m
φ ∈ Σ is independent of the 

coordinate system.

Theorem 4.1. Let φ ∈ Br, r ∈ {2, 3, . . . , ∞}, and Σ be an open, dense and invariant 
subset of J k

s (d) with k ∈ N. If x ∈ Mφ is a periodic point of fφ with period m ≥ 4
(2d+k
k+1
)

whose periodic orbit O(x) passes only once through each of its reflection points, then 
there is a smooth u : S → Rd+1 with C∞-norm arbitrary small such that

(1) φu := φ + u ∈ Br,
(2) O(x) is a periodic orbit of fφu

,
(3) Jk

xf
m
φu

∈ Σ.

In the spirit of a theorem by Klingenberg and Takens [35], we then show the following 
version for multidimensional billiards.

Theorem 4.2. For every open, dense and invariant Σ ⊂ J k
s (d), k ∈ N, there is a C∞-

residual set R = R(Σ) ⊂ B∞ such that for every φ ∈ R and any periodic point x of fφ
of period m ≥ 4

(2d+k
)

we have Jk
xf

m
φ ∈ Σ.
k+1
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We prove Theorems 4.1 and 4.2 at the end of this section.

4.1. Perturbing the k-jet of the billiard map

Let φ ∈ Br, r ∈ {2, 3, . . . , ∞}. Consider an orbit segment γ = {x0, x1, x2} ⊂ Mφ of 
fφ where π1(γ) consists of exactly three points in Γφ. On p1 = π1(x1) we perform a 
perturbation

φε = (id +εuNφ) ◦ φ (4.1)

where u : Rd+1 → R is a compactly supported C∞ function with support contained in a 
neighborhood of p1 not intersecting {p0, p2}, u(p1) = 0 and ∇u(p1) = 0.

Lemma 4.3. If |ε| is sufficiently small, then φε ∈ Br. Moreover,

Nφε
(p + εu(p)Nφ(p)) = Nφ(p) − εPNφ(p)(∇u(p)) + O(ε2).

Proof. That φε ∈ Br for |ε| small follows the same lines of the proof of Lemma 2.1. 
Given p ∈ Γφ, let pε = p + εu(p)N(p) where N = Nφ. Notice that pε ∈ Γφε

. Denote by 
{tεj(pε)} the basis of Tpε

Γφε
as defined in (2.1). Notice that tj(p) = t0j(p) and

tεj(pε) = tj(p) + ε(N(p)∇u(p) + u(p)DN(p))tj(p).

Since 〈Nφε
(pε), Nφε

(pε)〉 = 1, we conclude that w(p) := d
dε

∣∣
ε=0 Nφε

(pε) ∈ TpΓ and 
Nφε

(pε) = Nφ(p) + εw(p) + O(ε2). Now we determine w. Taking into account that 
〈Nφε

(pε), tεj(pε)〉 = 0 we get

0 = d

dε

∣∣∣∣
ε=0

〈Nφε
(pε), tεj(pε)〉

= 〈w(p), tj(p)〉 + 〈N(p), (N(p)∇u(p) + u(p)DN(p))tj(p)〉

= 〈w(p), tj(p)〉 + 〈∇u(p), tj(p)〉 + u(p)〈N(p), DN(p)tj(p)〉

= 〈w(p), tj(p)〉 + 〈∇u(p), tj(p)〉

where the last term vanishes because DN(p)tj(p) ∈ TpΓ. Hence,

〈w(p), v〉 = 〈−∇u(p), v〉, ∀ v ∈ TpΓ.

This implies that

w(p) = −∇u(p) + 〈∇u(p), N(p)〉N(p) = −PN(p)(∇u(p)). �
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Denote by Bδ(x0) ⊂ Mφ an open ball around x0 of radius δ > 0. There are 0 < δ0 < δ1
such that for every |ε| sufficiently small, the map Fε : Bδ0(x0) → Bδ1(x0) defined by

Fε(x) = f−2
φ ◦ f2

φε
(x), (4.2)

is a diffeomorphism onto its image. Notice that F0 = id and Fε(x0) = x0. Let V =
fφ(Bδ0(x0)) ⊂ Mφ.

Proposition 4.4. Fε = id +εf∗
φχ +O(ε2) where χ : V → TMφ is the vector field χ(p, v) =

(χ1(p, v), χ2(p, v)) given by

χ1(p, v) = − 2u(p)
〈v,Nφ(p)〉PNφ(p)v,

χ2(p, v) = 2u(p)PNφ(p)
v L(p)PNφ(p)v − 2〈v,Nφ(p)〉PNφ(p)

v PNφ(p)∇u(p).

Proof. Given (p, v) ∈ V let v̄ be the reflection of v about the hyperplane perpendicular to 
Nφ(p) and let �(p, ̄v) be the line passing through p in the direction of v̄. There is a unique 
p̄ ∈ Γφε

which is the first, i.e., closest to p, intersection point of Γφε
with the line �(p, ̄v). 

Notice that p̄ may be equal to p which will certainly be the case whenever p ∈ Γφ∩Γφε
. We 

define the map gε : V → Mφε
as (p, v) �→ (p̄, −v̄). Notice that (p̄, −v̄) ∈ Mφε

. Indeed, by 
continuity we have 〈v̄, Nφε

(p̄)〉 < 0, since Nφε
(p̄) is ε-close to Nφ(p) and 〈v̄, Nφ(p)〉 < 0. 

Moreover, gε is a local diffeomorphism at x1. Similarly, let Vε = gε(V ) ⊂ Mφε
and given 

(p, v) ∈ Vε let p̄ be the first intersection point of Γφ with the line �(p, ̄v) where now v̄ is 
the reflection of v about the hyperplane perpendicular to Nφε

(p). The map hε : Vε → Mφ

is defined by (p, v) �→ (p̄, −v̄). As before, (p̄, −v̄) ∈ Mφ and hε is a local diffeomorphism 
at x1. Finally, define Gε : V → Mφ by Gε := hε◦gε. It is not difficult to see that G0 = id, 
Gε(x1) = x1 and

Fε = f−1
φ ◦Gε ◦ fφ.

Now we expand Gε in leading order of ε. Starting with gε, let (p̄ε, −v̄) = gε(p, v). Clearly,

p̄ε = p + τεv̄ and v̄ = RNφ(p)v

where τε = 〈p̄ε − p, ̄v〉. Since p̄ε → p as ε → 0, we have

τε = ετ̄ + O(ε2)

for some function τ̄ = τ̄(p, ̄v) that we now determine. As p̄ε ∈ Γφε
, there is sε ∈ S such 

that sε → φ−1(p) as ε → 0 and

p̄ε = φ(sε) + εu ◦ φ(sε)Nφ ◦ φ(sε).
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Therefore,

φ(sε) − p = ε(τ̄ v̄ − u(p)Nφ(p)) + O(ε2),

which implies that τ̄ v̄ − u(p)Nφ(p) ∈ TpΓφ. Equivalently,

〈τ̄ v̄ − u(p)Nφ(p), Nφ(p)〉 = 0,

which gives

τ̄ = u(p)
〈v̄, Nφ(p)〉 .

Putting all together,

p̄ε = p + ε
u(p)

〈v̄, Nφ(p)〉 v̄ + O(ε2)

= p− ε
u(p)

〈v,Nφ(p)〉RNφ(p)v + O(ε2).

Next, we expand (p̃ε, ̃vε) = hε(p̄ε, −v̄) in leading order of ε. First, notice that defining 
w = w(p, v) := τ̄ v̄ − u(p)Nφ(p) we have

Nφε
(p̄ε) = Nφε

(p + εu(p)Nφ(p) + εw + O(ε2))

= Nφε
(p + εu(p)Nφ(p)) + εDNφ(p)w + O(ε2)

= Nφ(p) + ε(DNφ(p)w − PNφ(p)∇u(p)) + O(ε2),

by Lemma 4.3. Let

Θ(p, v) := DNφ(p)w − PNφ(p)∇u(p).

Notice that Θ(p, v) ∈ TpΓ. Expanding ṽε = RNφε (p̄ε)v̄ in powers of ε we get

ṽε = v̄ − 2〈v̄, Nφε
(p̄ε)〉Nφε

(p̄ε)

= RNφ(p)v̄ − 2ε(〈v̄,Θ(p, v)〉Nφ(p) + 〈v̄, Nφ(p)〉Θ(p, v)) + O(ε2).

Taking into account that v̄ = RNφ(p)v and

〈v̄,Θ(p, v)〉Nφ(p) = 〈v,Nφ(p)〉(Θ(p, v) − P
Nφ(p)
v Θ(p, v)),

we get

ṽε = v + 2ε〈v,Nφ(p)〉PNφ(p)
v Θ(p, v) + O(ε2).
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Now, by a direct computation we have

w(p, v) = − u(p)
〈v,Nφ(p)〉PNφ(p)v,

and

P
Nφ(p)
v Θ(p, v) = −P

Nφ(p)
v PNφ(p)∇u(p) + u(p)

〈v,Nφ(p)〉P
Nφ(p)
v L(p)PNφ(p)v.

Putting all together,

ṽε = v + 2ε
(
u(p)PNφ(p)

v L(p)PNφ(p)v − 〈v,Nφ(p)〉PNφ(p)
v ∇u(p)

)
+ O(ε2).

Finally, we expand p̃ε in leading order of ε. First, notice that 〈p̃ε − p̄ε, ̃vε〉 = τ̃ ε + O(ε2)
where τ̃ = τ̃(p, v) is a function to be determined. Hence,

p̃ε = p̄ε + ετ̃v + O(ε2)

= φ(sε) + εu ◦ φ(sε)Nφ ◦ φ(sε) + ετ̃v + O(ε2)

= φ(sε) + ε(u(p)Nφ(p) + τ̃ v) + O(ε2)

= p + ε(u(p)Nφ(p) + τ̃ v + w)ε + O(ε2).

Since p̃ε ∈ Γ and converges to p as ε → 0, we conclude that u(p)Nφ(p) + τ̃ v + w ∈ TpΓ, 
thus

τ̃ = − u(p)
〈v,Nφ(p)〉 .

Therefore,

p̃ε = p̄ε − ε
u(p)

〈v,Nφ(p)〉v + O(ε2)

= p− ε
u(p)

〈v,Nφ(p)〉 (v + RNφ(p)v) + O(ε2)

= p− ε
2u(p)

〈v,Nφ(p)〉PNφ(p)v + O(ε2). �
Proposition 4.5.

d

dε

∣∣∣∣
ε=0

Fε = XH

where XH is the Hamiltonian vector field of the Hamiltonian
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H = h ◦ fφ, h(p, v) = 2u(p)〈v,Nφ(p)〉 (4.3)

with respect to the symplectic form ω.

Proof. Let χ be the vector field of Proposition 4.4. Given (η, γ) ∈ T(p,v)Mφ we find that

ω(χ(p, v), (η, γ)) = −2u(p)
〈PNφ(p)v, γ〉
〈v,Nφ(p)〉 + 2〈Z, η〉

where

Z := u(p)PNφ(p)
v DNφ(p)PNφ(p)v + 〈v,Nφ(p)〉PNφ(p)

v PNφ(p)∇u(p).

Taking into account that η ∈ TpΓ we get

〈Z, η〉 = u(p)〈DNφ(p)PNφ(p)v, η〉 + 〈v,Nφ(p)〉〈PNφ(p)∇u(p), η〉
= u(p)〈DNφ(p)η, PNφ(p)v〉 + 〈v,Nφ(p)〉〈∇u(p), η〉
= u(p)〈DNφ(p)η, v〉 + 〈v,Nφ(p)〉〈∇u(p), η〉.

Moreover, since γ ∈ v⊥, we have

〈PNφ(p)v, γ〉 = −〈v,Nφ(p)〉〈γ,Nφ(p)〉.

Now, taking the derivative of h(p, v) = 2u(p)〈v, Nφ(p)〉 we see that

dh(p, v)(η, γ) = 2u(p) (〈v,DNφ(p)η〉 + 〈γ,Nφ(p)〉)
+ 〈v,Nφ(p)〉〈∇u(p), η〉.

Thus, ω(χ, ·) = dh, which shows that χ is Hamiltonian with respect to ω. By Proposi-
tion 4.4, X := d

dε

∣∣
ε=0 Fε = f∗

φχ, hence X is the Hamiltonian vector field of h ◦ fφ with 
respect to ω. �

Given k ∈ N, denote by Rk+1[y, z] the vector space of homogeneous polynomials of 
degree k + 1 with real coefficients in the variables y = (y1, . . . , yd) and z = (z1, . . . , zd). 
Let

� = �(d, k) := dimRk+1[y, z].

It is clear that

�(d, k) =
(

2d + k

k + 1

)
. (4.4)

For G ∈ Rk+1[y, z] given by
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G(y, z) = yk+1
1 , (4.5)

we define

Gk := {(A1, . . . , A�) ∈ Sp(R2d)� : span{G ◦Ai}�i=1 = Rk+1[y, z]},

where Sp(R2d) stands for the symplectic linear group on R2d.

Proposition 4.6 ([17]). For each k ∈ N, the subset Gk is open and dense in Sp(R2d)�.

Let {x0, x1, . . . , xn} ⊂ Mφ be an orbit segment of fφ with n ≥ 2. Let (Vi, ψi) be a 
Darboux chart around xi = (pi, vi), where ψi : Vi → R2d is such that ψi(xi) = 0. On Vi

we have the embedding of Γφ in Mφ defined by ι : π1(Vi) → Mφ, p �→ (p, vi). As ι(π1(Vi))
is Lagrangian, we may assume that the local coordinates (y, z) = (y1, . . . , yd, z1, . . . , zd)
given by the Darboux chart (Vi, ψi) satisfy

ι(π1(Vi)) ∩ Vi = {z1 = 0, . . . , zd = 0}. (4.6)

Definition 4.7. We say that fφ is k-general along {x0, x1, . . . , xn} if there exist positive 
integers 0 < n1 < n2 < · · · < n� < n such that (A1, . . . , A�) ∈ Gk where Ai = D(ψni

◦
fni

φ ◦ ψ−1
0 )(0).

In the following we suppose that the orbit segment {x0, x1, . . . , xn} passes only once 
through each of its reflection points, i.e., π1(xi) �= π1(xj) whenever i �= j. As in (4.1), 
for each i ∈ {1, . . . , n − 1}, we perturb the body Γφ in a neighborhood of pi,

φε = (id+(ε1u1 + . . . + εn−1un−1)Nφ) ◦ φ,

where ε = (ε1, . . . , εn−1) ∈ Rn−1 and ui : Rd+1 → R is a C∞ function with compact 
support Ki containing a neighborhood of pi such that Ki ∩ Kj = ∅ whenever i �= j. 
According to (4.6), we also choose ui so that

Jk+1
0 (ui ◦ π1 ◦ ψ−1

i )(y, z) = G(y, z),

where G is defined in (4.5). This choice of ui can always be achieved using appropriate 
C∞ bump functions.

By Lemma 4.3, φε ∈ Br for every ε ∈ Bδ(0) := {ε ∈ Rn−1 : ‖ε‖ < δ}. In a neighbor-
hood V ⊂ V0 of x0 we define the map,

F (n)
ε = f−n

φ ◦ fn
φε
.

Notice that F (2)
ε = Fε1 as defined in (4.2). As in the case of n = 2, the map F (n)

ε is a 
local diffeomorphism at x0. Next, we define the map S : Bδ(0) → ker(πk) ⊂ J k

s (d) by
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S(ε) = Jk
0 (ψ0 ◦ F (n)

ε ◦ ψ−1
0 ),

where πk : J k
s (d) → J k−1

s (d) is the canonical projection.
Notice that S(0) = id ∈ ker(πk).

Theorem 4.8. If fφ is k-general along {x0, x1, . . . , xn}, then S is a submersion at 0.

Proof. Let εi = εiei ∈ Rn−1 where ei is the vector with value one in the i − th entry 
and zero elsewhere. Clearly,

F (n)
εi

= f−i+1 ◦ Fεi ◦ f i−1

where Fεi is the map defined in (4.2). By Proposition 4.5, Fεi = id+εiXH̃i
+O(ε2

i ) where 
H̃i is the Hamiltonian H̃i = hi◦fφ with hi given in (4.3), i.e., hi(p, v) = 2ui(p)〈v, Nφ(p)〉. 
Therefore,

∂S
∂εi

(0) = Jk
0Xi,

where Xi is the Hamiltonian vector field of the Hamiltonian Hi = hi ◦ f i
φ ◦ψ−1

0 with the 
respect to the standard symplectic form dy ∧ dz in R2d. Notice that

Jk+1
0 Hi = Jk+1

0 (hi ◦ f i
φ ◦ ψ−1

0 )

= Jk+1
0 (hi ◦ ψ−1

i ) ◦ (ψi ◦ f i
φ ◦ ψ−1

0 )

= 2〈vi, Nφ(pi)〉G ◦D(ψi ◦ f i
φ ◦ ψ−1

0 )(0)

where G is the polynomial given in (4.5). Since fφ is k-general along {x0, x1, . . . , xn}, 
there are positive integers 0 < n1 < n2 < · · · < n� < n such that {Jk+1

0 Hnj
}�j=1

spans the vector space Rk+1[y, z]. Thus, {Jk
0 Xnj

}�j=0 spans the tangent space of the Lie 
subgroup ker(πk) at id, which proves that S is a submersion at 0. �
4.2. Proof of Theorem 4.1

Recall � from (4.4). Let k ∈ N and Σ be an open, dense and invariant subset of 
J k
s (d) and x ∈ Mφ be a periodic point of fφ with period m ≥ 4� whose periodic orbit 

O(x) passes only once through each of its reflection points. Splitting the orbit O(x) in 
blocks of length 4, we can use Lemma 6.4 and Lemma 6.6 together with Lemma 2.1 to 
perturb the derivatives {Df4i

φ (x)}�i=1 by an arbitrary C∞- small smooth perturbation 
φ0 = φ + u0 so that O(x) is still a periodic orbit of fφ0 and fφ0 is j-general along O(x)
for every j = 1, . . . , k. Hence, by applying k times Theorem 4.8, there is an arbitrary 
C∞- small smooth perturbation φ1 = φ0 + u1 such that Jk

x (f−m
φ0

◦ fm
φ1

) ∈ f−m
φ0

Σ. This 
shows that Jk

xf
m
φ ∈ Σ. �
1
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4.3. Proof of Theorem 4.2

Recall � from (4.4). Let Σ be an open, dense and invariant subset of J k
s (d), k ∈ N. 

Given m ≥ 4�, denote by Ym the set of φ ∈ B∞ such that fφ has only a finite number of 
periodic orbits of period less than or equal to m, all periodic orbits are non-degenerate 
and each periodic orbit passes only once through each of its reflection points, and any 
two different periodic orbits have no common reflection point. By Theorem 2.8, Ym is 
a C∞-residual subset of B∞. Now, denote by Rm the subset of Ym such that for every 
φ ∈ Rm and every periodic point x of fφ of period π ≤ m, the k-jet of fπ

φ at x belongs 
to Σ. Because, for each φ ∈ Rm, the billiard map fφ has only a finite number of periodic 
orbits of period less than m and Σ is open, by continuity of φ �→ fφ we conclude that 
Rm is open relative to Ym. Moreover, by Theorem 4.1, the set Rm is C∞ dense. Hence, 
Rm is a C∞-residual set. Taking the intersection, R =

⋂
m≥4� Rm we conclude that R

is also C∞-residual. �
5. Proof of Theorem 3.1

We start by presenting some tools related to elliptic orbits of symplectomorphisms 
that will be later applied to the billiard maps. We conclude with a perturbation assuring 
positive topological entropy.

5.1. Birkhoff normal form

Let q ∈ N and ω0 be the canonical symplectic form on R2q. Given a symplectomor-
phism f : R2q → R2q so that the origin is a totally elliptic fixed point, we write the 
eigenvalues of Df(0) as

e±2πia1 , . . . , e±2πiaq .

Moreover, the fixed point is called 4-elementary if

q∑
j=1

ajνj �∈ Z,

for every ν1, . . . , νq ∈ Z such that 1 ≤
∑q

j=1 |νj | ≤ 4.
One can find coordinates for which f takes a more explicit form, called the Birkhoff 

normal form (see below). We will be using the map ψ : Rq ×Rq → Cq, ψ(x, y) = x + iy.

Theorem 5.1 (Birkhoff normal form [34, Lemma 3.3.2]). Let f be a C1-symplectomorphism
on (R2q, ω0) of class C3 at the origin. If the origin is a 4-elementary totally elliptic fixed 
point, then there is a Cω-symplectomorphism h, a q × q real matrix β and a C1-map 
R : Cq → Cq such that F : Cq → Cq, F := ψ ◦ h ◦ f ◦ h−1 ◦ ψ−1, is given by
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F (z) = Φ(z)z + R(z)

with

Φ(z) =

⎡⎢⎣e
2πiϕ1(z) 0

. . .
0 e2πiϕq(z)

⎤⎥⎦
where ϕj(z) = aj +

∑q
k=1 βj,k|zk|2 and D�R(0) = 0 for � = 0, 1, 2, 3.

5.2. Contreras-Arnaud-Herman theorem

Consider the exact symplectic manifold (T q × Rq, ω) with ω = dλ and λ = r dθ by 
using the coordinates (θ, r) ∈ T q × Rq. So, ω = dr ∧ dθ. Denote by π1 : T q × Rq → T q

the canonical projection on the first q components.
A symplectomorphism f is weakly monotonous if

det(∂2π1f(θ, r)) �= 0

(when q = 1 it is usually called a twist map).
A completely integrable symplectomorphism is defined to be of the form

g(θ, r) = (θ + τ(r) mod Zq, r)

for a given τ ∈ C1(Rq, Rq) with τ(0) = 0. It is an exact symplectomorphism. In addition, 
it is weakly monotonous if det(Dτ(θ, r)) �= 0. Notice that in this case any symplecto-
morphism C1-close to g is also weakly monotonous.

The following theorem is proved in [20, Theorem 4.1] by Contreras using previous 
results of Arnaud and Herman [4].

Theorem 5.2 (Contreras). If f : T q × Rq → T q × Rq is a weakly monotonous exact 
C4-symplectomorphism without degenerate periodic orbits and C1-close to a completely 
integrable symplectomorphism, then f has a 1-elliptic periodic point near T q × {0}.

5.3. Periodic orbits of a generic billiard

We show here that generically, periodic orbits are hyperbolic or a specific kind of 
q-ellipticity holds. We make use of the version of the Klingenberg-Takens theorem for 
billiard maps given by Theorem 4.2.

Let φ ∈ Br, r ∈ {2, 3, . . . , ∞}, and x be a q-elliptic periodic point with period m. 
The map fm

φ restricted to the center manifold W c(x) in a small enough neighborhood
of x, can be written in appropriate coordinates as a Cr−1-diffeomorphism f : R2q → R2q
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preserving the canonical symplectic form ω0 and fixing the origin. If the origin is 4-
elementary, then we say that x is a 4-elementary q-elliptic periodic point of φ.

Moreover, we say that x is weakly monotonous if there is a Birkhoff normal form 
(Theorem 5.1) satisfying det(β) �= 0. Notice that this condition is invariant under con-
jugation by symplectomorphisms. In addition, observe that the 3-jet of the new map F
at the origin is solely determined by Φ.

Proposition 5.3. There is a C∞-residual set R1 ⊂ B∞ such that for any φ ∈ R1 any pe-
riodic point of period ≥ 4 

( 2d+3
4

)
is either hyperbolic or 4-elementary weakly monotonous 

q-elliptic for some 1 ≤ q ≤ d.

Proof. Let Σ be the subset of 3-jets in J 3
s (d) for which the origin is either hyperbolic or 

4-elementary weakly monotonous q-elliptic for some 1 ≤ q ≤ d. Notice that Σ is open, 
dense and invariant. So, by Theorem 4.2, there is a residual set of billiards in B∞ whose 
3-jets are in Σ. �
5.4. Reduction to 1-elliptic

We now find conditions for the existence of a 1-elliptic periodic point nearby a q-elliptic 
one.

Consider φ ∈ B2 and a 4-elementary weakly monotonous q-elliptic m-periodic point. 
We look again at fm

φ restricted to the center manifold of the period point. This defines 
a Birkhoff normal form F as in Theorem 5.1, for the coordinates z = x + iy ∈ Cq, and 
F̃ = ψ−1 ◦ F ◦ ψ for the coordinates (x, y).

Let ε > 0 and

Qε : Rq ×Rq \ {(0, 0)} → T q ×Rq
+

be a coordinate change such that Q−1
ε (θ, r) = (x, y) with

xj = √
εrj cos(2πθj) and yj = √

εrj sin(2πθj).

We then define on T q ×Rq
+ the map

Fε = Qε ◦ F̃ ◦Q−1
ε .

Let λε = Q∗
ε(r dθ) = 1

2πε (x dy−y dx) be the pull-back by Qε of the form r dθ. Recall that 
F̃ ∗(λε) −λε is exact since F̃ is a symplectomorphism on a simply connected domain. So, 
F ∗
ε (r dθ) − r dθ is exact. The same applies to any iterate FN

ε .
Consider also the map

Gε = Qε ◦ ψ−1 ◦G ◦ ψ ◦Q−1
ε ,
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where G(z) = Φ(z)z is the first term of F . It follows by a simple computation that

Gε(θ, r) = (θ + a + εβr mod Zq, r).

Any iterate of Gε is a weakly monotonous completely integrable exact symplectomor-
phism since GN

ε (θ, r) = (θ+Na +Nεβr mod Zq, r) and det(Nεβ) �= 0 for every N ∈ N.
Notice that the fixed point of F is not in the domain since Qε is not defined at 

the origin. In fact, we focus on the following strip near T q × {0} so that we can use 
Theorem 5.2. Given 0 < ρ < 1

2q , define the domain

Bρ =

⎧⎨⎩(θ, r) ∈ T q ×Rq :
q∑

j=1

(
rj −

1
2q

)2

< ρ2

⎫⎬⎭ .

Lemma 5.4 (Moser, cf. [4]). Let 0 < ρ′ < ρ and C > 0. There is ε0 > 0 such that for 
every 0 < ε < ε0 and N ∈ N verifying εN < C, we have

lim
ε→0

‖FN
ε −GN

ε ‖C1 = 0 on Bρ′ .

For sufficiently small ε recall that FN
ε is weakly monotonous because it is C1-close to 

GN
ε . Since we can extend these maps so that the conditions of Theorem 5.2 are fulfilled, 

we have thus proved the following result by using [4, Lemma 8.6].

Proposition 5.5. Let φ ∈ B5 without degenerate periodic points. Any 4-elementary weakly 
monotonous q-elliptic periodic point, 1 ≤ q ≤ d, has a 1-elliptic periodic point nearby.

5.5. Essential invariant curves with rational rotation number

Let φ ∈ B2 and x a 1-elliptic periodic point with period m. Restrict fm
φ to the two-

dimensional center manifold of x, which is normally hyperbolic. Use the Birkhoff normal 
form and the above coordinate change into T 1 × (0, δ) for some small δ > 0. We can 
extend this to an area-preserving twist diffeomorphism on the cylinder A = T 1 × [0, 1], 
that can be written in local coordinates as

ϕ : A → A,

with ϕ(θ, 0) = (θ, 0) corresponding to the periodic point x and ϕ(θ, 1) ∈ T 1 × {1}.
Recall the following criterium to find positive topological entropy in the case of area-

preserving twist maps (see also [15,47]). An essential curve is a non-contractible simple 
closed curve on A.

Theorem 5.6 (Angenent [2,3]). Let ϕ be an area-preserving twist homeomorphism on A
with rotation interval I and preserving the boundaries. If there is ρ ∈ I such that there 
are no essential invariant curves with rotation number ρ, then htop(ϕ) > 0.
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In the case ϕ is a C1+α-diffeomorphism, α > 0, a celebrated result by Katok [32, 
Corollary 4.3] states that positive topological entropy implies the existence of a hyper-
bolic periodic point with a transversal homoclinic point. The hyperbolic periodic point 
in the central manifold is also a hyperbolic periodic point for the map by [4, Lemma 
8.6]. The same holds for the transversal homoclinic point. Hence, there is a horseshoe 
for some iterate of the billiard map [33, Theorem 6.5.5].

We are therefore left with the case of existence of essential invariant curves of ϕ for any 
rotation number inside a small interval close to zero. If the rotation number is rational, 
only two cases can occur: the invariant curve either consists entirely of periodic points 
or is a heteroclinic chain, i.e. a set formed by finitely many hyperbolic periodic points 
x1, . . . , xn and heteroclinic connections between them (cf. [27,39]). In the first case, all 
periodic points must be degenerate, which is a situation not allowed generically (see 
Theorem 2.8). To deal with the second case, first we observe that a hyperbolic periodic 
point for ϕ is an hyperbolic periodic point for the billiard map. Then we use Theorem 5.7
together with parts (1) and (2) of Theorem 2.8 to obtain a convex body arbitrarily 
close to φ for which the points x1, . . . , xn are hyperbolic periodic points with transverse 
heteroclinic points. This property implies the existence of transverse homoclinic points 
for each periodic point xi, which in turn implies the existence of a horseshoe for some 
iterate of the billiard map (see [33, Section 6]). This concludes the proof of Theorem 3.1.

5.6. Transverse heteroclinic intersections

The theorem presented here is the multidimensional analog of [22, Theorem 1].
Let φ ∈ Br, r ∈ {2, 3, . . . , ∞}. Recall that π1(x) = p for every x = (p, v) ∈ Mφ

and Nφ(p) ∈ Rd+1 is the unit normal vector of Γφ at p inward-pointing, as defined in 
section 2. Given a hyperbolic periodic point x ∈ Mφ of fφ, denote by W s

φ(x) and Wu
φ (x)

the stable and the unstable manifolds of x.

Theorem 5.7. Suppose that fφ has two hyperbolic periodic points x and y and a het-
eroclinic point z ∈ W s

φ(x) ∩ Wu
φ (y) such that π1(z) /∈ π1(O(x) ∪ O(y)). There exist 

u ∈ C∞(S, R) and ε0 > 0 such that for every 0 < ε < ε0 the following holds:

(1) φε := φ + εu ·Nφ(π1(z)) ∈ Br,
(2) φε = φ except for a small neighborhood of π1(z),
(3) O(x) and O(y) are hyperbolic periodic orbits of fφε

,
(4) z ∈ W s

φε
(x) ∩Wu

φε
(y),

(5) TzW
s
φε

(x) and TzW
u
φε

(x) are transverse.

Proof. Let z = (p, v) and consider a neighborhood U ⊂ Γφ of p such that U does not 
intersect π1(O(x)), π1(O(y)) and π1(O(z) \ {z}). Recall the definition of K(x) in (2.12). 
To stress the dependence on φ we write Kφ(x). By Lemma 2.1, there exist ε0 > 0 and 
u ∈ C∞(S, R) such that for every 0 ≤ ε < ε0 the following holds:
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• supp(u) ⊂ φ−1(U)
• φε := φ + εu ·Nφ(p) ∈ Br,
• p ∈ Γφε

and TpΓφε
= TpΓφ,

• Kφε
(z) = Kφ(z) + εΩφ,

where Ωφ := −2〈v, Nφ(p)〉(P v
Nφ(p))∗P v

Nφ(p) is an invertible self-adjoint linear operator on 

v⊥. Then

fn
φε

(x) = fn
φ (x), fn

φε
(y) = fn

φ (y) and fn
φε

(z) = fn
φ (z), n ∈ Z.

Hence, x and y are hyperbolic periodic points of fφε
, and z is a heteroclinic point of 

fφε
., i.e., z ∈ W s

φε
(x) ∩Wu

φε
(y). Moreover,

• Tfφ(z)W
s
φε

(fφ(x)) = Tfφ(z)W
s
φ(fφ(x)),

• Tf−1
φ (z)W

u
φε

(f−1
φ (y)) = Tf−1

φ (z)W
u
φ (f−1

φ (y)).

By Lemma 2.5, it follows that

TzW
s
φε

(x) = TzW
s
φ(x).

Since the stable and unstable manifolds of x and y with respect to fφ are Lagrangian, 
there exist self-adjoint linear operators Aφ and Bφ on Nφ(p)⊥ such that the tangent 
spaces TzW

s
φ(x) and TzW

u
φ (y) can be written in Jacobi coordinates as follows (see [50, 

Appendix B] and references therein),

TzW
s
φ(x) =

{
(J, (P v

Nφ(p))∗AφP
v
Nφ(p)J) : J ∈ v⊥

}
,

TzW
u
φ (y) =

{
(J, (P v

Nφ(p))∗BφP
v
Nφ(p)J) : J ∈ v⊥

}
.

Then, again by Lemma 2.5,

TzW
u
φε

(y) =
[

I 0
Kφε

(z) I

] [
I 0

−Kφ(z) I

]
TzW

u
φ (y)

=
{
(J,BεJ) : J ∈ v⊥

}
with

Bε := (P v
Nφ(p))∗BφP

v
Nφ(p) + Kφε

(z) −Kφ(z)

= (P v
Nφ(p))∗BφP

v
Nφ(p) + εΩφ

= (P v
Nφ(p))∗(Bφ − 2ε〈v,Nφ(p)〉I)P v

Nφ(p).
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Now, the manifolds W s
φε

(x) and Wu
φε

(y) are transversal at z if and only if Bφ − Aφ −
2ε〈v, Nφ(p)〉I is invertible. This is equivalent to say that 2ε〈v, Nφ(p) is not an eigenvalue 
of Bφ − Aφ. If Aφ = Bφ, then just choose any 0 < ε < ε0, otherwise choose any 
0 < ε < min{ σ

2〈v,Nφ(p) , ε0} where σ is the least non-zero singular value of Bφ −Aφ. �
Remark 5.8. Our main result applied to ellipsoids in Rn+1 implies that there are con-
vex bodies with smooth boundary arbitrarily close to ellipsoids whose billiards map 
has positive topological entropy. We observe that this conclusion can be obtained in a 
straightforward manner by applying Theorem 5.7 directly to ellipsoids, similarly to what 
Donnay did for billiards in ellipses [22]. Indeed, for a billiard in a ellipsoid φ of Rn+1 with 
a unique major axis, the periodic orbit γ = {x1, x2} corresponding to the major axis of 
the ellipsoid is hyperbolic, and the periodic points x1 and x2 have heteroclinic connec-
tions, i.e. W s

φ(x1) = Wu
φ (x2) and Wu

φ (x1) = W s
φ(x2) [12, Section 6]. Using Theorem 5.7, 

we can C2-approximate the ellipsoid φ by convex bodies φε with smooth boundary such 
that x1 and x2 are hyperbolic periodic points of period 2 also for fφε

, and W s
φε

(x1) and 
Wu

φε
(x2) as well Wu

φε
(x1) and W s

φε
(x2) have transverse intersections. Hence, x1 and x2

form a heteroclinic chain with transverse heteroclinic points for the billiard map of φε, 
and so each point x1 and x2 must have a transverse homoclinic point. In particular, the 
billiard inside φε has positive topological entropy. Similar results were obtained in [21,12]
using a variational approach and Poincaré-Melnikov method.

6. Franks’ lemma for multidimensional billiards

In this section we generalize the Franks’ lemma for multidimensional billiards.
Denote by Sp(TxM) the set of linear symplectic automorphisms on TxM .

Theorem 6.1. Let r ∈ {2, 3, . . . , ∞}. There is a Cr-residual subset R ⊂ Br such that for 
every φ ∈ R, every periodic point x ∈ Mφ of fφ having period m ≥ 4 and any ε > 0 there 
is δ > 0 such that for any Π ∈ Sp(TxM) which is δ-close to Dfm

φ (x) : TxM → TxM , 
there is u ∈ C∞(S, Rd+1) which is ε-C2-close to 0 such that

(1) φu := φ + u ∈ Bk,
(2) O(x) is a periodic orbit of both fφ and fφu

,
(3) Dfm

φu
(x) = Π,

(4) the perturbation u can be chosen to vanish outside an arbitrary small neighborhood
of 4 consecutive reflection points of the periodic orbit O(x).

6.1. Some linear algebra

Let V be a d-dimensional real vector space with an inner product 〈·, ·〉. Let L(V )
denote the ring of linear operators on V and Sym(V ) denote the linear space of self-
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adjoint linear operators on V . Given X ∈ L(V ), let ΨX : Sym(V ) → L(V ) be the linear 
map

ΨX(Y ) = X∗Y − Y X, (6.1)

where X∗ is the adjoint linear operator of X. Clearly, ΨX(Y ) = 0 iff Y X ∈ Sym(V ).

Lemma 6.2. If X has all its eigenvalues distinct, then there is a subspace V ⊂ Sym(V )
of dimension d(d−1)

2 such that ΨX restricted to V is invertible.

Proof. By fixing an orthonormal basis of V , the linear operator Z := ΨX(Y ) is repre-
sented by a matrix Ẑ := X̂�Ŷ − Ŷ X̂ where X̂ and Ŷ are the matrices of X and Y in 
the basis of V , and X̂� is the transpose matrix of X̂. Using the Kronecker product ⊗
we can write

Ẑ = Φ(Ŷ ) := (X̂� ⊕ (−X̂�))vec(Ŷ ),

where A ⊕B := (I ⊗A) + (B ⊗ I) for A, B ∈ Mat(d),

A⊗B =

⎡⎣a1,1B · · · a1,nB
...

. . .
...

an,1B · · · an,nB

⎤⎦ and vec(A) =

⎡⎣A∗,1
...

A∗,n

⎤⎦ .
It is known that A ⊕ B has eigenpair (λA + λB , vA ⊗ vB) if (λA, vA) is an eigenpair of 
A and (λB, vB) is an eigenpair of B (see [30, Theorem 4.4.5]). Any eigenvalue of A ⊕B

arises in this way. Since X̂ has d distinct eigenvalues, the kernel of Φ has dimension d. 
Moreover,

Ker(Φ) = {v ⊗ v : v is a left eigenvector of X̂} ⊂ Sym(d),

where we make the identification v ⊗ v ≡ [v1v · · · vdv ] ∈ Sym(d). Therefore, 
Ker(ΨX) ⊂ Sym(V ) and dim Ker(ΨX) = d.

Now consider any subspace V ⊂ Sym(V ) such that Sym(V ) = Ker(ΨX) ⊕V . Clearly, 
ΨX restricted to V is invertible and

dimV = dim Sym(V ) − dim Ker(ΨX) = d(d− 1)
2 . �

On V × V we introduce the canonical symplectic form

Ω(w1, w2) = 〈y1, z2〉 − 〈y2, z1〉,

where wi = (yi, zi) ∈ V × V . We denote by Sp(V × V ) the group of symplectic linear 
operators on V × V .
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Let C, F ∈ Sp(V × V ) given by

C(K) =
[
I 0
K I

]
and F (τ) =

[
I τI
0 I

]
where K ∈ Sym(V ), τ ∈ R and I is the identity operator on V . The derivative of the 
billiard map in Jacobi coordinates has the form,

A(K, τ) := C(K)F (τ) =
[
I τI
K I + τK

]
∈ Sp(V × V ).

Throughout this section fix τ1, τ2, τ3, τ4 ∈ R \ {0} and define the map

B : Sym(V )4 → Sp(V × V )

by

(K1,K2,K3,K4) �→ A(K4, τ4)A(K3, τ3)A(K2, τ2)A(K1, τ1). (6.2)

We also define the following linear operators on V :

Ω(K2) := K2 + (1/τ2 + 1/τ3)I (6.3)

and

Δ(K2,K3) := (K3 + (1/τ3 + 1/τ4)I)(K2 + (1/τ2 + 1/τ3)I), (6.4)

where K2 and K3 belong to Sym(V ).

Definition 6.3. We say that (K2, K3) ∈ Sym(V )2 satisfy the F -property if Ω(K2) is 
invertible and Δ(K2, K3) has d distinct eigenvalues.

The following result is crucial in the proof of Franks’ lemma.

Lemma 6.4. If K = (K1, K2, K3, K4) ∈ Sym(V )4 such that (K2, K3) satisfy the F -
property, then DB(K) has full rank and B is a submersion at K.

Proof. Let Ω = Ω(K2) and Δ = Δ(K2, K3) as defined in (6.3) and (6.4), respectively. 
Fix a basis {Ei,j}1≤i≤j≤d for Sym(V ). By Lemma 6.2, there is a subspace V of Sym(V )
of dimension d(d−1)

2 such that ΨΔ (as defined in (6.1)) restricted to V is invertible. Let 
{Vj} denote a basis for V and define,

X(j) := DB(K)(Vj , 0, 0, 0),

Y (i,j) = DB(K)(0, Ei,j , 0, 0),



32 M. Bessa et al. / Advances in Mathematics 442 (2024) 109592
Z(i,j) = DB(K)(0, 0, Ei,j , 0),

W (i,j) = DB(K)(0, 0, 0, Ei,j).

Since

dimV + 3 × dim Sym(V ) = dim Sp(V ),

to prove that DB(K) has full rank it is sufficient to show that the tangent vectors defined 
above are linearly independent, i.e.,∑

j

αjX
(j) +

∑
i≤j

βi,jY
(i,j) +

∑
i≤j

γi,jZ
(i,j) +

∑
i≤j

θi,jW
(i,j) = 0

implies that αj = βi,j = γi,j = θi,j = 0. Taking into account that

DA(K, τ)(S) =
[

0 0
S τS

]
, S ∈ Sym(V )

we compute,

X(j) =
[

0 0
Vj τ4Vj

] [
I τ3I
K3 I + τ3K3

] [
I τ2I
K2 I + τ2K2

] [
I τ1I
K1 I + τ1K1

]
,

Y (i,j) =
[

I τ4I
K4 I + τ4K4

] [
0 0

Ei,j τ3Ei,j

] [
I τ2I
K2 I + τ2K2

] [
I τ1I
K1 I + τ1K1

]
,

Z(i,j) =
[

I τ4I
K4 I + τ4K4

] [
I τ3I
K3 I + τ3K3

] [
0 0

Ei,j τ2Ei,j

] [
I τ1I
K1 I + τ1K1

]
,

W (i,j) =
[

I τ4I
K4 I + τ4K4

] [
I τ3I
K3 I + τ3K3

] [
I τ2I
K2 I + τ2K2

] [
0 0

Ei,j τ1Ei,j

]
.

Define X̂(j) := A(K4, τ4)−1X(j)F (τ1)−1, Ŷ (i,j) := A(K4, τ4)−1Y (i,j)F (τ1)−1, etc. Using 
the fact that

A(K, τ)−1 =
[
I + τK −τI
−K I

]
and F (τ1)−1 = F (−τ1)

we find that

X̂(j) =
[
−τ4X

(j)
2,1 −τ4X

(j)
2,2

X
(j)
2,1 X

(j)
2,2

]

Ŷ (i,j) =
[ 0 0
Ŷ

(i,j)
2,1 Ei,j((τ2 + τ3)I + τ2τ3K2)

]
Ẑ(i,j) =

[
τ3Ei,j(I + τ2K1) τ2τ3Ei,j

(I + τ K )E (I + τ K ) τ (I + τ K )E

]

3 3 i,j 2 1 2 3 3 i,j



M. Bessa et al. / Advances in Mathematics 442 (2024) 109592 33
Ŵ (i,j) =
[

((τ2 + τ3)I + τ2τ3K2)Ei,j 0
(τ2K3 + (I + τ3K3)(I + τ2K2))Ei,j 0

]

where Ŷ (i,j)
2,1 , X(j)

2,1 and X(j)
2,2 can be explicitly computed, but only the expression for X(j)

2,2
will be needed,

X
(j)
2,2 = Vj(τ2I + (I + τ2K2)τ3 + τ4(I + τ3K3)(I + τ2K2) + τ2τ4K3)

= τ2τ3τ4Vj

(
Δ − 1

τ2
3
I

)
.

Hence, in the (1, 2)-th block we have the equation

−τ2τ3τ
2
4

⎛⎝∑
j

αiVj

⎞⎠(Δ − 1
τ2
3
I

)
+ τ2τ3

∑
i≤j

γi,jEi,j = 0.

Thus, we must have HΔ ∈ Sym(V ) where H =
∑

j αjVj ∈ V . Equivalently, ΨΔ(H) = 0. 
By Lemma 6.2, ΨΔ restricted to V is invertible, hence H = 0, i.e., αj = 0 for every j. 
This also implies that γi,j = 0 for every i ≤ j. Now, looking at the (2, 2)-th block we have 
the equation τ2τ3

∑
i≤j βi,jEi,jΩ = 0. Since Ω is invertible, we conclude that βi,j = 0 for 

every i ≤ j. Finally, looking at the (1, 1)-th block we get, by the same argument, that 
θi,j = 0 for every i ≤ j. This concludes the proof. �
Remark 6.5. When d = 1, we have K2 = 2k2

cos θ2 where k2 is the curvature of the billiard 
table at the collision point p2 and θ2 the reflection angle at p2, and the pair (K2, K3)
satisfies the F -property iff Ω(K2) is invertible, i.e. iff

K2 �= −
(

1
τ2

+ 1
τ3

)
.

This is precisely the non-focusing condition for the three consecutive collisions 
{p1, p2, p3} ⊂ Γ used in [49].

Lemma 6.6. The set of pairs (K2, K3) ∈ Sym(V )2 that satisfy the F -property is open 
and dense in Sym(V )2.

Proof. Clearly, the set of invertible linear operators GL(V ) is open and dense in L(V ). 
Moreover, the set S(V ) of linear operators with simple spectrum, i.e., distinct eigen-
values, is also open and dense in L(V ). Thus N := GL(V ) ∩ S(V ) is open and dense. 
Now, consider the map ϕ : (A1, A2) �→ A1A2 mapping GL(V )2 to GL(V ). By continu-
ity, ϕ−1(N ) is open. Moreover, ϕ−1(N ) is dense. Indeed, suppose by contradiction that 
ϕ−1(N ) ∩ (V1 × V2) = ∅ for some open subsets Vi of GL(V ). Given A ∈ V1, the map 
ϕA : GL(V ) → GL(V ) defined by ϕA(B) = ϕ(A, B) is a continuous surjective homomor-
phism, thus it is open by the open mapping theorem for locally compact groups (see e.g. 
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[28, Theorem 5.29]). This implies that ϕA(V2) is open in GL(V ), and since N is dense, 
we can find C ∈ N ∩ ϕA(V2) and B ∈ V2 such that AB = C, which contradicts the fact 
that ϕ−1(N ) does not intersect V1 × V2. Therefore, the set

M1 = {(K2,K3) ∈ Sym(V )2 : Δ(K2,K3) has simple spectrum}

is open and dense in Sym(V )2. By the definition of Ω(K2) is also clear that

M2 = {K2 ∈ Sym(V ) : Ω(K2) is invertible}

is also open and dense in Sym(V ). Hence, M = M1∩ (M2×Sym(V )) is open and dense 
as we wanted to show. �
6.2. Proof of Theorem 6.1

Recall K(x) : v⊥ → v⊥ from (2.12) where x = (p, v) ∈ M . We say that an orbit 
segment γ = {xi}ni=0 ⊂ int(M) of f is F -admissible if n ≥ 3, π1(γ) consists of n + 1
points in Γφ and there is 2 ≤ k < n such that (K(xk), R−1

pk+1
K(xk+1)Rpk+1) satisfy the 

F -property as linear operators in Sym(v⊥k ).

Theorem 6.7. Let r ∈ {2, 3, . . . , ∞}. Let φ ∈ Br and consider an F -admissible orbit 
segment γ = {xi}ni=0 ⊂ int(Mφ) of fφ. For every ε > 0 there is δ > 0 such that for 
any symplectic linear map A : Tx0Mφ → Txn

Mφ which is δ-close to Dfn
φ (x0), there is 

u ∈ C∞(S, Rd+1) which is ε-C2-close to 0 such that

(1) φu := φ + u ∈ Bk,
(2) γ is an orbit segment of both fφ and fφu

,
(3) Dfn

φu
(x0) = A,

(4) the perturbation u can be chosen to vanish outside a arbitrary small neighborhood of 
four consecutive points in π1(γ).

Proof. Let xi = (pi, vi) for i = 0, . . . , n. According to Lemma 2.5, the derivative of fn
φ

at x0 in Jacobi coordinates is the linear map Dfn
φ (x0) : v⊥0 × v⊥0 → v⊥n × v⊥n given by

Dfn
φ (x0) = C(xn)U(pn)F (τn) · · ·C(x1)U(p1)F (τ1) (6.5)

where

C(xi) =
[

I 0
K(xi) I

]
, U(pi) =

[
Rpi

0
0 Rpi

]
, F (τi) =

[
I τiI
0 I

]
,

and τi = ‖pi − pi−1‖ > 0 for i = 1, . . . , n. Also recall that K(xi) is a self-adjoint linear 
operator on v⊥i and Rpi

: v⊥i−1 → v⊥i is the reflection about the hyperplane N(pi)⊥ which 
maps v⊥i−1 isometrically onto v⊥i .
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We can rewrite the product (6.5) in the following way

Dfn
φ (x0) = U(pn) · · ·U(p1)A(Kn, τn) · · ·A(K1, τ1)

where

Ai := A(Ki, τi) =
[
I τiI
Ki I + τiKi

]
∈ Sp(v⊥0 × v⊥0 )

and Ki := (Rpi
· · ·Rp1)−1K(xi)Rpi

· · ·Rp1 ∈ Sym(v⊥0 ). By hypothesis, there is 2 ≤ k < n

such that (Kk, Kk+1) satisfy the F -property. Hence, by Lemma 6.4, the map B defined 
in (6.2) with V := v⊥0 is a submersion at K := (Kk−1, Kk, Kk+1, Kk+2). This shows that 
for any ε > 0 there is a δ > 0 such that any symplectic linear map Π ∈ Sp(v⊥0 × v⊥0 )
which is δ-close to An · · ·A1 may be realized as

Π = An · · ·Ak+3B(K̂)Ak−2 · · ·A1

by choosing K̂ ∈ Sym(v⊥0 )4 which is ε-close to K. By Lemma 2.1, for each i ∈ {k−1, k, k+
1, k+2}, we can realize the curvature K̂i at pi by choosing appropriate smooth functions 
ui ∈ C∞(S, R) which are ε-C2-close to 0 and whose supports are contained in arbitrarily 
small neighborhoods of pi. Finally, we define the perturbation u =

∑k+2
i=k−1 uiNφ(pi) and 

the rest of the properties follow. �
Given m ≥ 4, denote by Ym the set of φ ∈ Br such that fφ has only a finite number 

of periodic orbits of period less than or equal to m, each periodic orbit passes only 
once through each of its reflection points, and any two different periodic orbits have 
no common reflection point. By Theorem 2.8, Ym is a Cr-residual subset of Br. Now, 
denote by Rm the subset of Ym consisting of those φ ∈ Rm such that every periodic 
orbit of fφ of period ≥ 4 is F -admissible. Being F -admissible means that the pair of 
curvature operators at two consecutive collision points belongs to an open and dense set 
(Lemma 6.6). Since, for each φ ∈ Rm, the billiard map fφ has only a finite number of 
periodic orbits of period less than m, by continuity of φ �→ Lφ we conclude that Rm is 
Cr-open relative to Ym. Moreover, by Lemma 2.1, the set Rm is also Cr-dense. Hence, 
Rm is a Cr-residual set and the intersection R =

⋂
m≥4 Rm is also Cr-residual. Finally, 

Theorem 6.1 follows from Theorem 6.7. �
7. Proof of Theorem 3.2

Let R1 be the C∞-residual set of Theorem 6.1 and R2 the one of Theorem 2.8. Hence, 
one can take a C∞-residual

R = R1 ∩R2
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on which there are an infinite number of periodic orbits with arbitrarily large periods, 
all nondegenerate.

Consider the set of periodic points Permd
(φ) with period ≥ md, and denote its closure 

by

Λ = Λ(φ) := Permd
(φ).

Theorem 7.1. If φ ∈ R ∩ F2, then Λ(φ) is hyperbolic.

Proof. Since φ ∈ F2, the periodic points are hyperbolic, i.e.

P := Permd
(φ) ⊂ H(φ).

We will apply the general result on the hyperbolicity of families of periodic sequences of 
bounded symplectic linear maps given in [20, Theorem 8.1]. It is a symplectic version of 
the Mañé dichotomy on uniform dominated splitting versus trivial spectrum.

For x ∈ P and n ∈ Z choose an orthonormal symplectic basis B(x, n) of the tangent 
space Tfn

φ (x)M . Thus the tangent map

Dfφ(fn
φ (x)) : Tfn

φ (x)M → Tfn+1
φ (x)M

is represented in the basis B(x, n) by a matrix denoted by ξxn ∈ Sp(R2d), a symplectic 
linear map on R2d. Consider the family ξ = (ξx)x∈P of sequences ξx = (ξxn)n∈Z.

For each periodic point x with period m we have periodicity of ξ in the sense that

ξxn+m = ξxn, n ∈ Z,

because they represent the matrices of Dfφ(fn+m(x)) = Dfφ(fn(x)) as before. In addi-
tion, we have hyperbolicity of ξ, i.e.

ξxm−1 . . . ξ
x
0

is hyperbolic as this product of matrices corresponds to Dfm
φ (x) which is hyperbolic. 

Notice that all maps ‖ξxn‖ are uniformly bounded as the manifold is compact.
Suppose that we can perturb Dfm

φ (x) within Sp(TxM) to a non-hyperbolic map Π
(there is an eigenvalue of modulus 1). Use Franks’ lemma Theorem 6.1 to find φ̃ which is 
C2-close to φ such that Dfm

φ̃
(x) = Π. This means that φ �∈ F2 since x is a non-hyperbolic 

period point for φ̃ with period ≥ md.
So, ξ is a stably hyperbolic family of periodic sequences of bounded symplectic linear 

maps. By [20, Theorem 8.1], ξ is uniformly hyperbolic. Therefore, on P the tangent map 
Dfφ has an invariant splitting as in (1.1) and P is hyperbolic. By the continuity of the 
splitting, this extends to the closure Λ of P . �



M. Bessa et al. / Advances in Mathematics 442 (2024) 109592 37
Remark 7.2. There is a known alternative approach to prove Theorem 7.1 following 
the strategies used in several contexts, cf. [7,13,46,29,5]. The main tool is the use of a 
symplectic version of [14, Corollary 2.18] as in [16]. It can be used to show the following 
dichotomy: there is either an uniform dominated splitting on the set of periodic orbits 
having sufficiently large periods, or else a perturbation of the tangent map with trivial 
spectrum. Our version of the Franks’ lemma (Theorem 6.1) then allows us to realize 
any small perturbation of the tangent map by a C2-perturbation of the body having 
a degenerate periodic point. However that is not allowed in F2. Therefore, Permd

(φ)
has a uniform dominated splitting, which in the symplectic case means that Permd

(φ)
is in fact partially hyperbolic [11, Theorem 11]. Restrict the tangent map to the central 
subspace of the splitting. Using a Jordan normal form for symplectic matrices [37,26], 
again by the above dichotomy one gets a partially hyperbolic splitting. So, the dimension 
of the stable and unstable subspaces of the original tangent map on Permd

(φ) increases. 
Repeating this procedure leads us to the conclusion that Permd

(φ) is in fact hyperbolic, 
and the same holds for Λ.

In view of the previous theorem and the Spectral Decomposition Theorem [45, pp.385], 
the set Λ is a union of finitely many pairwise disjoint basic hyperbolic sets. Since Λ is 
infinite by Theorem 2.7, at least one of those basic sets must be nontrivial.

Acknowledgments

The authors were partially funded by the project “New trends in Lyapunov expo-
nents” PTDC/MAT-PUR/29126/2017. MB was also partially funded by the projects 
“Means and Extremes in Dynamical Systems” PTDC/MAT-PUR/4048/2021 and 
UIDB/00144/2020, JLD and JPG by the project CEMAPRE - UID/MULTI/00491/2019 
and MJT by the projects UIDB/00013/2020 (DOI: 10 .54499 /UIDB /00013 /2020) and 
UIDP/00013/2020 (DOI: 10 .54499 /UIDP /00013 /2020). All these projects were financed 
by Fundação para a Ciência e a Tecnologia, Portugal. GDM acknowledges the MIUR 
Excellence Department Project awarded to the Department of Mathematics, Univer-
sity of Pisa, CUP I57G22000700001 and the PRIN Project 2022NTKXCX “Stochastic 
properties of dynamical systems”, funded by the Ministry of University and Scientific 
Research of Italy.

References

[1] H.N. Alishah, J. Lopes Dias, Realization of tangent perturbations in discrete and continuous time 
conservative systems, Discrete Contin. Dyn. Syst. 34 (12) (2014) 5359–5374.

[2] S.B. Angenent, Monotone recurrence relations, their Birkhoff orbits and topological entropy, Ergod. 
Theory Dyn. Syst. 10 (1) (1990) 15–41.

[3] S.B. Angenent, A remark on the topological entropy and invariant circles of an area preserving twist 
map, in: Twist Mappings and Their Applications, in: IMA Vol. Math. Appl., vol. 44, Springer, New 
York, 1992, pp. 1–5.

[4] M.-C. Arnaud, Type des points fixes des difféomorphismes symplectiques de Tn × Rn, Mém. Soc. 
Math. Fr. (N. S.) 48 (1992) 63.

https://doi.org/10.54499/UIDB/00013/2020
https://doi.org/10.54499/UIDP/00013/2020
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib510EEF6E71A6C08B33F9A9E47E8CF8EDs1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib510EEF6E71A6C08B33F9A9E47E8CF8EDs1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib919C24D6C38CDEE6472A003F485209B1s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib919C24D6C38CDEE6472A003F485209B1s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibFC0CECD0E30B20E3FEE480EA446D6658s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibFC0CECD0E30B20E3FEE480EA446D6658s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibFC0CECD0E30B20E3FEE480EA446D6658s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibF585DC7D46D6E10B4195F74A69288341s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibF585DC7D46D6E10B4195F74A69288341s1


38 M. Bessa et al. / Advances in Mathematics 442 (2024) 109592
[5] M. Bessa, J. Lopes Dias, M.J. Torres, Expansiveness and hyperbolicity in convex billiards, Regul. 
Chaotic Dyn. 26 (6) (2021) 756–762.

[6] M. Bessa, J. Rocha, On C1-robust transitivity of volume-preserving flows, J. Differ. Equ. 245 (2008) 
3127–3143.

[7] M. Bessa, J. Rocha, M.J. Torres, Hyperbolicity and stability for Hamiltonian flows, J. Differ. Equ. 
254 (1) (2013) 309–322.

[8] M. Bialy, Maximizing orbits for higher-dimensional convex billiards, J. Mod. Dyn. 3 (1) (2009) 
51–59.

[9] G.D. Birkhoff, On the periodic motions of dynamical systems, Acta Math. 50 (1) (1927) 359–379.
[10] P.V.M. Blagojević, M. Harrison, S. Tabachnikov, G.M. Ziegler, Counting periodic trajectories of 

Finsler billiards, SIGMA 16 (2020) 022.
[11] J. Bochi, M. Viana, Lyapunov exponents: how frequently are dynamical systems hyperbolic?, 

in: Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge, 2004, 
pp. 271–297.

[12] S. Bolotin, A. Delshams, R. Ramírez-Ros, Persistence of homoclinic orbits for billiards and twist 
maps, Nonlinearity 17 (4) (2004) 1153–1177.

[13] C. Bonatti, L.J. Díaz, E.R. Pujals, A C1-generic dichotomy for diffeomorphisms: weak forms of 
hyperbolicity or infinitely many sinks or sources, Ann. Math. (2) 158 (2) (2003) 355–418.

[14] C. Bonatti, N. Gourmelon, V. Thérèse, Perturbations of the derivative along periodic orbits, Ergod. 
Theory Dyn. Syst. 26 (5) (2006) 1307–1337.

[15] P.L. Boyland, G.R. Hall, Invariant circles and the order structure of periodic orbits in monotone 
twist maps, Topology 26 (1) (1987) 21–35.

[16] J. Buzzi, S. Crovisier, T. Fisher, Local perturbations of conservative C1 diffeomorphisms, Nonlin-
earity 30 (9) (2017) 3613–3636.

[17] C.M. Carballo, J.A.G. Miranda, Jets of closed orbits of Mañé’s generic Hamiltonian flows, Bull. 
Braz. Math. Soc. 44 (2) (2013) 219–232.

[18] M.J.D. Carneiro, S.O. Kamphorst, S.P. de Carvalho, Periodic orbits of generic oval billiards, Non-
linearity 20 (10) (Sep 2007) 2453–2462.

[19] J. Cheng, Variational approach to homoclinic orbits in twist maps and an application to billiard 
systems, Z. Angew. Math. Phys. 55 (3) (2004) 400–419.

[20] G. Contreras, Geodesic flows with positive topological entropy, twist maps and hyperbolicity, Ann. 
Math. (2) 172 (2) (2010) 761–808.

[21] A. Delshams, Y. Fedorov, R. Ramírez-Ros, Homoclinic billiard orbits inside symmetrically perturbed 
ellipsoids, Nonlinearity 14 (5) (2001) 1141–1195.

[22] V.J. Donnay, Creating transverse homoclinic connections in planar billiards, J. Math. Sci. 128 (2) 
(2005) 2747–2753.

[23] M. Farber, Topology of billiard problems. I, II, Duke Math. J. 115 (3) (2002) 559–585, 587–621.
[24] M. Farber, S. Tabachnikov, Topology of cyclic configuration spaces and periodic trajectories of 

multi-dimensional billiards, Topology 41 (3) (2002) 553–589.
[25] J. Franks, Necessary conditions for stability of diffeomorphisms, Trans. Am. Math. Soc. 158 (1971) 

301–308.
[26] J. Gutt, Normal forms for symplectic matrices, Port. Math. 71 (2) (2014) 109–139.
[27] M.R. Herman, Sur les courbes invariantes par les difféomorphismes de l’anneau, vol. 1 (On the 

invariant curves by the diffeomorphisms of the annulus), Astérisque 103–104 (1983) 1–221.
[28] E. Hewitt, K. Ross, Abstract Harmonic Analysis I, Springer, Berlin, 1963.
[29] V. Horita, A. Tahzibi, Partial hyperbolicity for symplectic diffeomorphisms, Ann. Inst. Henri 

Poincaré, Anal. Non Linéaire 23 (5) (2006) 641–661.
[30] R. Horn, C. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
[31] R.N. Karasev, Periodic billiard trajectories in smooth convex bodies, Geom. Funct. Anal. 19 (2) 

(2009) 423–428.
[32] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. Inst. 

Hautes Études Sci. 51 (1980) 137–173.
[33] A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge 

University Press, 1995.
[34] W. Klingenberg, Lectures on Closed Geodesics, Grundlehren der Mathematischen Wissenschaften, 

vol. 230, Springer-Verlag, Berlin-New York, 1978.
[35] W. Klingenberg, F. Takens, Generic properties of geodesic flows, Math. Ann. 197 (1972) 323–334.
[36] V. Kovachev, Smoothness of the billiard ball map for strictly convex domains near the boundary, 

Proc. Am. Math. Soc. 103 (3) (1988) 856–860.

http://refhub.elsevier.com/S0001-8708(24)00107-5/bibD8D8904AB24609DF515AD669CA336451s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibD8D8904AB24609DF515AD669CA336451s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib19D3326F3137CBADD21CE901A9BED4A7s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib19D3326F3137CBADD21CE901A9BED4A7s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib8CF672A7A657914E85DABE0CB2C5B83As1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib8CF672A7A657914E85DABE0CB2C5B83As1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib94DB1EDCA4A3A6AF60107C03411D9950s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib94DB1EDCA4A3A6AF60107C03411D9950s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib1E6146DF0C1D849B6C89D256E59F1614s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibC7E865647575DC450E1A68086A7B2184s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibC7E865647575DC450E1A68086A7B2184s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib48D703742BACBBC14709360862251175s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib48D703742BACBBC14709360862251175s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib48D703742BACBBC14709360862251175s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibDB0CC31EE82A6116366F9F0E813E8DC3s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibDB0CC31EE82A6116366F9F0E813E8DC3s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibE801A025DC8008428F26AAF0F5D7DAC2s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibE801A025DC8008428F26AAF0F5D7DAC2s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib60053513542A843D250C66341879F921s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib60053513542A843D250C66341879F921s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibE454BCDCF5A69C3552CF53FDF4958976s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibE454BCDCF5A69C3552CF53FDF4958976s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib53844C6E17FD50676FBD04915147279Es1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib53844C6E17FD50676FBD04915147279Es1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib2586BEF45E6D20B68F85C794715742A8s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib2586BEF45E6D20B68F85C794715742A8s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibFA4191941C9FD5329F27545884214416s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibFA4191941C9FD5329F27545884214416s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib0E4E0F4D6E4129AFA279EA5804DA3240s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib0E4E0F4D6E4129AFA279EA5804DA3240s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib884B985601DF5C2CCE7D408F51E37312s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib884B985601DF5C2CCE7D408F51E37312s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib91B2029B9F8EDF02825E5344C2038E8Fs1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib91B2029B9F8EDF02825E5344C2038E8Fs1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib1B84DD2B92B4152B41FA7535D0AB3F56s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib1B84DD2B92B4152B41FA7535D0AB3F56s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib7B5BC8C1444698D422BD8B8C086E98EBs1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib4936D67B09D53CC026A00640FA0112C5s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib4936D67B09D53CC026A00640FA0112C5s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib1AED4866190AABD5877F31D6ECF06882s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib1AED4866190AABD5877F31D6ECF06882s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib806860B224EC2F3F47C314E9B4A8F66As1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib65180AF8DF39404EC943CA268BC36C17s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib65180AF8DF39404EC943CA268BC36C17s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib96F070929C5705382AB8C66F1BD5F431s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibBEBEE56490AB8B276B01A932E710F276s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibBEBEE56490AB8B276B01A932E710F276s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibC0DDF1B48875BD3EF2B3CFF7859CC67Es1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib2795E3FD3AB0A3F41102BBE8D9B33C7Fs1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib2795E3FD3AB0A3F41102BBE8D9B33C7Fs1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibD68DAFCDA5FCFA4D02C322E573E4A38Bs1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibD68DAFCDA5FCFA4D02C322E573E4A38Bs1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib6400C95C0901346B56CAC91432582DCDs1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib6400C95C0901346B56CAC91432582DCDs1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib2D653831F61F93339550CE63D031F90Bs1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib2D653831F61F93339550CE63D031F90Bs1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib451204F54EEABD90A3365B522C86930Cs1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib5AF64E36B308EB1CE42D184C79178FD0s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib5AF64E36B308EB1CE42D184C79178FD0s1


M. Bessa et al. / Advances in Mathematics 442 (2024) 109592 39
[37] A.J. Laub, K. Meyer, Canonical forms for symplectic and Hamiltonian matrices, Celest. Mech. 9 
(1974) 213–238.

[38] A. Lazrag, L. Rifford, R.O. Ruggiero, Franks’ lemma for C2-Mañé perturbations of Riemannian 
metrics and applications to persistence, J. Mod. Dyn. 10 (2016) 379–411.

[39] P. Le Calvez, Propriétés dynamiques des difféomorphismes de l’anneau e du tore, Astérisque, 
vol. 204, 1991.

[40] C.A. Morales, M.J. Pacifico, E.R. Pujals, Robust transitive singular sets for 3-flows are partially 
hyperbolic attractors or repellers, Ann. Math. (2) 160 (2) (2004) 375–432.

[41] V. Petkov, L. Stojanov, Periods of multiple reflecting geodesics and inverse spectral results, Am. J. 
Math. 109 (4) (1987) 619–668.

[42] V. Petkov, L. Stojanov, Spectrum of the Poincaré map for periodic reflecting rays in generic domains, 
Math. Z. 194 (4) (1987) 505–518.

[43] V.M. Petkov, L.N. Stojanov, On the number of periodic reflecting rays in generic domains, Ergod. 
Theory Dyn. Syst. 8 (1) (1988) 81–91.

[44] E.R. Pujals, M. Sambarino, On the dynamics of dominated splitting, Ann. Math. (2) 169 (3) (2009) 
675–739.

[45] C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics and Chaos, CRC Press, 1995.
[46] R. Saghin, Z. Xia, Partial hyperbolicity or dense elliptic periodic points for C1-generic symplectic 

diffeomorphisms, Trans. Am. Math. Soc. 358 (11) (2006) 5119–5138.
[47] S. Slijepčević, A new measure of instability and topological entropy of area-preserving twist diffeo-

morphisms, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 21 (532) (2017) 117–141.
[48] L. Stojanov, Generic properties of periodic reflecting rays, Ergod. Theory Dyn. Syst. 7 (4) (1987) 

597–609.
[49] D. Visscher, A Franks’ lemma for convex planar billiards, Dyn. Syst. 30 (3) (2015) 333–340.
[50] M.P. Wojtkowski, Measure theoretic entropy of the system of hard spheres, Ergod. Theory Dyn. 

Syst. 8 (1988) 133–153.

http://refhub.elsevier.com/S0001-8708(24)00107-5/bib2C16B194A0D9037002E9EF6580925697s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib2C16B194A0D9037002E9EF6580925697s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib516692D5D821794FE0DDBA4894E29228s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib516692D5D821794FE0DDBA4894E29228s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibE272C57A1A0E93D907CFE1614A286F83s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibE272C57A1A0E93D907CFE1614A286F83s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib1B846630FFC48F4CF06AB50865D9DBCAs1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib1B846630FFC48F4CF06AB50865D9DBCAs1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib2DA0441C66CEEDFAE247C74BA3C104C9s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib2DA0441C66CEEDFAE247C74BA3C104C9s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib52DE671A89C7CCF465C4A0F9C52E3DE1s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib52DE671A89C7CCF465C4A0F9C52E3DE1s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib234074DAD56338DB61A0E91B0954C402s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib234074DAD56338DB61A0E91B0954C402s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibB4AA48232E6638C126B89BA9F69E2F07s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bibB4AA48232E6638C126B89BA9F69E2F07s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib668162D573B358F079BE450220C015DEs1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib58018334AC928ECBC4013A6F814E6AB1s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib58018334AC928ECBC4013A6F814E6AB1s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib1243FEB170EB1D08F2BBCA19D1B6CD1Fs1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib1243FEB170EB1D08F2BBCA19D1B6CD1Fs1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib460B14A082250AD72A82D4FD2F145B00s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib460B14A082250AD72A82D4FD2F145B00s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib800CE54B3F0681160B6CB39D84AE7900s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib4E6A501067E14F2E3FD3F5603E1553E3s1
http://refhub.elsevier.com/S0001-8708(24)00107-5/bib4E6A501067E14F2E3FD3F5603E1553E3s1

	Billiards in generic convex bodies have positive topological entropy
	1 Introduction
	2 Billiard map
	2.1 Smooth convex bodies
	2.2 Cr-topology
	2.3 Perturbing the body
	2.4 The billiard map
	2.5 The derivative of the billiard map
	2.5.1 Projections
	2.5.2 Jacobi coordinates
	2.5.3 Derivative of the billiard map

	2.6 Generic properties concerning periodic orbits

	3 Proof of Theorem 1.1
	4 Perturbing the k-jets: Klingenberg-Takens theorem for billiards
	4.1 Perturbing the k-jet of the billiard map
	4.2 Proof of Theorem 4.1
	4.3 Proof of Theorem 4.2

	5 Proof of Theorem 3.1
	5.1 Birkhoff normal form
	5.2 Contreras-Arnaud-Herman theorem
	5.3 Periodic orbits of a generic billiard
	5.4 Reduction to 1-elliptic
	5.5 Essential invariant curves with rational rotation number
	5.6 Transverse heteroclinic intersections

	6 Franks’ lemma for multidimensional billiards
	6.1 Some linear algebra
	6.2 Proof of Theorem 6.1

	7 Proof of Theorem 3.2
	Acknowledgments
	References


