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Abstract: Grapevine water status strongly impacts vine yield and berry quality, hence the importance of 
a cost- and time-effective methodology to estimate it in commercial vineyards. A two-year experiment 
was carried out in a rainfed commercial vineyard (cv. ‘Vermentino’ grafted on ‘1103P’) to test the abili-
ty of vegetation indices (VIs) derived from Sentinel-2 (S2) multispectral imagery in estimating the stem 
water potential (Ψstem). The S2 VIs calculated including NIR and SWIR bands (NDMI, MSI and NMSI), 
performed better (R2 values of 0.66, 0.66 and 0.59, respectively) than those calculated using the bands 
in the VIS-NIR region (R2 values 0.47, 0.58 and 0.58 for NDVI, GNDVI and NDWI, respectively). The 
slope between B8a and B11 bands was also significantly affected by grapevine water status. The differ-
ent weather conditions occurred during the two experimental years also allowed to observe as the S2 
VIs performed better in estimating Ψstem under prolonged drought conditions. Moreover, S2 VIs were 
not able to detect differences in grapevine water status during the onset of water stress condition. 
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1. Introduction 

Water availability is the main environmental factor limiting crop growth and productivity in the 
Mediterranean region. Dramatic changes in temperature and erratic precipitation patterns will likely 
make drought events more frequent due to climate change (Guiot et al., 2016). The strong impact of 
water status on vine productivity and berry quality makes it essential to monitor it carefully to achieve 
the set yield and quality goals. 

Vine water status is commonly quantified by measuring the leaf water potential using the Sholander 
pressure chamber (Scholander et al., 1965). Predawn leaf water potential (ΨPD), midday leaf water 
potential (Ψl) and stem water potential (Ψstem) are the three methods used to assess the plant water status 
(Choné et al., 2001; Schultz, 1996; Williams et al., 1994). The midday stem water potential is often used 
to monitor the grapevine water status and it is measured at midday after darkening the leaf for at least 
one hour in order to balance the water status of the leaf and stem (Choné et al., 2001). Vineyards are 
normally maintained within a safe Ψstem range which should not drop below -1.5 MPa, in order to avoid 
cavitation, turgor loss and leaf shedding (Charrier et al., 2018). In irrigated vineyards, deficit irrigation 
protocols potentially allow to fine tune the grapevine water stress according to the final farm goals in 
terms of yield and wine quality (Caruso et al. 2023; Castellarin et al., 2007; Intrigliolo and Castel, 
2010). Ψstem thresholds vary depending on grapevine varieties, phenological stages and oenological 
objectives (Basile et al., 2011; Girona et al., 2009; Palai et al., 2022). Given the impact of grapevine 
water status on vineyard performances it is crucial being able to quantify the level of water stress, to 
identify the vineyard zones most vulnerable to water stress, and to timely determine when water stress 
occurs. The spatial variability within the vineyard, often induced by soil heterogeneity, further compli-
cates this task. Despite the grapevine water status monitoring can be potentially addressed using the 
Sholander pressure chamber, the high cost of time and labor of this methodology under high spatial vari-
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ability conditions make it poorly suited to this task. 
Remote sensing can be an alternative and effective tool to address this issue. Satellite, aircraft and 

unmanned aerial vehicles (UAVs) are the main platforms used to acquire remote sensing images 
(Matese et al., 2015). Thermal images acquired from aircraft or drones allow to calculate the crop water 
stress index (CWSI) which provide information on plant water status, being well correlated with Ψstem in 
orchards and vineyards (Baluja et al., 2012; Caruso et al., 2022). Multispectral images from the same 
platforms have also been used to estimate grapevine water status and identify homogeneous zones with-
in the vineyard for precise irrigation management (Bellvert et al., 2012). The battery capability and the 
aviation regulation limit the area which UAV can covers, whereas the main critical drawbacks of the air-
craft surveys are related to their cost (Matese et al., 2015). 

Satellite multispectral images, despite the lower spatial resolution with respect to those acquired 
from aircraft and UAVs, have been increasingly used for crop monitoring due to their ability to cover 
large areas and to provide a timely overview of crop conditions. Moreover, the free and open access 
database of some satellites, such as Sentinel-2 (S2), represents a further important advantage for future 
farms operational services. Despite the medium-low spatial resolution (10 m to 20 m) of S2 images their 
spectral [12 bands in the visible (VIS) to Short-Wave Infrared (SWIR) regions] and temporal (5 days 
revisit time) resolution makes S2 dataset an interesting and versatile tool for crop monitoring (Transon 
et al., 2018; Weiss et al., 2020).  

Previous studies demonstrated that combining the spatial, spectral and temporal resolution of S2 
images it is possible to monitor vineyards at large scale highlighting the spatial variability (Di Gennaro 
et al., 2019). Medium- and low-resolution multispectral images were used to predict grapevine yields 
(Sun et al., 2017) and leaf area index (LAI) (Anderson et al., 2004; Leolini et al., 2023), and to quantify 
the impact of heatwaves on the vineyard (Cogato et al. 2019).  

The objective of this work was to evaluate whether the VIs retrieved from Sentinel-2 images can be 
used to estimate grapevine water status in a rainfed vineyard. The effect of the rainfall distribution with-
in the season on the ability of VIs in Ψstem estimation was also evaluated. 

2. Materials and Methods  

2.1 Experimental site and plant material 

The experiment was carried out during the growing seasons 2022 and 2023 in a 5-year-old rainfed 
vineyard (Vitis vinifera L.) cultivar ‘Vermentino’ grafted on ‘1103 Paulsen’ (V. rupestris x V. 
berlandieri) located in Tuscany (Italy, 43°57 N, 10° 74’ E). Vines were planted in a sandy-loam soil at a 
0.8 x 2.3 m spacing (NorthEast -SouthWest row orientation) and Guyot pruned and trained with a verti-
cal shoot positioning. The soil was managed at alternate rows maintaining a permanent spontaneous 
grass or sowing a mixture of cover crops (Vicia villosa Roth, Phacelia tanacetifolia Benth), x 
Triticosecale Wittmack) after harvest and terminating them with a roller crimper (Clemens GmbH & 
Co. KG, Wittlich, Germany) at mid-May.  

The climatic conditions over the study period were monitored using a weather station iMETOS 
IMT 300 (Pessl Instruments GmbH, Weiz, Austria) installed on site. Annual precipitation and reference 
evapotranspiration (ET0) were 718 and 996 mm in 2022, respectively, and 688 and 1077 mm in 2023. 
During the summer period (June 21 – September 21), the effective rainfall, calculated as 75% of the 
daily rainfall, and ET0 were 96 and 358 mm, in 2022, and 28 and 421 mm in 2023. The average mean 
air temperature over the same period was 24.3 and 24.2 °C in 2022 and 2023, respectively.  

According to the S2 pixels grid, six 20 x 20 m square plots were selected at different positions with-
in the vineyard (Figure 1). Within each plot, three sub-plots were selected on different locations (black 
dots in Figure 1). In each sub-plot the stem water potential (Ψstem) was measured on three adjacent vines, 
for a total of nine Ψstem measurements per plot (Figure 1). The Ψstem was measured between 12.00 and 
14.00 using a Scholander-type pressure chamber (PMS Instruments, model 600, Albany, OR, USA). 
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The Ψstem was measured on one fully expanded leaf per plant inserted near the trunk and covered with 
aluminum foil for at least 1.5 h before measurements to block leaf transpiration as reported in Caruso et 
al. (2023). 

Figure 1. Commercial vineyards used in this study. Black squares represent the six 20 x 20 m plots 
selected at different positions within the vineyard. Each plot corresponds to the 20 x 20 m S2 pixel. 
Within each plot, three sub-plots were selected on different locations (black dots) where Ψstem was mea-
sured on three adjacent vines. Image from Google Earth (4 June 2021). 

2.2 Satellite Multispectral Imagery and vegetation indices 

All the imagery used for this study have been acquired from the constellation of S2 as Level 2A 
products. Sentinel-2A orthoimages are reflectance calibrated and orthoprojected in WGS84/UTM. A 
total of ten cloud-free images (five images per year) were downloaded from Copernicus Open Access 
hub (https://scihub.copernicus.eu/, last access on 15 September 2023) selecting those acquired as close 
as possible to the dates of Ψstem measurements (Table 1). The S2 provides images in the visible (VIS), 
near infrared (NIR) and shortwave infrared (SWIR) range of the electromagnetic spectrum. The central 
wavelength, the bandwidth and the spatial resolution of the six bands used in this study are reported in 
Table 2.  
 
Table 1. Date (DOY) of the Ψstem measurements and of Sentinel-2 images acquisition. 

2022 2023
DOY Ψstem DOY Sentinel-2 DOY Ψstem DOY Sentinel-2

143 146 162 162
192 197 181 179
210 214 209 205
244 241 229 228
248 248 254 252



Italus Hortus 2023, 30(3), pp 70-79

73

Table 2. Spectral bands for the Sentinel-2 sensors considered in this study. Radiometric resolution: 12 
bits; Temporal resolution: 5 days. GSD, ground sample distance. 

Spectral band Central wavelength (nm) Band Width (nm) GSD (m)

B3 (Green) 560 35 10

B4 (Red) 665 30 10

B8 (Near Infrared) 842 115 10

B8a (Near Infrared Plateau) 885 20 20

B11 (Short wave Infrared 1) 1610 90 20

B12 (Short wave Infrared 2) 2019 180 20

A list of vegetation indices derived from S2 images, and their corresponding formula, are reported 
in Table 3. The six VIs have been calculated using spectral reflectance ranging from the visible (VIS) to 
the shortwave infrared (SWIR) bands based on reports from the literature for applications on viticulture 
(Cohen et al., 2019; Helman et al., 2018). 

Table 3. Formulation of the six vegetation indices tested in this study. From Modified Copernicus 
Sentinel Data-Sentinel Hub (2023). For the calculation of NDMI and MSI the B8a band was used. 
Index Equation

Normalized Difference Vegetation Index (NDVI)
B8 - B4 

B8 + B4 

Green Normalized Difference Vegetation Index (GNDVI)
B8 - B3 

B8 + B3

Normalized Difference Water Index (NDWI)
B3 - B8 

B3 + B8

Normalized Difference Moisture Index (NDMI)
B8a - B11 

B8a + B11

Moisture Index (MSI)
B11 

B8a

Normalized moisture stress index (NMSI)
B8a - B12 

B8a + B12

2.3 Data Processing and Statistical Analysis 

Ten S2A images were analysed during the study period 2022-2023 (five images per year). For each 
image the mean values of the different VIs evaluated in this study were calculated for each of the six 
selected plots, generating a dataset of VIs values time-series for every plot. Image and spatial data pro-
cessing have been performed with ArcGIS Pro software version 10.3 (Environmental Systems Research 
Institute, ESRI, Redlands, CA, USA). The statistical relationship between remote sensing data (VIs 
time-series dataset) and Ψstem measurements were analyzed by Pearson correlation coefficient using lin-
ear relationships in order to estimate which VIs show significant correlation with Ψstem. Regression 
analyses were performed using JMP Pro 16.1 (SAS Institute Inc., Drive Cary, NC, USA). 

3. Results 

The Ψstem seasonal courses in 2022 and 2023 were clearly affected by the different meteorological con-
ditions over the two experimental years (Figure 2).  
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Figure 2. Seasonal course of Ψstem (dots) and daily rainfall (bars) in 2022 (black dots, black bars) and 
2023 (white dots, blue bars, respectively). For Ψstem each symbol represents the mean ± standard error of 
54 Ψstem measurements. 
 

In particular, 2022 was characterized by a prolonged drought period between May and mid-August, 
whereas in 2023 the drought period began at mid-June and continued until mid-September, with only 
four rainfall events accounting for a total of 35 mm. Being the vineyard under rainfed condition the 
grapevine water status changed during the season accordingly to the precipitation and ET0. In 2022, 
Ψstem showed an early and constant decline from the end of May (DOY 143, -0.33 MPa) until mid-
August (DOY 210, -1.04 MPa), when a precipitation event of 40 mm occurred (Figure 2). The Ψstem 
remained quite stable until the end of August (DOY 210, -1.07 MPa) and increased to values of non-
water stressed vines (-0.41 MPa) on 20 September (DOY 263) after 50 mm precipitation (Figure 2). In 
2023 the decrease in Ψstem started later during the season and was slower than in 2022. Grapevines 
showed a good water status (Ψstem of -0.50 MPa) until the end of July (DOY 209). Lower values of Ψstem 
were measured on DOY 229 and 254 (Ψstem of -0.66 and -1.08 MPa, respectively) (Figure 2).  

The seasonal courses of NDVI, GNDVI, NDWI, NDMI, MSI and NMSI in 2022 and 2023 are 
reported in Figure 3. In 2022 a consistency between the time series patterns of the vegetation indices 
derived from Sentinel-2 and the Ψstem ones was evident during the entire study period (from DOY146 to 
DOY 248), whereas in 2023 it was observed only from mid-July to early September (DOY 205 to 252) 
(Figure 3).  
Figure 4 reports the changes in the spectral values of the selected plots during the growing seasons in 
2022 and 2023. A general reduction in reflectance values was observed from May to September in both 
years. Moreover, changes in the ratio between the reflectance values of some individual bands were also 
observed depending on the grapevine water status. In particular, the slope between B8a and B11 bands 
changed from negative (Ψstem above -0.70 MPa) to positive (Ψstem below -0.90 MPa) values during the 
season (Figure 2). 
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Figure 3. Seasonal course of NDVI, GNDVI, NDWI, NDMI, MSI and NMSI in 2022 (black dots) and 
2023 (white dots). Each symbol represents the mean ± standard deviation of the six selected plots. 

Figure 4. Spectral reflectance values of the selected plots at different dates of image acquisition in 2022 
and 2023. Each symbol represents the mean ± standard deviation of six plots. 



Italus Hortus 2023, 30(3), pp 70-79

76

All the relationships between the S2 derived VIs (NDVI, GNDVI, NDWI, NDMI, MSI and NMSI) 
and Ψstem were significant (p < 0.05) when both years were plotted together. (Figure 5). The VIs NDMI 
and MSI showed the strongest relationships with Ψstem (R2 = 0.66). Among the three VIs including the 
SWIR bands, the NMSI showed the lowest coefficient of determination values (R2 = 0.59). The VIS-
NIR indices showed slightly lower R2 values (0.47, 0.58 and 0.58 for NDVI, GNDVI and NDWI, 
respectively). No significant relationships between all the S2 VIs and grapevine water status at Ψstem val-
ues above -0.45 MPa were measured (data not shown). 

Figure 5. Relationship between the VIs derived from S2 images (NDVI, GNDVI, NDWI, NDMI, MSI 
and NMSI) and the Ψstem in 2022 (full symbols) and 2023 (empty symbols). Each symbol represent one 
experimental plot. Regression equations: A) NDVI = 0.07 Ψstem + 0.36, R2 = 0.47; B) GNDVI = 0.05 
Ψstem + 0.37, R2 = 0.58; C) NDWI = -0.05 Ψstem - 0.37, R2 = 0.58; D) NDMI = 0.09 Ψstem + 0.08, R2 = 
0.66; E) MSI = -0.17 Ψstem + 0.85, R2 = 0.66; F) NMSI = 0.11 Ψstem + 0.24, R2 = 0.59. 

4. Discussion 

The climatic conditions over the two experimental years were different between each other and 
affected the grapevine water status patterns. In 2022 a drought period began in late May and lasted until 
mid-August. In 2023, grapevines grew under no water limitation until the end of July, then a drought 
period occurred until the beginning of September. Previous studies have demonstrated the effect of tim-
ing, as well as intensity, of water stress on grapevine vegetative growth, yield parameters, and berry 
quality (Basile et al., 2011; Caruso et al., 2023; Castellarin et al., 2007; Girona et al., 2009; Palai et al., 
2022; Palai et al., 2023).  

The results of this study allow to derive some considerations on the use of S2 data to estimate the 
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grapevine water status. First, the S2 VIs calculated including NIR and SWIR bands, in particular NDMI 
and MSI, performed better than those calculated using the bands in the VIS-NIR region. Similar results 
have been observed in a previous study carried out in Israel in commercial vineyards where different 
models using VIS, NIR and SWIR bands were tested for the Ψstem prediction (Cohen et al., 2019). On 
the light of these results the indices obtained including the SWIR bands appear to perform better at a 
commercial level even considering their lower spatial resolution (20 m), with respect to that obtainable 
using VIS or NIR bands. Second, the S2 VIs were in general not able to detect differences in grapevine 
water status during the onset of water stress condition. This could explains the general lack of consisten-
cy between Ψstem and VIs patterns in 2023 when the Ψstem remained above -0.45 MPa until the end of 
July. On the contrary, the relationships between the VIs tested in this study (NDVI, GNDVI, NDWI, 
NDMI, MSI and NMSI) and the Ψstem were more evident at higher level of water stress, highlighting the 
higher ability in water status monitoring of S2 VIs under medium-high drought conditions. The weak 
relationship between VIs and Ψstem under medium-high soil water availability may be attributable to the 
greater impact of grass cover, in terms of both soil cover and grass vigor, on the S2 images (Palazzi et 
al., 2023). Therefore, the variability in VIs values observed in 2023 during the period between late 
spring and early summer may be due to variation in vineyard vigor rather than vineyard water status. An 
opposite scenario occurred in 2022 when the early and prolonged drought conditions induced a progres-
sive drying out of the grass cover in parallel with an increasing drought condition of the vineyard, with 
Ψstem values falling to -0.6 MPa in mid-June and in constant decrease until the end of August. An almost 
constant decrease of Ψstem and VIs values derived from high-resolution (3 m) PlanetScope satellite 
images was also observed in a previous experiment carried out in commercial vineyards located in areas 
characterized by medium-to-severe water deficit conditions during the entire growing season (Helman 
et al., 2018). 

The impact of the understory vegetation on the mixed pixel spectral response opens to further con-
siderations about the effect of the soil management practices on vineyard monitoring using satellite 
images. The satisfactory results obtained in this study could be due, at least in part, to the dead mulching 
technique applied to half of the vineyard floor. This technique, reducing weed growth, allows for a more 
uniform vegetation understory background. In general, in Mediterranean region, where the grass is usu-
ally not very vigorous in summer, or in vineyards where the soil is periodically tilled during the vegeta-
tive season, the impact of both soil and understory vegetation background is limited (Pinel et al., 2021). 
In a previous study carried out in a vineyard without any vegetation cover in the inter-row a strong cor-
relation was found between S2 and UAV-acquired data at both field (R2= 0.87) and sub-field scale (R2= 
0.84) (Sozzi et al., 2020). Similarly, the different grapevine canopy cover, depending on the develop-
mental stage and/or by the vine vigour, strongly affected the pixel value as observed in previous studies 
focused on the impact of the grapevine canopy cover on satellite vegetative indices using multispectral 
images acquired by both UAV and satellites (Leolini et al., 2023; Pinel et al., 2021; Sozzi et al., 2020). 
Pinel et al. (2021) suggested to determine a threshold of grapevine canopy cover below which the 
grapevine water status would not be estimated because the insufficient grapevine leaf area would made 
the derived VIs not representative of the grapevine Ψstem.  

5. Conclusions 

The vegetative indices derived from S2 images showed a different ability in estimating Ψstem 
depending on the spectral band used for their calculation and on the level of water stress experienced by 
the monitored vines. The VIs including NIR-SWIR bands performed better than those including only 
VIS-NIR ones. Significant relationships between VIS and Ψstem were measured at values below -0.45 
MPa, whereas at higher level of soil water availability the vineyard variability was mainly linked to the 
vineyard vigour than water status. Further investigations are needed to characterize the impact of soil 
management on S2 VIs performances in grapevine water status estimation. 
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