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We address the problem of designing, implementing, and experimenting with compressed data structures that

support rank and select queries over a dictionary of integers. We shine a new light on this classical problem

by showing a connection between the input integers and the geometry of a set of points in a Cartesian plane

suitably derived from them. We then build upon some results in computational geometry to introduce the

first compressed rank/select dictionary based on the idea of “learning” the distribution of such points via

proper linear approximations (LA). We therefore call this novel data structure the la_vector.

We prove time and space complexities of the la_vector in several scenarios: in the worst case, in the case

of input distributions with finite mean and variance, and taking into account the kth order entropy of some

of its building blocks. We also discuss improved hybrid data structures, namely, ones that suitably orchestrate

known compressed rank/select dictionaries with the la_vector.

We corroborate our theoretical results with a large set of experiments over datasets originating from a vari-

ety of applications (Web search, DNA sequencing, information retrieval, and natural language processing) and

show that our approach provides new interesting space-time tradeoffs with respect to many well-established

compressed rank/select dictionary implementations. In particular, we show that our select is the fastest, and

our rank is on the space-time Pareto frontier.
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1 INTRODUCTION

We consider the classical problem of representing, in compressed form, an ordered dictionary S of
n elements drawn from the integer universe [u] = {0, . . . ,u − 1} while supporting the following
operations:

• rank(x ). Given x ∈ [u], return the number of elements in S that are less than or equal to x ;
• select(i ). Given i ∈ {1, . . . ,n}, return the ith smallest element in S .

Despite their simple definitions, rank and select are powerful enough to solve the ubiquitous pre-

decessor search problem [47], which asks for the largest y ∈ S smaller than a given element x ∈ [u].
Indeed, it suffices to execute y = select(rank(x − 1)), where we assumed that select(0) = −1 to
denote the absence of a predecessor for x in S .

Another way of looking at these operations is via the indexing of a binary array BS of length u,
which is the characteristic bitvector of S over the universe [u]. This way, rank(x ) counts the
number of bits set to 1 in BS [0 . . x], and select(i ) finds the position of the ith bit set to 1 in BS .
This interpretation allows generalising the above operations to count and locate symbols in non-
binary arrays [30, 33, 45], which are frequently at the core of several text mining and indexing
problems.

It is therefore unsurprising that rank and select have been studied far and wide since the end
of the ’80s [35], with tons of important theoretical and practical results, which we review in
Section 1.1. Currently, they are the building blocks of many compact data structures [44] used for
designing compressed text indexes [20, 33, 45], succinct trees and graphs [42, 56], monotone min-
imal perfect hashing [7], sparse hash tables [58], and permutations [6]. Consequently, they have
countless applications in bioinformatics [17, 38], information retrieval [43], and databases [1], just
to mention a few.

In this article, we show that the problem above has a surprising connection with the geometry of
a set of points in the Cartesian plane suitably derived from the integers in S . We then build upon
some classical results in computational geometry to introduce a novel data-aware compressed
storage and indexing scheme for S that deploys linear approximations of the distribution of these
points to “learn” a compact encoding of the input data. We call this novel data structure la_vector
because its building blocks are Linear Approximations. We prove theoretical bounds on its time
and space performance in the worst case, in the case of input distributions with finite mean and
variance, and in terms of the kth order entropy of some of its building blocks. We show that the
la_vector can be used in conjunction with other compression schemes, thus originating new
hybrid data structures that compare favourably with [50]. Finally, we corroborate these theoretical
results with a large set of experiments over a variety of real-world datasets and well-established
approaches.

Overall, our theoretical and practical achievements are particularly interesting not only for
novel space-time tradeoffs, which add themselves to this highly productive algorithmic field active
since 1989 [44], but also because, we argue, they introduce a new way of designing compressed
rank/select data structures that deploy computational geometry tools to “learn” the distribution
of the input data [24]. As such, we foresee that this novel design may offer research opportunities
and stimulate new results from which many applications will hopefully benefit.

1.1 Related Work

We assume the standard word RAM model of computation with word size w = Θ(logu) and
w = Ω(logn). Existing rank/select dictionaries differ by the way they encode S and how they
use redundancy to squeeze the space and still support fast operations.
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In the most basic case, S is represented via its characteristic bitvector BS , namely, a bitvector of
length u such that BS [i] = 1 if i ∈ S , and BS [i] = 0 otherwise, for 0 ≤ i < u. Then, rank(x ) is the
number of 1s in BS [0 . . x], and select(i ) is the position of the ith 1 in BS . One can also be interested
in rank0 and select0, which look instead for the 0s in the bitvector, but it holds rank0 (i ) = i−rank(i ),
while select0 can be reduced to select via other known reductions [55].

It is long known that u + o(u) bits are sufficient to have constant-time rank and select [10, 41].
Provided that we keep BS in plain form (i.e., read-only) and look for constant-time operations, the
best that we can aim for the redundancy term o(u) is Θ(u log logu/ logu) bits [29]. Later, optimal
tradeoffs were also given in terms of the density of 1s in BS [31] or for the cell-probe model [54, 64].

Practical implementations of rank/select on plain bitvectors have also been extensively studied
and evaluated experimentally [27, 28, 32, 46, 48, 60].

If S is sparse, i.e., BS contains few 1s, then it may be convenient to switch to compressed

representations. The information-theoretic minimum space to store S is B =
⌈
log

(
u
n

)⌉
, which

may be much smaller than u. The value B is related to the (empirical) zero-order entropy of
BS , H0 (BS ), defined as uH0 (BS ) = n log u

n
+ (u − n) log u

u−n
. In fact, B = uH0 (BS ) − O (logu).

Here, the best upper bound on the redundancy was attained in [52], whose solution takes

B +u/( log u

t
)t +O (u3/4 logu) bits and supports both rank and select inO (t ) time, that is, constant-

time operations in B +O (u/ poly logu) bits. This essentially matches the lower bounds provided
in [54]. A widely known solution for a sparse S is the RRR encoding [56], which supports constant-
time rank and select in B+O (u log logu/ logu) bits of space. We will experimentally compare our
proposal with its practical implementations described in [11, 28]. There are also representations
bounded by the kth order entropy of BS , defined as uHk (BS ) =

∑
x ∈{0,1}k |Bx |H0 (Bx ) where Bx is

the bitvector concatenating the bits immediately following an occurrence of x in BS . For example,
the solution of [57] achieves constant-time operations inuHk (BS )+O (u (log logu+k+1)/ logu) bits.

In general, to further reduce the space, one has to give up the constant time for both operations.
An example is given by the Elias-Fano representation [14, 15], which supports select in O (1) time
and rank in O (log u

n
) time while taking n log u

n
+ 2n + o(n) bits of space. Its implementations and

refinements proved to be very effective in a variety of real-world contexts [48, 50, 51, 60, 61]. We
will compare our la_vector against the best implementations to date [28, 50].

Another compressed representation for S is based on gap encoding. In this case, instead of B or
the zero-order entropy, it is common to use more data-aware measures [4, 26, 34, 39, 57]. Consider
the gapsдi between consecutive integers in S taken in sorted order, i.e.,дi = select(i )−select(i − 1),
and suppose we could store each дi in �log(дi + 1)� bits. Then the gap measure is defined as
gap(S ) =

∑
i �log(дi + 1)�. An example of a data-aware structure whose space occupancy is

bounded in terms of gap is presented in [34], which takes gap(S ) (1+o(1)) bits while supporting se-

lect inO (log logn) time and rank in time matching the optimal predecessor search bounds [47, 53].
Another example is given in [39] taking gap(S )+O (n)+o(u) bits and supporting constant-time op-
erations. Important ingredients of these gap-based data-aware structures are self-delimiting codes
such as Elias γ - and δ -codes [62]. To provide a complete comparison with our la_vector, we
will experiment with the practical approaches to gap compression implemented in the sdsl li-
brary [28].

Recent work [4] explored further interesting data-aware measures for bounding the space oc-
cupancy of rank/select dictionaries that take into account runs of consecutive integers in S . They
introduced data structures supporting constant-time rank and select in a space bounded by these
new data-aware measures. This proposal is mainly theoretical, and indeed the authors evaluated
only its space occupancy. A more practical approach, described in [3, 5], combines gap and run-
length encoding by fitting as many gaps дi as possible within a single 32-bit word. This is done via
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a 4-bit header indicating how the remaining 28 bits must be decoded (e.g., one gap of 28 bits, two
gaps of 14 bits each, etc.). We will compare our proposal also against this recent approach.

1.2 Our Contribution

We introduce a novel lossless compressed storage scheme for an integer dictionary S based on
the idea of approximating a set of points in the Cartesian plane via segments so the storage of S
can be defined by means of a compressed encoding of these segments and the “errors” they do in
approximating the input integers (Section 2). Proper algorithms and data structures are then added
to this compressed storage scheme to support fast rank and select operations (Section 3).

Our study shows that our approach is asymptotically efficient in time and space, with worst-
case bounds that relate their performance with the number � of segments approximating S and
the (controlled) error ε . In particular, Theorems 2.2 and 2.3 state some interesting space bounds
that are proven to be superior to the ones achievable by well-established Elias-Fano approaches
for proper (and widely satisfied) conditions among n, �, and ε .

We extend these results also to the case of input sequences drawn from a distribution with finite
mean and variance (Section 4). In this case, it turns out that our scheme is competitive with Elias-

Fano approaches for ε = ω (
√

logn), which is a condition easily satisfied in practical settings [18].
Another theoretical contribution is the design of an algorithm that computes a provably good

approximation of the optimal set of segments that minimises the space occupancy of our compres-
sion scheme (Section 5).

We also consider hybrid solutions that optimally partition the datasets into chunks and apply
the best encoding to each chunk. Consequently, we show that our approach can be used in conjunc-
tion with other known and effective compression schemes, yielding improved hybrid rank/select
structures (Section 6).

We corroborate these theoretical results with a large set of experiments over datasets originating
from a variety of sources and applications (the Web, DNA sequencing, information retrieval, and
natural language processing), and we show in Section 7 that our data-aware approach provides new
interesting space-time tradeoffs with respect to several other well-established implementations of
Elias-Fano [27, 50], RRR-vectors [11, 27], random-access vectors of Elias γ /δ -coded gaps [28], and
gap/run-length encoded bitvectors [5, 40]. Our select is the fastest, whereas our rank is on the
space-time Pareto frontier.

For the sake of presentation, we summarise in Table 1 the main notation used throughout the
article. And, as a final remark, we note that a preliminary version of this work appeared in [8].
The present contribution includes several new results: the theoretical and experimental study of
high-order compression of the aforesaid approximation “errors” constituting our encoding of S
(Section 2.2); an improved data partitioning/compression algorithm (Theorem 5.2) that offers a
very simple proof about the quality of the returned solution and also a practical improvement of
1.22% in space on average over all the datasets, without impairing the time and space complexity of
its construction; the discussion and experimentation of a new improved hybrid data structure that
combines our la_vector with existing rank/select dictionaries (Sections 6 and 7.5); an extended
discussion of the algorithm-engineering tricks used in our implementations (Section 7.1); a more
comprehensive experimental evaluation of the la_vector that includes other recently proposed
rank/select dictionary implementations (Section 7.4).

2 COMPRESSING VIA LINEAR APPROXIMATIONS

Let us assume that S = {x1,x2, . . . ,xn } is a sorted sequence of n distinct integers. We begin by
mapping each element xi ∈ S to a point (i,xi ) in the Cartesian plane, for i = 1, 2, . . . ,n [2]. It is
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Table 1. Summary of Main Notations Used in the Article

Symbol Definition

S Input set of integer elements
n Number of integer elements in S
u Size of the integer universe
BS Characteristic bitvector of S of size u and n 1s
C Array of n corrections values of c bits each
c Bits allotted to each correction (0 ≤ c ≤ logu)
ε Maximum absolute correction value, equal to max(0, 2c−1 − 1)
� Number of segments (Definition 2.1)
sj The jth segment
r j Rank of the first element compressed by the segment sj

α j Slope of the segment sj

βj Intercept of the segment sj

fj Linear function implemented by the segment sj

easy to see that any function f that passes through all the points in this plane can be thought of
as an encoding of S , because we can recover xi by querying f (i ). Clearly, f should be fast to be
computed and occupy little space.

Here, we aim at implementing f via a sequence of segments. Segments capture certain data
patterns naturally. Any run of consecutive and increasing integers, for example, can be encoded
by one segment with slope 1. Generalising, any run of increasing integers with a constant gap д
can be encoded by one segment with slope д. Slight deviations from these data patterns can still be
captured if we allow a segment to make some “errors” in approximating xi at position i , provided
that we fix these errors by storing some additional information.

This is the main idea behind our proposal. We reduce the problem of compressing S to the
one of “learning” the mapping select : {1, . . . ,n} → S , which is in turn reduced to the problem of
approximating the set of points {(i,xi )}i=1, ...,n via a Piecewise Linear Approximation (PLA),
that is a sequence of segments such that every point (i,xi ) is vertically far from one of these
segments by an error bound ε , to be fixed later. In some sense, the sequence of segments introduces
an “information loss” of ε on the integers in S . Among all such sequences of segments (i.e., PLAs),
we further aim for the most succinct one, namely, the one with the least amount of segments. This
is a classical computational geometry problem that admits an O (n)-time algorithm by O’Rourke
[49]. This algorithm processes each point (i,xi ) left-to-right, hence for i = 1, . . . ,n, while shrinking
a convex polygon in the parameter space of slopes-intercepts. Any coordinate (α , β ) inside the
polygon represents a line with slope α and intercept β that approximates with error ε the current
set of processed points. When the kth point causes the polygon to be empty, a segment (α , β ) is
chosen inside the previous polygon and returned, and a new polygon is started from (k,xk ).

We represent the jth segment output by the algorithm above as the triple sj = (r j ,α j , βj ), where
α j is the slope, βj is the intercept, and r j is the abscissa of the point that started the segment. If
� is the number of segments forming the PLA, then we set r�+1 = n and observe that r1 = 1. The
values r j s partition the set of positions {1, 2, . . . ,n} into � ranges so, for any integer i between r j

and r j+1 (non-inclusive), we use the segment sj to approximate the value xi as follows:

fj (i ) = (i − r j ) · α j + βj .

But fj (i ) is an inexact approximation of xi bounded by ε . Thus, to turn it into a lossless represen-
tation, we complement the values returned by fj with an arrayC[1 . .n] of integers whose modulo
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Fig. 1. The la_vector encoding of S = {3, 6, 10, 15, 18, 22, 40, 43, 47, 53} for c = 3 is given by the two segments

s1, s2 and the array C . A segment sj = (r j ,α j , βj ) approximates the value of an item with rank i via fj (i ) =
(i − r j ) · α j + βj , and C corrects the approximation. For example, x5 = � f1 (5)� + C[5] = 20 − 2 = 18 and

x8 = � f2 (8)� +C[8] = 43 + 0 = 43.

ALGORITHM 1: Decompression

Input: PLA {s1, . . . , s� }, corrections C[1 . .n]
Output: Uncompressed set S

1: out← an empty array of size n
2: for all segments sj = (r j ,α j , βj ) in the PLA do

3: for i ← r j to r j+1 − 1 do

4: out[i]← � fj (i )� +C[i], where fj = (i − r j ) · α j + βj

5: return out

is bounded by ε . Precisely, each C[i] represents the small “correction value” xi − � fj (i )�, which
belongs to the set {−ε,−ε + 1, . . . ,−1, 0, 1, . . . , ε }. If we allocate c ≥ 2 bits for each correction inC ,
then the PLA is allowed to err by at most ε = 2c−1 − 1. We also consider the case c = 0, for which
we set ε = 0. We ignore the case c = 1, because one bit is not enough to distinguish corrections in
{−1, 0, 1}.

The vector C completes our encoding, which we name linear approximation vector

(la_vector) and illustrate in Figure 1. Recovering the original sequence S is as simple as scanning
the segments sj of the PLA and writing the value � fj (i )� +C[i] = xi to the output, for j = 1, . . . , �
and for i = r j , . . . , r j+1−1. This process, formalised in Algorithm 1, is appealing in practice, because
the array C contains tightly packed integers that are accessed sequentially, and the computation
of fj is fast, because its values are loaded into three registers when sj is first accessed. Moreover,
there are no data dependencies among the iterations (as it happens, for example, when integers
are delta-coded and a prefix sum is needed).

Recovering a single integer xi requires first the identification of the segment sj that includes the
position i , and then the computation of � fj (i )� +C[i]. A binary search over the starting positions r j

of the segments in the PLA would be enough and takesO (log �) time, but we will aim for something
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more sophisticated in terms of algorithmic design and engineering to squeeze the most from this
novel approach, as commented in the following sections.

For completeness, we observe that the PGM-index [25] might appear similar to this idea, be-
cause it uses PLAs and supports predecessor queries. However, the PGM-index does not compress
the input keys but only the index, and it is tailored to the external-memory model, as B-trees.
Nonetheless, the PGM-index could take advantage of the la_vector to compress the data stored
in its leaves.

2.1 On Compression Effectiveness

Two counterposing factors influence the effectiveness of the compressed space occupancy of the
la_vector.

(1) How the integers in S map on the Cartesian plane, and thus how many segments they require
for a lossy ε-approximation. The larger is ε , the smaller is “expected” to be the number � of
these segments.

(2) The value of the parameter c ≥ 0, which determines the space occupancy of the array C ,
having size nc bits. From above, we know that ε = max(0, 2c−1 − 1), so the smaller is c ,
the smaller is the space occupancy of C , but the larger is “expected” to be the number � of
segments of the PLA built for S .

We say “expected,” because � depends on the distribution of the points (i,xi ) on the Cartesian
plane. In the best scenario, the points lie on one line, so � = 1 and we can set c = 0. The more
these points follow a linear trend, the smaller c can be chosen and, in turn, the smaller is the
number � of segments approximating these points with error ε . Although in the worst case it
holds � ≤ min{u/(2ε ),n/2}, because of a simple adaptation of [25, Lemma 2], we will show in
Section 4 that for sequences drawn from a distribution with finite mean and variance there are
tighter bounds on �. This leads us to argue that the combination of the PLA and the array C , on
which the storage scheme of the la_vector hinges upon, is an interesting algorithmic tool to
design novel compressed rank/select dictionaries.

At this point, it is useful to formally define the interplay among S , c, and �. We argue in this
article that the number � of segments of the optimal PLA (namely, the one using the smallest �) can
be thought of as a new compressibility measure for the information present in S , possibly giving
some insights (such as the degree of approximate linearity of the data) that the classical entropy
measures do not explicitly capture. In the following, we assume c ≤ logu to avoid the case in
which nc exceeds the O (n logu) bits needed by an explicit representation of S .

Definition 2.1. Let S = {x1,x2, . . . ,xn } be a sorted sequence ofn distinct integers drawn from the
universe [u]. Given an integer parameter c ∈ {0, . . . , logu}, we define � as the number of segments
that constitute the optimal PLA of maximum error ε = max(0, 2c−1 − 1) computed on the set of
points {(i,xi ) | i = 1, . . . ,n}.

We are ready to compute the space taken by the la_vector. As far as the representation of a
segment sj = (r j ,α j , βj ) is concerned, we note that: (i) the value r j is an abscissa in the Cartesian
plane, thus it can be represented in logn bits1; (ii) the slope α j can be encoded as a rational number
with a numerator of logu bits and a denominator of logn bits [49, 63]; (iii) the intercept βj is an
ordinate in the plane, thus it can be represented in logu bits. Therefore, the overall cost of the PLA
is 2�(logn + logu) bits. Summing the nc bits taken by C gives our first result.

1For ease of exposition, we assume that logarithms hide their ceiling and thus return integers.
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Theorem 2.2. Let S be a set of n integers drawn from the universe [u]. Given integers c and � as

in Definition 2.1, a plain implementation of the la_vector takes nc + 2�(logn + logu) bits of space.

We can further improve the space taken by the segments as follows: The r j s form an increasing
sequence of � positive integers bounded by n. The βj s form an increasing sequence of � positive
integers bounded by u.2 Using the Elias-Fano representation [44, Section 4.4], we reduce the space
of the two sequences to � log n

� + � log u
� + 4� + o(�) = �(log un

�2 + 4 + o(1)) bits. Then, accessing r j

or βj amounts to calling the constant-time select(j ) on the corresponding Elias-Fano compressed
sequence. Summing the nc bits taken by C and the �(logn + logu) bits taken by the α j s gives our
second result.

Theorem 2.3. Let S be a set of n integers drawn from the universe [u]. Given integers c and � as in

Definition 2.1, there exists a more compressed version of the la_vector that takes nc + �(2 log un
� +

4 + o(1)) bits of space.

Finally, we mention the existence of a lossless compressor for the α j s that can be beneficial when
multiple segments share the same or similar slope [25, Theorem 3].

2.2 Entropy-coding the Corrections

In this section, we show how to further reduce the space of the la_vector by entropy-coding the
vector of corrections C .

Regard C as a string of length n from an integer alphabet Σ = {−ε,−ε + 1, . . . , ε }, and let nx

denote the number of occurrences of a symbol x in C . The zero-order entropy of C is defined as

H0 (C ) =
∑
x ∈Σ

nx

n
log

n

nx
.

The value nH0 (C ) is the output size of an ideal compressor that uses − log nx

n
bits for coding the

symbol x unambiguously [13, 36]. To further squeeze the output size, one could take advantage
not only of the frequency of symbols but also of their preceding context inC . LetCy be the string
of length |Cy | that concatenates all the single symbols following each occurrence of a context y
inside C . The kth order entropy of C is defined as

Hk (C ) =
1

n

∑
y∈Σk

|Cy |H0 (Cy ).

A well-known data structure achieving zero-order entropy compression is the wavelet tree [33]
with the bitvectors stored in its nodes compressed using RRR [56]. Considering the la_vector of
Theorem 2.3 but compressing C via this approach (see also [45, Theorem 8]), we obtain:

Theorem 2.4. Let S be a set of n integers drawn from the universe [u]. Given integers c and � as in

Definition 2.1, there exists a zero-order entropy-compressed version of the la_vector for S that takes

nH0 (C ) + o(nc ) + �(2 log un
� + 4 + o(1)) bits of space, and O (c ) time to access a position in C , where

C is the vector of corrections.

A well-performing high-order entropy-compressed data structure over strings drawn from an
integer alphabet is the alphabet-friendly FM-index [21, 22]. Using the alphabet-friendly FM-index
to store C , we obtain:

2This is because βj is the ordinate where sj starts, i.e., βj = fj (r j ) (see Figure 1 and the definition of fj ). In the text, we

referred to βj as the “intercept,” but this is improper, because βj is not the ordinate of the intersection between fj and the

y-axis.
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Fig. 2. The space needed by the plain corrections C , zero-order entropy-coded corrections wt_huff(C ), and

the high-order entropy-coded corrections csa_wt(C ) in a la_vector with c = 7. Next to each dataset name,

we show the density value n/u as a percentage.

Theorem 2.5. Let S be a set of n integers drawn from the universe [u]. Given integers c and � as in

Definition 2.1, there exists a kth order entropy-compressed version of the la_vector for S that takes

nHk (C ) + o(nc ) + �(2 log un
� + 4 + o(1)) bits of space, and O (c (log1+τ n)/ log logn) time to access a

position in C , where C is the vector of corrections, and τ > 0 is an arbitrary constant.

To get a practical sense of the real compression achieved by the above two entropy-compressed
versions of the la_vector, we compare experimentally the space taken by the uncompressed cor-
rections (as adopted in the plain la_vector) with the space taken by (i) a Huffman-shaped wavelet
tree with RRR-compressed bitvectors on C (implementing the solution in Theorem 2.4) and (ii) a
compressed suffix array based on a Huffman-shaped wavelet tree with RRR-compressed bitvectors
on the Burrows-Wheeler Transform of C (implementing the solution in Theorem 2.5). We denote
the space taken by these two choices by wt_huff(C ) and csa_wt(C ), respectively, given the name
of the corresponding classes in the sdsl library [28]. For csa_wt(C ), we do not take into account
the space taken by the sampled suffix array, because we do not need to support the locate query,
which returns the list of positions in C where a given pattern string occurs. Rather, to get indi-
vidual corrections from C , we need the sampled inverse suffix array, which indeed we store and
account for in the space occupancy of csa_wt(C ).

Figure 2 shows the results with a value c = 7 on four real-world datasets, described in detail in
Section 7. For the DNA dataset, there is no significant difference between the plain corrections and
the zero-order entropy-coder wt_huff(C ). Instead, the high-order entropy-coder csa_wt(C ) is 33%
smaller. For the other three datasets (5gram, URL, and Gov2), both wt_huff(C ) and csa_wt(C )
are up to 56% and 72% smaller than the plain corrections, respectively. This shows that there is
some statistical redundancy within the array of correctionsC that the la_vector could deploy to
squeeze its space occupancy further.

Another important issue to investigate concerns the impact on the compression of C that is
induced by changing the slopes of the segments in the optimal PLA computed for la_vector.
Intuitively, as depicted in Figure 3, different slope-intercept pairs satisfying the same ε-bound gen-
erate different vectors C with different entropies. As a consequence, instead of picking a random
slope-intercept pair within the ones that are ε-approximation, one can choose the slope-intercept
pair minimising the entropy of C .

For the experiment in Figure 2, we adopted the strategy that always chooses the maximum
slope among the ε-approximate segments for S . In Figure 4, we compare this strategy, which we
call mmax, with two other strategies: (i) mmid, which chooses the average slope between the
smallest and the largest feasible slopes, and (ii) best, a heuristic that selects nine slopes at regular
intervals between the smallest and the largest feasible slopes and picks the one minimising H0 (C ).
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Fig. 3. Three possible slopes, mmin, mmid, and mmax, for a segment encoding the set S = {3, 6, 10, 15, 18, 22}
with c = 3. Each slope generates a different vectorC with a different entropy:H0 (Cmmin) = 2.58,H0 (Cmmid ) =
0.65, and H0 (Cmmax ) = 2.25.

Fig. 4. A different choice of the slope of the segments in a la_vectormay yield a reduced space occupancy of

the entropy-coded correction vectorC . Here, we show three choices: mmax, mmid, and best (see Section 2.2).

For the DNA and 5gram datasets, there is no noticeable improvement in changing the slope of the
segments of the la_vector. Instead, for URL and Gov2, changing the slope of each segment from
mmax to mmid or best reduces H0 (C ). Of course, since the choice best targets only the zero-order
entropy of the corrections, the plots show little or no reduction of Hk (C ).

To sum up, we can further reduce the space occupancy of the la_vector by entropy-coding
its correction vector C . This reduction is particularly interesting in applications in which the
la_vector is used as an archival method, that is, when efficient random access and queries are
not required. In the following, we concentrate on how to support efficient select and rank queries
over S , so we explore the variant of the la_vector in which C is kept uncompressed.

3 SUPPORTING SELECT AND RANK

To answer select(i ) on the la_vector (either on the plain implementation of Theorem 2.2 or the
compressed implementation of Theorem 2.3), we build a predecessor structure D on the set R =
{r j | 1 ≤ j ≤ �} and proceed in three steps. First, we use D to retrieve the segment sj in which i
falls into via j = pred(i ). Second, we compute fj (i ), i.e., the approximate value of xi given by the
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segment sj . Third, we read C[i] and return the value � fj (i )� +C[i] as the answer to select(i ). The
last two steps take O (1) time. Treating D as a black box yields the following result:

Lemma 3.1. The la_vector supports select queries in t +O (1) time and b bits of additional space,

where t is the query time and b is the occupied space of a predecessor structureD constructed on a set

of � integers over the universe [n].

If D is represented as the characteristic bitvector of the set R augmented with a data structure
supporting constant-time predecessor queries (or rank queries, as termed in the case of bitvec-
tors [44]), then we achieve constant-time select by using only n + o(n) additional bits, i.e., about
one bit per integer of S more than what Theorem 2.2 requires. Note that this bitvector encodes R,
so the � logn bits required in Theorem 2.2 for the representation of the r j s can be dropped.

Corollary 3.2. Let S be a set of n integers drawn from the universe [u]. Given integers c and

� as in Definition 2.1, there exists a compressed representation of the la_vector for S that takes

n(c + 1 + o(1)) + �(2 logu + logn) bits of space while supporting select in O (1) time.

Let us compare the space occupancy achieved by the compressed la_vector of Corollary 3.2 to
the one of Elias-Fano, namely, n(log u

n
+ 2) + o(n) bits [44, Section 4.4], as both solutions support

constant-time select. The inequality turns out to be

� ≤
n

(
log 1

d
+ o(1)

)
2 log n

d
+ logn

= O

(
n

logn

)
,

where d = n/u denotes the density of 1s in BS .

To solve rank(x ), it would be sufficient to perform a binary search on the interval [1,n] to find
the largest i such that select(i ) ≤ x . This naïve implementation takes O (t logn) time, because of
the implementation of select in O (t ) time by Lemma 3.1.

We can easily improve this solution to O (log � + logn) time as follows: First, we binary search
on the set of � segments to find the segment sj that contains x or its predecessor. Formally, we
binary search on the interval [1, �] to find the largest j such that select(r j ) = � fj (r j )� +C[r j ] ≤ x .
Second, we binary search on the r j+1−r j ≤ n integers compressed by segment sj to find the largest
i such that � fj (i )� +C[i] ≤ x . Finally, we return i as the answer to rank(x ).

Surprisingly, we can further speed up rank queries without adding any redundancy on top of
the encoding of Theorem 2.2. The key idea is to narrow down the second binary search to a subset
of the elements covered by sj (i.e., a subset of the ones in positions [r j , r j+1 − 1]), which is deter-
mined by exploiting the fact that sj approximates all these elements by up to an additive term ε .
Technically, we know that | fj (i ) −xi | ≤ ε , and we aim to find i such that xi ≤ x < xi+1. Hence, we
can narrow the range to those i ∈ [r j , r j+1 − 1] such that fj (i ) − ε ≤ x < fj (i + 1) + ε . By expanding
fj (i ) = (i − r j ) ·α j + βj and noting that f is linear and increasing, we get all candidate i as the ones
satisfying

(i − r j ) · α j + βj − ε ≤ x < (i + 1 − r j ) · α j + βj + ε .

By solving for i , we get

x − βj

α j
+ r j −

(
ε

α j
+ 1

)
< i ≤

x − βj

α j
+ r j +

ε

α j
.

Since i is an integer, we can round the left and the right side of the last inequality, and then we set
pos = �(x − βj )/α j � + r j and err = �ε/α j �, so the searched position i falls in [pos − err, pos + err].

The pseudocode of Algorithm 2 exploits these ideas to perform a binary search on the first inte-
gers compressed by the segments (Line 1), to compute the approximate rank and the corresponding
approximation error (Lines 2 and 3), and finally to binary search on the restricted range specified
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ALGORITHM 2: Rank implementation by Lemma 3.3

Input: Value x , PLA {s1, s2, . . . , s� }, corrections C[1 . .n]
Output: Returns rank(x )

1: Find max j ∈ [1, �] such that � fj (r j )� +C[r j ] ≤ x by binary search
2: pos ← �(x − βj )/α j � + r j

3: err ← �ε/α j �, where ε = max(0, 2c−1 − 1)
4: lo ← max{pos − err, r j }
5: hi ← min{pos + err, r j+1}
6: Find max i ∈ [lo, hi] such that � fj (i )� +C[i] ≤ x by binary search
7: return i

above (Lines 4–6). As a final note, we observe that α j ≥ 1 for every j, because the elements in S are
increasing, and thus the segments have a slope of at least 1. Consequently, ε/α j ≤ ε and the range
on which we perform the second binary search has size 2ε < 2c , thus this second binary search
takes O (log ε

α j
) = O (c ) time.

Lemma 3.3. The la_vector supports rank queries in O (log � + c ) time and no additional space.

Note that Lemma 3.3 applies to: (i) the plain la_vector representation provided in Theorem 2.2
(ii) the compressed la_vector representation provided in Theorem 2.3 (the one that compresses
βj s and r j s), (iii) the representation provided in Lemma 3.1 (the one supporting select in parametric
time t ), and (iv) the representation provided in Corollary 3.2 (the one supporting select in constant
time).

We can improve the bound of Lemma 3.3 by replacing the binary search at Line 1 of Algorithm 2
with the following predecessor data structure:

Lemma 3.4 ([53]). Given a set Q of q integers over a universe of size u, let us define a = log
s log u

q
,

where s logu is the space usage in bits chosen at building time. Then, the optimal predecessor search

time is

PT(u,q,a) = Θ
(

min
{

logq/ log logu,

log
log(u/q)

a
,

log
logu

a

/
log

( a

logq
· log

logu

a

)
,

log
logu

a

/
log

(
log

logu

a

/
log

logq

a

)})
.

Let T = {select(r j ) | 1 ≤ j ≤ �} be the subset of S containing the first integer covered by each
segment. We sample one element of T out of Θ(2c ) and insert the samples into the predecessor
data structure of Lemma 3.4 so s = q = �/2c and thus a = log logu. Then, we replace Line 1 of
Algorithm 2 with a predecessor search followed by an O (c )-time binary search in between two
samples.

Corollary 3.5. The la_vector supports rank queries in PT(u, �/2c , log logu) + O (c ) time and

O ((�/2c ) logu) bits of additional space.

We can restrict our attention to the first two branches of the min-formula describing the
PT term in Lemma 3.4, as the latter two are instead relevant for universe sizes that are super-
polynomial in q, i.e., logu = ω (logq). The time complexity of rank in Corollary 3.5 then becomes

O (min{logw
�
2c , log log u

� } + c ), where w = Ω(logu) is the word size of the machine.
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4 SPECIAL SEQUENCES

For input sequences drawn from a distribution with finite mean and variance there exist bounds
on the number of segments �, as stated in the following theorem adapted from [19].

Theorem 4.1 ([19]). Let S be a set of n integers drawn from the universe [u]. Suppose that the

gaps between consecutive integers in S are a realisation of a random process consisting of positive,

independent and identically distributed random variables with mean μ and variance σ 2. Given the

integers ε and � as in Definition 2.1, if ε is sufficiently larger than σ , then � = nσ 2/ε2 with high

probability.

Plugging this result into the constant-time select of Corollary 3.2 and the rank implementation
of Lemma 3.3, we obtain the following result.

Theorem 4.2. Under the assumptions of Theorem 4.1, there exists a compressed version of the

la_vector for S that supports select in O (1) time and rank in O (log � + c ) time within n[c + 1 +

(2 logu + logn) σ 2

ε2 + o(1)] bits of space with high probability.

We stress the fact that the data structure of Theorem 4.2 is deterministic. In fact, the random-
ness is over the gaps between consecutive integers of the input data, and the result holds for any
probability distribution as long as the mean and variance are finite. Moreover, according to the ex-
periments in [19], the hypotheses of Theorem 4.1 are very realistic in several applicative scenarios.

Having said that, we observe that the hypothesis “ε is sufficiently larger than σ ” implies that
the ratio σ/ε is much smaller than 1. Hence, it is reasonable to assume that the space bound in
Theorem 4.2 is dominated by the term n(c+1) which is independent of the universe size while still
ensuring constant time select and fast rank operations. If we compare the factor c + 1 present in
the space bound of the la_vector with the factor log u

n
present in the space bound of Elias-Fano,

we notice that the latter gets larger as the data is sparse (n � u). On the other hand, the time
complexity of select is constant in both cases, whereas our rank is faster whenever log(nσ 2) is
asymptotically smaller than log u

n
, which is indeed for u = ω (n2σ 2).3

In general terms, some results of the previous sections, such as Corollary 3.2 and Lemma 3.3,
showed that our la_vector is better than Elias-Fano whenever � = O (n/ logn). Since Theorem 4.1
proves that � = Θ(n/ε2) for a large class of input sequences, we can derive that for such sequences

our solution is better than Elias-Fano if ε = ω (
√

logn).

5 ON OPTIMAL DATA PARTITIONING TO IMPROVE SPACE

So far, we assumed a fixed number of bits c ≥ 0 for each of the n corrections in the la_vector,
which is equivalent to saying that the � segments in the PLA guarantee the same error ε =
max(0, 2c−1 − 1) over all the integers in the input set S . However, the input data may exhibit a
variety of regularities that allow to compress it further if we use a different c for different par-
titions of S . The idea of partitioning data to improve its compression has been studied in the
past [9, 23, 50, 59, 62], and it will be further developed in this section with regard to our piece-
wise linear approximations.

We reduce the problem of minimising the space of our rank/select dictionary to a single-source
shortest path problem over a properly defined weighted Directed Acyclic Graph (DAG) G de-
fined as follows: The graph has n vertices, one for each element in S , plus one sink vertex denoting
the end of the sequence. An edge (i, j ) of weightw (i, j, c ) indicates that there exists a segment com-
pressing the integers xi ,xi+1, . . . ,x j−1 of S by usingw (i, j, c ) = (j − i ) c +κ bits of space, where c is
the bit-size of the corrections, and κ is the space taken by the segment representation in bits (e.g.,

3Here we are considering the rank implementation of Lemma 3.3, taking O (log �+c ) = O (log(nσ 2)) time, but an improved

analysis can be obtained by deploying the rank implementation of Corollary 3.5.
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using the plain encoding of Theorem 2.2 or the compressed encoding of Theorem 2.3). We consider
all the possible values of c except c = 1, because one bit is not enough to distinguish corrections in
{−1, 0, 1}. Namely, we consider c ∈ {0, 2, 3, . . . , cmax }, where cmax = O (logu) is defined as the cor-
rection size that produces one single segment on S . Since each vertex is the source of at most cmax

edges, one for each possible value of c , the total number of edges in G isO (n cmax ) = O (n logu). It
is not difficult to prove the following:

Fact 5.1. The shortest path from vertex 1 to vertex n + 1 in the weighted DAG G defined above

corresponds to the PLA for S whose cost is the minimum among the PLAs that use a different error ε
on different segments.

Fact 5.1 provides a solution to the rank/select dictionary problem, which minimises the space
occupancy of the approaches stated in Theorems 2.2 and 2.3.

Since G is a DAG, the shortest path can be computed in O (n logu) time by taking the vertices
in topological order and by relaxing their outgoing edges [12, Section 24.2]. However, one cannot
approach the construction of G in a brute-force manner, because this would take O (n2 logu) time
and O (n logu) space, as each of the O (n logu) edges requires computing a segment in O (j − i ) =
O (n) time with the algorithm of O’Rourke [49].

To avoid this prohibitive cost, we propose an algorithm that computes a solution on the fly by
working on a properly defined graph G′ derived from G, taking O (n logu) time and O (n) space.
This reduction in both time and space complexity is crucial to make the approach feasible in prac-
tice. Moreover, we will see that the obtained solution is not “too far” from the one given by the
shortest path in G.

Consider an edge (i, j ) of weightw (i, j, c ) in G, which corresponds to a segment compressing the
integers xi ,xi+1, . . . ,x j−1 of S by usingw (i, j, c ) bits of space. Clearly, the same segment compresses
any subsequence xa ,xa+1 . . . ,xb−1 of xi , . . . ,x j−1 still using c bits per correction. Therefore, the
edge (i, j ) “induces” sub-edges of the kind (a,b), where i ≤ a < b ≤ j, of weight w (a,b, c ). We
observe that the edge (a,b) may not be an edge of G, because a segment computed from position
a with correction size c could end past b, thus including more integers on its right. Nonetheless,
this property is crucial to define our graph G′.

The vertices of G′ are the same as the ones of G. For the edges of G′, we start from the subset of
edges of G that correspond to the segments in the PLAs built for the input set S for all the values
of c = 0, 2, 3, . . . , cmax. We call these the full edges of G′. Then, for each full edge (i, j ), we generate
the prefix edge (i, i + k ) and the suffix edge (i + k, j ), for all k = 1, . . . , j − i . This means that we
are “covering” every full edge with all of its possible “splits” in two shorter edges having the same
correction c as (i, j ). The total size of G′ is still O (n logu).

We are now ready to show that the graph G′ has a path whose weight is just an additive term
far from the weight of the shortest path in G. (Notice that this contrasts with the approaches that
obtain a multiplicative approximation factor [23, 50].)

Lemma 5.1. There exists a path in G′ from vertex 1 to vertex n + 1 whose weight is at most κ� bits

larger (in an additive sense) than the weight of the shortest path in G, where κ is the space taken by

a segment in bits, and � is the number of edges in the shortest path of G.

Proof. We show that a generic edge (i, j ) of weight w (i, j, c ) = (j − i )c + κ in G can be decom-
posed into at most two edges of G′ whose total weight is at most w (i, j, c ) +κ. The statement will
then follow by recalling that � is the number of edges in the shortest path of G.

Consider the PLA for S with the same correction size c as (i, j ). This PLA has surely one seg-
ment that either starts from i or overlaps i . In the former case, we are done, because the segment
corresponds to the edge (i, j ), which appears in G′ as a full edge. In the latter case, the segment
corresponds to a full edge (x ,y) such that x < i < y < j, and it is followed by a segment that
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corresponds to a full edge (y, z) such that z > j, as shown in the following picture. In fact, y can-
not occur after j, otherwise the segment corresponding to the edge (i, j ) would be longer, because
the length of a segment in a PLA is maximised.

Given this situation, we decompose the edge (i, j ) of G into: the suffix edge (i,y) of (x ,y), and
the prefix edge (y, j ) of (y, z). Both edges (i,y) and (y, j ) belong to G′ by construction, they have
correction size c , and their total weight isw (i,y, c ) +w (y, j, c ) = (y – i )c + κ + (j −y)c + κ = (j – i )
c + 2κ. Since w (i, j, c ) = (j – i )c + κ, the previous total weight can be rewritten as w (i, j, c ) + κ, as
claimed. �

We now describe an algorithm that computes the shortest path in G′ without generating the
full graph G but expanding G′ incrementally to useO (n) working space. The algorithm processes
the vertices of G from left to right, while maintaining the following invariant: For i = 1, . . . ,n + 1,
each processed vertex i is covered by one segment for each correction size c , and all these segments
form the frontier set J .

We begin from vertex i = 1 and compute the cmax segments that start from i and have any
possible correction size c = 0, 2, 3, . . . , cmax . We set J as the set of these segments. As in the classic
step of the shortest path algorithm for DAGs, we do a relaxation step on all the (full) edges (i, j ),
where j is the set of ending positions of the segments in J , that is, we test whether the shortest
path to j found so far can be improved by going through i (initially, the shortest-path estimates
are set to ∞ for each vertex) and update such shortest path accordingly [12, Section 24.2]. This
completes the first iteration.

At a generic iteration i , we first check whether there is a segment in J that ends at i . If so, then
we replace that segment with the longest segment starting at i and using the same correction size,
computed as usual using the algorithm of O’Rourke [49]. Afterwards, for each full edge (a,b) that
corresponds to a segment in J , we first relax the set of prefix edges of the kind (a, i ), then we relax
the set of suffix edges of the kind (i,b). This is depicted in Figure 5.

Theorem 5.2. There exists an algorithm that in O (n logu) time and O (n) space outputs a path

from vertex 1 to vertex n + 1 whose weight is at most κ� bits larger (in an additive sense) than the

shortest path of G, where κ is the space taken by a segment in bits, and � is the number of edges in

the shortest path of G.

Proof. It is easy to see that the algorithm finds the shortest path in G′. Indeed, it computes
and relaxes: (i) the full edges of G′ corresponding to the segments in a PLA with correction size c
when updating the frontier set J ; and (ii) all prefix (respectively, suffix) edges ending (respectively,
beginning) at a vertex i when this vertex is processed. Therefore, the algorithm relaxes all the
edges of G′ and, according to Lemma 5.1, it finds a path whose weight is the claimed one.

As far as the space occupancy is concerned, the algorithm usesO (n+ |J |) = O (n+ logu) = O (n)
space at each iteration, since the size of the frontier set is |J | = cmax = O (logu). The running time
isO ( |J |) = O (logu) per iteration, plus the cost of replacing a segment in J when it ends before the
processed vertex, i.e., the cost of computing a full edge. This latter cost is O (n) time for any given
value of c and over all n elements (namely, it is O (1) amortised time per processed element [49]),
thus O (n logu) time over all the values of c . �
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Fig. 5. The algorithm of Theorem 5.2 keeps a frontier with the segments (in orange) crossing the processed

vertex i for each value of the correction size c (here, cmax = 5). For each segment with endpoints ac and bc ,

which corresponds to a full edge (ac ,bc ) with correction size c , the algorithm relaxes the prefix edge (ac , i )
and the suffix edge (i,bc ).

Given Theorem 5.2, the PLA computed by our algorithm can be used to design a rank/select
dictionary that minimises the space occupancy of the solutions based on the approaches of
Theorems 2.2 and 2.3. Section 7 will experiment with this approach.

6 ON HYBRID RANK/SELECT DICTIONARIES

As recalled in Section 1.1, the literature offers a plethora of compressed rank/select dictionaries.
Some take into account the statistical or the combinatorial properties of the input, others exploit
the compressibility of clusters of consecutive integers. The compression scheme introduced in this
article, however, exploits the “geometric properties” of the input data by accommodating their
slight deviations from linear trends with the use of small correction values. The choice of the best
compression scheme in terms of space occupancy heavily depends on the characteristics of the
input data, and thus it is reasonable to expect the best gains in space if we design hybrid solutions
that combine several different approaches [4, 50, 59].

In the following, we combine the ideas of Section 5 with the hybrid rank/select dictionary of
[50] and thus design an improved hybrid rank/select dictionary. This uses a two-level scheme in
which the lower level stores S , properly partitioned into chunks (as detailed below), and the upper
level stores, for each lower-level chunk xi ,xi+1, . . . ,x j , the integer xi = select(i ), the length j−i+1,
and a pointer to the encoding in the lower level. Therefore, the amount of bits stored in the upper
level for each chunk is upper bounded by F = logu + 2 logn.

Following [50], we assign to a generic chunk xi ,xi+1, . . . ,x j a cost w (i, j ) given by the sum of
F and a cost that depends on the encoding of the elements in that chunk. If u ′ = x j − xi is the
universe size of the chunk, and n′ = j − i + 1 is the number of elements in the chunk, then the cost
of that encoding is the minimum of:

• 0 bits, ifu ′ = n′ and thus the chunk is a run (R) of consecutive integers in which rank/select

can be computed in constant time from xi and i .
• u ′ +o(u ′) bits, if we use a characteristic bitvector (BV) of size u ′ augmented with the infor-

mation to support rank and select in constant time.

• n′(�log u′

n′ � + 2) bits, if we use Elias-Fano (EF), which supports select inO (1) time and rank

in O (log u′

n′ ) time.
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• n′c + w + c + log cmax bits, if there exists one single segment approximating all elements of
the chunk with correction size c . In this case, select takesO (1) time and rank takesO (c ) time.

Note that the last cost slightly differs from the one in Theorem 2.2. Similarly to Theorem 2.2, we
use n′c bits for the vector of corrections. Differently from Theorem 2.2, we use c bits to encode the
intercept instead of logn bits, because the intercept value is guaranteed to be at most ε far from
the value i (which is already stored in the upper level of the two-level structure), and thus it can be
encoded by shifting i by an amount stored in c = Θ(log ε ) bits. Also, we encode the slope in a word
ofw bits. Finally, since we need to keep the value c (which possibly changes for each segment), we
use additional log cmax bits per segment, where cmax = O (logu) is defined as in Section 5 as the
minimum correction size that produces one single segment on S .

The overall cost in bits of the two-level structure corresponding to a partition P of S into k
chunks with endpoints 1 = i0, i1, . . . , ik = n is given by w (P ) =

∑k−1
h=0w (ih , ih+1 − 1). To solve

the problem of finding an optimal partition P that minimises w (P ), we slightly alter the algo-
rithm of [23, 50] to consider also an encoding via segments. The algorithm of [23, 50] finds in
O (n log1+ϵ

1
ϵ

) time and O (n) space a partition whose cost is only 1 + ϵ times larger than the opti-
mal one, for any given ϵ ∈ (0, 1). This is done via a left-to-right scan of S , hence for i = 1, . . . ,n,
that keeps O (log1+ϵ

1
ϵ

) sliding windows that start all from i and are such that the kth window

covers a chunk [i, j] such that either w (i, j ) ≤ F (1 + ϵ )k < w (i, j + 1) or j = n.
A crucial property used in [50] is that computing w (i, j ) for the first three encoders above

(namely, EF, BV, and R) takes constant time. Instead, computing whether there is a segment ap-
proximating the integers in a chunk requires O (n′) time. Since we need to compute a segment for
each value of c ∈ {0, 2, 3, . . . , cmax }, computing the (1 + ϵ )-optimal partition P minimising w (P )
takesO (cmax n

2 log1+ϵ
1
ϵ

) time andO (n) space in the presence of segments, where cmax = O (logu).
In Section 7.5, we experiment with an approach that uses the algorithm of Section 5 to compute a

partition inO (cmax n log1+ϵ
1
ϵ

) time andO (n + cmax ) = O (n) space. It operates by keeping a frontier
of cmax segments that overlap the corresponding window and by updating the frontier when the
window moves, as we have seen in Section 5 (see the example in Figure 5).

7 EXPERIMENTS

Our experiments were run on a machine with 40 GB of RAM and an Intel Xeon E5-2407v2 CPU.

7.1 Implementation Notes

The implementation of our la_vector is done in C++, and its code is available at https://github.
com/gvinciguerra/la_vector. In the following, we will use the notation la_vector<c>, where c
is the correction size, to refer to our plain dictionary described in Sections 2 and 3, and use
la_vector_opt to denote our space-optimised dictionary described in Section 5.

We store the segments triples sj = (r j ,α j , βj ) as an array of structures with memory-aligned
fields. This allows for better locality and aligned memory accesses. Since in practice the segments
are few (see Figure 6) and fit the last-level cache, we avoid complex structures on top of the r j s
and the select(r j )s (as suggested by Corollaries 3.2 and 3.5 to asymptotically speed up select and
rank, respectively).

To further speed up rank and select, we introduce two small tables of size 216 each that allow
accessing in one hop a narrower range of segments to binary search on. These two tables use fixed-
size cells of �log �� bits, because they index segments. Specifically, the tableT1 of size 216 partitions
the n keys into blocks of size d1 = �n/216�, so T1[k] points to the segment covering the first key
of the kth block. This way, a select(i ) query can be answered by binary searching the segments
between positionsT1[k] andT1[k+1], where k = �i/d1� is the index of the block containing the ith
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key. Similarly, the small tableT2 of size 216 partitions the universe into blocks of size d2 = �u/216�,
so T2[y] points to the segment covering the first position of block y. This way, a rank(x ) query
can be answered by binary searching the segments between positions T2[y] and T2[y + 1], where
y = �x/d2� is the index of the block containing value x .

We introduce two other algorithm engineering tricks. The first one is to copy the first correction
C[r j ] into the segment sj structure. This improves the spatial locality of Line 1 in Algorithm 2,
because both C[r j ] and the values needed to compute fj (r j ) are stored nearby. The second trick
is a two-level layout for C that reduces the number of cache misses of Line 6 in Algorithm 2.
Specifically, we split C into an array C1 storing all the corrections C[i] such that i is a multiple
of an integer d and an array C2 containing the remaining corrections. Note that because of this
split, we must slightly alter select(i ) so it accesses C1[�i/d�] if i mod d = 0, and C2[i − �i/d�]
otherwise. Then, we modify Line 6 to perform two binary searches. The first one touches only the
C[i]s such that i mod d = 0. The second one touches the Θ(d ) correction values in C2 in between
two consecutive positions found by the first binary search. Experimentally, we found that the best
performance is achieved whend is roughly four cache lines of correction values (i.e.,d = �4·512/c�
in our machine with 512-bit cache lines).

7.2 Baselines

We use the following rank/select dictionaries from the Succinct Data Structures Library (sdsl) [27]:

sd_vector: the Elias-Fano representation for increasing integer sequences with constant-time
select [48].

rrr_vector<t>: a practical implementation of the H0-compressed bitvector of Raman, Raman
and Rao with t-bit blocks [11, 56].

enc_vector<γ/δ , s>: it encodes the gaps between consecutive integers via either Elias γ - or
δ -codes. Random access is implemented by storing, with sample rate s , an uncompressed
integer and a bit-pointer to the beginning of the code of the following gap. We implemented
rank via a binary search on the samples, followed by the sequential decoding and prefix sum
of the gaps in-between two samples.

We also use the following rank/select dictionaries from the Data Structures for Inverted Indexes
(ds2i) library [50]:

uniform_partitioned: it divides the input into fixed-sized chunks and encodes each chunk
with Elias-Fano.

opt_partitioned: it divides the input into variable-sized chunks and encodes each chunk
with Elias-Fano. The endpoints are computed by a dynamic programming algorithm that
minimises the overall space.

In both structures above, endpoints and boundary values of the chunks are stored in a separate
Elias-Fano data structure. For a fair comparison, we disallow the use of encoding schemes for
chunks different from Elias-Fano, and we defer the experimentation of such hybrid rank/select
dictionaries to Section 7.5.4

To widen our experimental comparison, we also use:

rle_vector<b>: it implements a run-length encoding of the input bitvector by alternating
the lengths of runs of 0s and 1s, coded in VByte (but over nibbles). To support efficient

4We ought to mention that hybrid encoding schemes were not correctly disabled in the conference version [8]. This error

caused Partitioned Elias-Fano to have an advantage of 41% space, 8% select time, and a disadvantage of 2% rank time.

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 24. Publication date: October 2022.



A Learned Approach to Design Compressed Rank/Select Data Structures 24:19

Table 2. Characteristics of the Datasets

Dataset Density n/u n (M) u (M) Size in MiB

Gov2 avg +10M (53.0%) 53.04% 13.06 24.62 49.81
Gov2 avg 1M–10M (13.4%) 13.37% 3.29 24.62 12.56
Gov2 avg 100K–1M (1.3%) 1.29% 0.31 24.56 1.20

URL (5.6%) 5.58% 57.97 1,039.92 221.16
URL (1.3%) 1.30% 13.55 1,039.91 51.72
URL (0.4%) 0.36% 3.73 1,039.86 14.23

5gram (9.8%) 9.85% 145.39 1,476.73 554.64
5gram (2.0%) 1.98% 29.19 1,476.72 111.80
5gram (0.8%) 0.76% 11.21 1,476.68 42.79

DNA (30.0%) 30.02% 300.23 999.99 1,145.32
DNA (6.0%) 6.00% 60.03 999.99 229.00
DNA (1.2%) 1.20% 12.00 999.99 45.79

operations, two separate sd_vectors store, for each b-byte block, the position and the rank
of the first 1-bit in the block. [40].5

s18_vector<b>: it uses gap and run-length encoding to compress the input bitvector via a
sequence of 32-bit codes. To support efficient operations, it stores rank and select samples
every b codes [5].

7.3 Datasets

We test lists of integers originating from different applications. We select these lists so their density
n/u vary significantly, viz. up to three orders of magnitude. The universe sizeu never exceeds 232−1,
because the implementations in ds2i only support 32-bit integers. We use the following datasets,
whose characteristics are summarised in Table 2:

Gov2 is an inverted index built on a collection of about 25M .gov sites, in which document
identifiers were assigned according to the lexicographic order of their URLs [50]. In Figures 2,
4, and 6, we use the longest inverted list, which has a density of 76.6%. In Figures 7 and 8, we
instead test all solutions over each list separately and average the results over lists of lengths
100K–1M, 1M–10M, and >10M. This grouping of lists by length induces an average density
of 1.29%, 13.37%, and 53.04%, respectively.

URL is a text file of 1.03 GB containing URLs originating from three sources, namely, a human-
curated web directory, global news, and journal articles’ DOIs.6 On this file, we first applied
the Burrows-Wheeler Transform (BWT), as implemented by [16], and then we generated
three integer lists by enumerating the positions of the ith most frequent character in the
resulting BWT. The different list sizes (and densities) were achieved by properly setting i ,
and they were 3.7M (0.36%), 13M (1.30%), and 57M (5.58%).

5gram is a text file of 1.4 GB containing 60M different five-word sequences occurring in books
indexed by Google.7 As for URL, we first applied the BWT and then generated three integer
lists of sizes (densities): 11M (0.76%), 29M (1.98%), and 145M (9.85%).

5The implementation of rle_vector is available at https://github.com/vgteam/sdsl-lite.
6Available at https://kaggle.com/shawon10/url-classification-dataset-dmoz, https://doi.org/10.7910/DVN/ILAT5B, and

https://archive.org/details/doi-urls, respectively.
7Available at https://storage.googleapis.com/books/ngrams/books/datasetsv3.html.
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Fig. 6. The ratio between the number of segments � and the size n of the largest datasets at different correc-

tion sizes c .

DNA is the first GB of the human reference genome.8 We generated an integer list by enumer-
ating the positions of the A nucleobase. Different densities were achieved by randomly delet-
ing an A-occurrence with a fixed probability. The list sizes (and densities) are 12M (1.20%),
60M (6.00%), and 300M (30.02%).

As a first experiment, we show in Figure 6 that the number of segments � composing the optimal
PLA of the various input datasets is orders of magnitude smaller than the input size. These figures
make our approach very promising, as argued at the beginning of this article. The following exper-
iments will assume c ≥ 6 for la_vector<c> because, on these datasets, smaller values of c make �
too large and thus the space occupied by the segments becomes significantly larger than the space
taken by the correction array C .

7.4 Experiments on rank and select

We now experiment with the time and space performance of rank/select dictionaries by running
them on each dataset (of size n) with a batch of 0.2n random queries. For clarity and significance
of the plots, we only show the implementations that use less than 16 bits per integer and whose
average query time is not too high with respect to the others.

7.4.1 Performance of Select. Figure 7 shows the results for select. We notice that our
la_vector<c> variants consistently provide the best time performance. This comes at the cost
of requiring c bits per integer, plus the cost of storing the segments. For very low densities (plots
in the first column) and low values of c , the overhead due to the segments may exceed the cost
of storing C (see, e.g., 5gram and DNA, where the set of la_vector configurations is U-shaped).
This unlucky situation is solved by la_vector_opt, which avoids the tuning of c by computing
the PLA that minimises the overall space, possibly adopting different c for different segments. Note
that la_vector_opt is always faster than the plain Elias-Fano encoding (i.e., sdsl::sd_vector),
except for large densities in DNA (i.e., 30%), and it is also more compressed on the Gov2, 5gram,
and URL datasets.

8Available at https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39.
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The other Elias-Fano encodings are generally fast as well, with ds2i::uniform_partitioned
and opt_partitioned being more compressed but roughly 50 ns slower than sdsl::sd_vector
due to the use of a two-level structure. In any case, our la_vector_opt and la_vector<c> are not
dominated by these advanced Elias-Fano variants over all the datasets, except for large densities
in DNA.

For what concerns sdsl::enc_vector and sdsl::rrr_vector, they are pretty slow although
offering very good compression ratios. The slow performance of select in the latter is due to its
implementation via a combination of a binary search on a sampled vector of ranks plus a linear
search in-between two samples (see [44, Section 4.3]).

The same goes for s18_vector, which is very succinct but not fast; in fact, it is only on the
Pareto frontier of the URL dataset.

Finally, we notice that rle_vector is dominated in time and space by some other data structure
on all the datasets except for URL (0.4%).

7.4.2 Performance of Rank. Figure 8 shows the results for rank. We observe that
sdsl::rrr_vector and sdsl::sd_vector achieve the best time performance with la_vector
following closely, i.e., within 120 ns or less. However, at low densities (first column of Figure 8),
sdsl::rrr_vector has a very poor space performance, more than 10 bits per integer.

Not surprisingly, sdsl::enc_vector< ·, s> has often the slowest rank, because it performs a
binary search on a vector of n/s samples, followed by the linear decoding and prefix sum of at
most s gaps coded with γ or δ .

s18_vector is very succinct but not fast; in fact, it is only on the Pareto frontier of the URL
dataset, as it occurred for the select query.
rle_vector is dominated in time and space by some other data structure on all the datasets

except for URL (0.4%), as it occurred for the select query.
Note that for Gov2, URL, and 5gram our la_vector_opt falls on the Pareto frontier of Elias-

Fano approaches, thus offering an interesting space-time tradeoff also for the rank query.

7.4.3 Discussion on the Space-time Performance. Overall, sdsl::rrr_vector provides the
fastest rank but the slowest select. Its space is competitive with other implementations only for
moderate and large densities of 1s.

The Elias-Fano approaches provide fast rank and moderately fast select in competitive space. In
particular, the plain Elias-Fano (sdsl::sd_vector) offers fast operations but in a space competi-
tive with other structures only on DNA; while the partitioned variants of Elias-Fano implemented
in ds2i offer the best compression but at the cost of slower rank and select. On low densities of the
DNA datasets (i.e., 6.0% and 1.2%) the implementations of ds2i provide the best time and space
performance.
sdsl::enc_vector< ·, s> provides a smooth space-time tradeoff controlled by the s parameter,

but it has non-competitive rank and select operations.
s18_vector is very succinct but provides generally slow rank and select operations. It is only

on the Pareto frontier of the URL datasets.
rle_vector is only on the Pareto frontier of URL (0.4%).
Our la_vector<c> offers the fastest select, competitive rank, and a smooth space-time tradeoff

controlled by the c parameter, where values of c ≥ 6 were found to “balance” the cost of storing
the corrections and the cost of storing the segments. Our space-optimised la_vector_opt in most
cases (i) dominates the space-time performance of la_vector<c>; (ii) offers a select that is faster
than all the other tested approaches; (iii) offers a rank that is on the Pareto frontier of Elias-Fano
approaches.

Finally, for the construction times over the various datasets, we report that la_vector<c> (we
averaged over the values of c used in Figures 7 and 8) builds 1.41× faster than sdsl::enc_vector,
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Fig. 7. Space-time performance of the select query.

2.45× faster than sdsl::rrr_vector, 9.74× faster than s18_vector, and 1.89× slower than
sdsl::sd_vector. For what concerns the space-optimised la_vector_opt, it builds 82.18× slower
than the plain la_vector<c>, and 2.41× slower than the homologous space-optimised Elias-Fano
(i.e., ds2i::opt_partitioned). Future work is needed to improve the construction performance
of la_vector_opt.
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Fig. 8. Space-time performance of the rank query.

7.5 Experiments on Hybrid Rank/select Dictionaries

We evaluate the hybrid structure of Section 6 that combines segments, Elias-Fano (EF), plain
bitvectors (BV), and runs (R) of consecutive integers. We look in particular at how many chunks
and how many integers are encoded via segments, and thus the impact of our “geometric” approach
on the hybrid rank/select dictionary of [50].
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Table 3. Number of Chunks in the Hybrid Approach of Section 6 that Are Better

Compressed by a Segment (Plus Corrections)

Dataset # of chunks that
use a segment

% of chunks that
use a segment

% of integers coded
with segments

Gov2 avg +10M (53.0%) 2,217 11.21% 12.43%
Gov2 avg 1M–10M (13.4%) 424 4.57% 9.53%
Gov2 avg 100K–1M (1.3%) 44 2.74% 4.91%

URL (5.6%) 30,396 15.35% 22.69%
URL (1.3%) 7,356 10.02% 9.99%
URL (0.4%) 2,093 26.76% 54.97%

5gram (9.8%) 31,911 8.44% 14.44%
5gram (2.0%) 5,640 5.10% 13.49%
5gram (0.8%) 1,640 3.41% 6.88%

DNA (30.0%) 215 0.03% 0.01%
DNA (6.0%) 0 0% 0%
DNA (1.2%) 0 0% 0%

From the results in Table 3, we notice that the segments are chosen as encodings of the chunks
in all the datasets except for DNA (6.0%) and DNA (1.2%). The overall amount of chunks that use
segments is below 16% except for URL (0.4%), where the number of chunks that use segments is
very large, namely, 26.76%.

As far as the percentage of integers encoded with each compression scheme is concerned,
Figure 9 shows that segments are often selected as the best compression scheme for a substan-
tial part of every dataset. In particular, half of the URL (0.4%) dataset is encoded with segments.
Therefore, we argue that our “geometric” approach can compete with well-established succinct
encoding schemes.

Looking at Figure 9, it is also clear that segments mainly substitute the run encoding (R). This
could seem counter-intuitive, since R uses 0 bits of space. But this can be explained by the fact that,
for each chunk, we need to store some metadata (namely, the first integer of the chunk, its length,
and a pointer), and thus we can get better compression by reducing the overall number of chunks,
as the introduction of segments does. For example, consider a characteristic bitvector composed
of x equally long runs of 1 that are separated by a single 0. R would need x chunks to encode
that and so x sets of metadata. Instead, just one segment is able to represent the x runs using a
few bits per integer and just one set of metadata. Indeed, once we introduce the segments as an
encoding scheme, the total number of chunks always decreases, up to 15%. A situation similar to
the previous example often happens in the BWT of highly repetitive texts, and this explains the
high presence of our encoding scheme in the URL and 5gram datasets.

Overall, the hybrid structure of Section 6 that combines segments, EF, BV, and R is able to use up
to 1.34% less space and be just 6.5% slower on average both on rank and select than the hybrid so-
lution without the segments. The space reduction on these datasets may not seem very impressive,
but we remind the reader that the improved solution uses state-of-the-art encoders and thus it is
already very squeezed. Finally, we observe that our hybrid solution turns out to be slightly slower
because of the few more mathematical operations needed to work on segments in the place of R.

8 CONCLUSIONS AND FUTURE WORK

We have shined a new light on the classical problem of designing rank/select dictionaries by show-
ing a connection between the input data and the geometry of a set of points in a Cartesian plane
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Fig. 9. Percentage of integers encoded with each compression scheme.

suitably derived from them. We have introduced new data structures based on this idea and proved
their good theoretical bounds and competitive experimental performance with respect to several
well-established approaches.

For future work, we mention the study of a relation between classical compressibility measures,
such as entropy, and the measure introduced in Section 2.1 based on the number of segments ε-
approximating the input data. For what concerns Section 2.2, we argue that the space of la_vector
can be further improved by computing segments in such a way that the statistical redundancy
of the correction values in C is increased. This could be possibly achieved by jointly optimising
the space occupied by the segments and the space occupied by the compressed C , playing on
both the segments’ lengths and their correction values. We also mention the use of vectorised
instructions [37] to achieve fast compression and fast scanning of the corrections inC . Finally, we
suggest an in-depth study, design, and experimentation of hybrid rank/select structures, possibly
integrating nonlinear models.
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