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Range filters allow checking whether a query range intersects a given set of keys with a chance of returning a
false positive answer, thus generalising the functionality of Bloom filters from point to range queries. Existing
practical range filters have addressed this problem heuristically, resulting in high false positive rates and query
times when dealing with adversarial inputs, such as in the common scenario where queries are correlated
with the keys.

We introduce Grafite, a novel range filter that solves these issues with a simple design and clear theoretical
guarantees that hold regardless of the input data and query distribution: given a fixed space budget of 𝐵 bits per
key, the query time is𝑂 (1), and the false positive probability is upper bounded by ℓ/2𝐵−2, where ℓ is the query
range size. Our experimental evaluation shows that Grafite is the only range filter to date to achieve robust
and predictable false positive rates across all combinations of datasets, query workloads, and range sizes, while
providing faster queries and construction times, and dominating all competitors in the case of correlated queries.

As a further contribution, we introduce a very simple heuristic range filter whose performance on uncorre-
lated queries is very close to or better than the one achieved by the best heuristic range filters proposed in the
literature so far.

CCS Concepts: • Theory of computation→ Bloom filters and hashing; • Information systems→
Unidimensional range search.
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1 INTRODUCTION
Filters are data structures that allow checking whether a query key belongs to a given set of keys,
with a chance of returning a false positive answer in exchange for a small space occupancy, i.e.
much smaller than the storage of the full set.

Due to their compactness and the guarantee of not returning false negatives, filters are often
kept in main memory and used to prevent unnecessary and costly accesses and searches in the
set. For example, they can avoid unnecessary network communications if a remote server does
not contain the sought resource, or they can avoid unnecessary disk reads when the set is stored
on disk. In fact, since their introduction by Bloom [5] in 1970s, filters have been successfully used
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Fig. 1. Grafite is the only range filter to date that is both effective (low false positive rate) and efficient (low
query time) as the endpoints of the query range get closer to the data.

in networking [6], distributed systems [35], databases [10], bioinformatics tools [7], and search
engines [17], to mention just a few applications.

While the vast majority of filters are capable of answering approximate membership (point)
queries [11, 13, 15, 19, 24, 32, 34], a new line of research, started a decade ago [1], focused on
their generalisation to range queries, which occur frequently in big data systems such as key-value
stores [18, 21, 25, 36, 40]. In this case, the filtering problem can be formally stated as follows.

Problem 1 (Approximate range emptiness). Given a set 𝑆 of 𝑛 keys drawn from an integer
universe [𝑢] = {0, . . . , 𝑢 − 1}, build a space-efficient data structure, called range filter, that answers
range emptiness queries of the form [𝑎, 𝑏] ∩𝑆 ≠ ∅ ? for any 𝑎 ≤ 𝑏 in [𝑢]. The range filter is allowed to
return “not empty” when actually [𝑎, 𝑏] ∩ 𝑆 = ∅ (i.e. a false-positive error) with probability at most 𝜀.

From a theoretical point of view, this problem was solved optimally by Goswami et al. [18], which
first proved a space lower bound of Ω(log 𝐿

𝜀
) −𝑂 (1) bits per key, where 𝐿 is an upper bound on the

query range size, and then they gave a data structure for the𝑤-bit word RAM model matching this
space up to a lower order additive term and offering constant-time queries when𝑤 = Ω(log 𝑛𝐿

𝜀
).

From a practical point of view, the literature offers a vast choice of range filters, such as ARF [1],
SuRF [40], Rosetta [25], SNARF [36], Proteus [21], bloomRF [27], and REncoder [38]. These solutions,
reviewed in Section 2, adopt totally different approaches to range filtering, thus offering a large
number of trade-offs among space, empirical probability of a false positive error (henceforth,
false positive rate), query time, and construction time. This notwithstanding, there is still one
fundamental challenge that the literature has not yet been able to address:

No practical solution is robust enough to efficiently handle all input data and query
distributions.

Existing practical range filters, indeed, adopt heuristic designs that sacrifice performance guarantees
to improve upon some specific inputs. In fact, these range filters hardly guarantee a bounded false
positive probability 𝜀 for a given amount of space, thus, strictly speaking, they do not solve the
approximate range emptiness problem unless some specific (and strong) assumptions on the kind
of query workload and input data distribution are met.

As a consequence of this, there exist adversarial distributions that can drive the false positive
rate arbitrarily close to 1, thus making the filter useless, if not dangerous for the big data systems
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making use of it (e.g. because of increased disk or network activity that the filter was actually
deployed to prevent). The importance of this issue has also been stressed by Knorr et al. [21], who
after presenting a formal framework of existing range filters, conclude that “no current design can
handle [adversarial workloads] practically, suggesting the need for further expansion of the range filter
design space.”

Notably, the vast majority of range filters suffer from the so-called correlation between keys and
queries, that is, they provide little or no filtering at all when an endpoint of the query range is
close to one of the keys in the input set, which is quite disappointing given the commonness of
such a workload in applications that care about the local properties of data (such as in time series
applications where we need to check if some events occurred in a time frame) [25], or given that
malicious users can artificially issue these queries with just the knowledge of (a subset of) the
keys. To demonstrate this issue, we show in Figure 1 how existing range filters quickly reach high
false positive rates as the endpoints of the query range get closer to the input keys, denoted as
“correlation degree” on the horizontal axis (and detailed in our experimental section). This holds
true for SuRF, SNARF, REncoder, and Proteus, the latter even being auto-tuned on (i.e. overfitted
to) the query workload. The only exception is Rosetta which has a constant false positive rate but a
query time that is up to orders of magnitude higher compared to the other filters.
Apart from the lack of robustness, there is another challenge:

Current range filters are complex to evaluate and deploy because of their complicated
design.

As stated above, existing range filters adopt complex design choices aimed at increasing their
efficacy on some specific inputs. For instance, SuRF [40] encodes a trie with input keys truncated
at their distinguishing prefix (thus providing better filtering when there is no correlation), while
SNARF [36] maps each input key to a 1-bit in a bitvector via a model learned from the data (thus
providing better filtering when there are no outliers or poisoned data [22]).

These designs, coupled with the lack of guaranteed bounds on the false positive rate, hinder our
understanding of how the range filter will behave once deployed to production unless future data
and queries will follow exactly the same distribution of the test data on which the empirical false
positive rate was originally observed. The ability to auto-tune on a sample of queries and input
keys, as in Proteus [21], only partially eases the hard job of integrating a range filter into a real
system, as there is still the necessity to keep a proper set of sample queries (thus also allocating
further space) and to detect when the filter needs to be rebuilt because of workload shifts (thus
introducing additional delays and requiring to keep the input data in memories close to where the
range filter is built).

Instead, we aspire to a practical range filter that, similarly to Bloom filters, works robustly out of
the box regardless of the input data and future queries, while hiding the complexities of its design
and exposing just simple knobs such as the false positive probability 𝜀 or a space budget.

Our contributions.
• We introduce Grafite, a novel practical range filter that solves the lack of robustness and the

high complexity of current solutions. Unlike all the practical range filters to date, Grafite offers
clear guarantees that hold regardless of the input data and query distributions: given a fixed
space budget of 𝐵 bits per key, the query time is 𝑂 (1), and the false positive probability is upper
bounded by min{1, ℓ/2𝐵−2}, where ℓ is the query range size. Perhaps surprisingly, this is achieved
via a simple design that maps the input keys into a smaller universe via a properly designed hash
function [18], stores the resulting hash codes space-efficiently [14, 16], and checks hash codes
for inclusion in a range via an efficient query algorithm.
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• We provide a comprehensive related work section and propose the first theoretical comparison
of the space-time performance of range filters, showing the superiority of Grafite over prior
solutions.
• We perform the largest experimental comparison among range filters, both in terms of dataset

size and in the number of tested solutions, which shows that all the existing filters provide little
to no filtering or a high query time in the case of correlated query workloads. Instead, Grafite
is the only range filter to date to achieve a robust and predictable false positive rate across all
combinations of datasets, query workloads, and range sizes, while also providing faster queries
and construction times, and dominating all competitors in the case of correlated query workloads.
• For datasets and uncorrelated query workloads previously tested in the literature, we show that

there exists a very simple heuristic filter design — that we name Bucketing — that essentially
matches the filtering effectiveness of all the existing heuristic range filters, which are however
significantly more complex and incur in higher query and construction times. This demonstrates
that, if we give up on robustness guarantees, the approximate range emptiness problem can
sometimes be addressed with a very simple solution.

Paper outline. Section 2 discusses existing range filters. Section 3 introduces Grafite. Section 4
introduces Bucketing. Section 5 compares the space-time bounds of Grafite with those of existing
range filters. Section 6 experiments with Grafite, Bucketing and existing range filters. Section 7
concludes the paper and suggests some open problems.

2 RELATEDWORK
Consider an upper bound 𝐿 on the query range size 𝑏 − 𝑎 + 1. We can provide a trivial solution
to the approximate range emptiness problem by using point filters which, given a false positive
probability of 𝛾 , can be implemented in 𝑛 log 1

𝛾
+𝑂 (𝑛) bits of space and 𝑂 (1) query time [32, 34].

Indeed, by building a point filter on the input set 𝑆 with false positive probability 𝛾 = 𝜀/𝐿, we can
check the existence of any element of [𝑎, 𝑏] in 𝑆 by executing at most 𝐿 point queries. This solution
takes 𝑛 log 𝐿

𝜀
+𝑂 (𝑛) bits of space, 𝑂 (𝐿) query time, and the false positive probability is at most 𝜀

by union bound.
The question is now how far is this trivial solution from being optimal. The answer was given

by Goswami et al. [18], which proved the following lower bound.

Theorem 2.1 ([18]). Any data structure solving approximate range emptiness queries of fixed
length 𝐿 ≤ 𝑢/(5𝑛) on 𝑛 keys drawn from an integer universe [𝑢] = {0, . . . , 𝑢 − 1} with a false positive
probability of 𝜀 must use at least 𝑛 log

(
𝐿1−𝑂 (𝜀 )

𝜀

) −𝑂 (𝑛) bits of space.
This is a disappointing result because it states that, for a sufficiently small 𝜀, at least log 𝐿

𝜀
bits

per key are needed. Hence, the larger is 𝐿 and/or the smaller is 𝜀, the larger is the space required by
any range filter. Note that we can restrict 𝐿 ≤ 𝑢𝜀/𝑛, since otherwise it is more convenient to store
the input keys in space close to log 𝑢

𝑛
bits per key (e.g. with an Elias-Fano encoding [14, 16]) thus

solving the problem without false positives (i.e. 𝜀 = 0).
Furthermore, Theorem 2.1 implies that we cannot improve the space occupancy of the trivial

solution stated above, but it challenges us to find a solution that matches its same space bound whilst
improving the unattractive 𝑂 (𝐿) query time. In this respect, Goswami et al. [18] also introduce
a data structure that solves the range emptiness problem in 𝑛 log 𝐿

𝜀
+ 𝑜 (𝑛 log 𝐿

𝜀
) + 𝑂 (𝑛) bits of

space, while offering𝑂 ((log 𝑛𝐿
𝜀
)/𝑤) query time in the𝑤-bit word RAM model, thus achieving𝑂 (1)

query time when𝑤 = Ω(log 𝑛𝐿
𝜀
). The overall approach is mainly theoretic in nature and thus very

complicated to implement. Nevertheless, the idea in [18] to reduce the original universe𝑈 into a
smaller universe ℎ(𝑈 ) via a proper hash function ℎ is effective, and it will be used in Grafite too.
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We now turn our attention to practical range filters.

Prefix Bloom Filter. A Prefix Bloom Filter hashes key prefixes of a predetermined bit-length 𝑙
within a Bloom filter [12, 26]. Since each prefix encodes a range of the universe of size 2log𝑢−𝑙 ,
the filter can answer a range emptiness query by probing each range (i.e. configuration of 𝑙 bits)
that overlaps with the query range, and returning “empty” if all the probes return false, “not
empty” otherwise. We do not further consider Prefix Bloom Filters because they are generalised by
Rosetta [25] and Proteus [21], which are described below and used in our experimental comparison.

ARF. The Adaptive Range Filter (ARF) [1] is based on a compactly-encoded binary tree whose
leaves represent ranges of the universe and are associated with a flag indicating whether there is at
least one key in that range. Internal nodes allow navigating to the leaf containing the left endpoint
𝑎 of the query range [𝑎, 𝑏], and the leaves to its right are inspected until either one of them has
a true flag, thus the answer is “not empty”, or the leaf covering 𝑏 is reached and has a false flag,
thus the answer is “empty”. ARF adapts to the data and query distribution by learning from false
positive queries and adjusting its shape accordingly. As reported in [40], ARF can be up to 1300×
larger than SuRF, described next, while also exhibiting a higher false positive rate. Thus, we do not
further consider ARF.

SuRF. The Succinct Range Filter (SuRF) [40–42] is built upon a compactly-encoded trie, called
Fast Succinct Trie, that stores, for each key 𝑠 ∈ 𝑆 , the shortest prefix 𝑝𝑠 of 𝑠 such that 𝑠 can be
uniquely identified among all the strings in 𝑆 , followed by a number𝑚 of suffix bits following that
key prefix. For improving the filter performance on just point queries, these𝑚 bits can also be set
to a hash of the key. A range emptiness query on [𝑎, 𝑏] is answered by looking in the truncated trie
for the smallest key 𝑘 (which can include its suffix bits if the search reaches a leaf) such that 𝑘 is
lexicographically ≥ 𝑎. The result of the query is given by the result of the lexicographic comparison
𝑘 ≤ 𝑏. We use SuRF in our experimental comparison.

Rosetta. The Robust Space-Time Optimized Range Filter (Rosetta) [25] consists of log𝑢 Bloom
filters organised in levels. For every key, each of its prefixes of length 𝑘 = 1, . . . , log𝑢 is inserted
into the Bloom filter at level 𝑘 . A range emptiness query is answered by decomposing the query
range into dyadic intervals, which are used to probe the corresponding Bloom filters. If all the
probes return a negative answer, the query range is empty. Otherwise, each range that returned
a positive answer is recursively decomposed at the next level. In practice, Rosetta tunes itself to
minimise the false positive rate under a given space budget by allocating more bits to the Bloom
filters that are probed more frequently, based on a sample of the query workload. We use Rosetta
in our experimental comparison.

SNARF. The Sparse Numerical Array-Based Range Filter (SNARF) [36] uses a bit array 𝐵 of
𝐾𝑛 bits, where 𝐾 is a suitably large parameter that impact on the false positive rate, and a function
𝑓 (𝑥) = ⌊MCDF(𝑥) · 𝐾𝑛⌋, where MCDF is a monotonic estimate of the CDF of the keys in 𝑆 , i.e.
⌊MCDF(𝑥) · 𝑛⌋ is an estimate of the rank of 𝑥 in 𝑆 . The function 𝑓 is built by taking one key every
𝑡 keys in the sorted 𝑆 , and using these key samples as endpoints of linear splines. The bit array 𝐵,
initially empty, is filled with 𝐵 [𝑓 (𝑥)] = 1 for each 𝑥 ∈ 𝑆 , and then compressed. A range emptiness
query [𝑎, 𝑏] returns “not empty” if and only if there is at least a 1-bit in the range 𝐵 [𝑓 (𝑎), 𝑓 (𝑏)].
We use SNARF in our experimental comparison.

Proteus. Proteus [21] combines the trie-based prefix filtering of the Fast Succinct Trie with the
filtering of the Prefix Bloom Filter. Differently from SuRF, Proteus does not encode in the trie a
unique prefix for every key but rather all unique key prefixes of a fixed length 𝑙1, and it implements
a single (prefix) Bloom filter for all key prefixes of length 𝑙2 > 𝑙1. If the range emptiness query is not
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resolved after descending the trie up to the prefix length 𝑙1, i.e. if there are matching leaves so that
we cannot yet return “not empty”, then the Prefix Bloom Filter is probed for each length-𝑙2 prefix
extending the length-𝑙1 prefix of each matching leaf, returning “empty” if all these probes return
false, “not empty” otherwise. The values of 𝑙1 and 𝑙2 are determined by an algorithm that minimises
the false positive rate given the input keys, a sample query workload, and a space budget. We use
Proteus in our experimental comparison.

bloomRF.The Bloom Range Filter (bloomRF) [27] hashes a key into a hash code composed of posi-
tions that are used to set bits to 1 in a bit array 𝐵. The hash code is such that equal key prefixes have
equal hash code prefixes (thus encoding range information in the hash code), and its position com-
ponents preserve the order of prefixes (thus improving data locality). A query range is decomposed
into dyadic intervals whose emptiness is determined by checking in 𝐵 the appropriate bits computed
via the hash code above. We could not experiment with bloomRF because its implementation is
not yet open source,1 but we comment on it in the theoretical comparison of Section 5.

REncoder. The Range Encoder (REncoder) [38] too consists of a bit array 𝐵, initially empty. It
splits each input key into a 4-bit suffix 𝑠 and the remaining prefix 𝑝 . The suffix 𝑠 is conceptually
represented by a leaf in a complete binary tree with 16 leaves, whose nodes in the path from that
leaf to the root are marked with a 1, and the remaining nodes are marked with a 0. Intuitively,
nodes represent ranges of the universe and the bit marks record the presence of keys in a range. The
bit marks are then concatenated to form a 32-bit value, which is written into 𝐵 [ℎ𝑖 (𝑝), ℎ𝑖 (𝑝) + 31]
via an OR operation, where ℎ𝑖 is a hash function, for 𝑖 = 1, . . . , 𝑘 . The process is then repeated
on the prefix 𝑝 of the key, and it stops when the whole key has been processed. A query range is
decomposed into dyadic intervals whose emptiness is determined via traversals of binary trees,
which are recovered from 𝐵 via AND operations. We use REncoder in our experimental comparison.

We conclude this section by mentioning that the problem of supporting efficient in-place insertions
has only been touched upon in the literature. Indeed, current range filters are difficult to update
efficiently due to their use of static compactly-encoded tries (SuRF and Proteus), or learned functions
and compressed bitvectors (SNARF). Some other range filters like Prefix Bloom Filters, Rosetta,
bloomRF and REncoder, instead, could be easier to update with new keys due to their design (loosely)
based on Bloom filters, but the impact of insertions on the false positive rate has not yet been
explored. Since in this paper we do not deal with these issues, we leave it as an open problem [11].

3 GRAFITE: AN OPTIMAL RANGE FILTER
We now introduce Grafite, which eventually solves the lack of robustness in state-of-the-art range
filters. We start from the idea of Goswami et al. [18] to solve the approximate range emptiness
problem through hashing, and we take this idea into a simpler, practical and yet more succinct
solution that is closer to the lower bound of Theorem 2.1.

Hashing input keys. Recall we are given a set 𝑆 of 𝑛 keys in a universe [𝑢] = {0, . . . , 𝑢 − 1}, a
false positive probability 𝜀, and an upper bound 𝐿 on the query range size.

Set 𝑟 = 𝑛𝐿/𝜀, and let 𝑞 : [𝑢/𝑟 ] → [𝑟 ] be a hash function taken from a pairwise-independent
family 𝑄 , i.e. a set of hash functions 𝑄 = {𝑞 : [𝑢/𝑟 ] → [𝑟 ]} such that, for any pair of distinct keys
(𝑥1, 𝑥2) ∈ [𝑢/𝑟 ]2 and any pair of (not necessarily distinct) hash codes (𝑦1, 𝑦2) ∈ [𝑟 ]2, we have

Pr
𝑞∈𝑄
[𝑞(𝑥1) = 𝑦1 ∧ 𝑞(𝑥2) = 𝑦2] = 1

𝑟 2 .

1Personal communication with the authors.
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The simplest technique for constructing such a hash function [39] is to select a large prime number
𝑝 > 𝑟 and two random numbers 𝑐1, 𝑐2 < 𝑝 such that 𝑐1 ≠ 0, and then define the hash function as
𝑞(𝑥) = ((𝑐1𝑥 + 𝑐2) mod 𝑝) mod 𝑟 .

In addition to 𝑞, we define a hash function ℎ that preserves the locality of the hashed items and
has a small collision probability [18]:

ℎ(𝑥) = (𝑞(⌊𝑥/𝑟⌋) + 𝑥) mod 𝑟 . (1)
We use ℎ to transform the set 𝑆 = {𝑥1, . . . , 𝑥𝑛} of input keys from the original universe [𝑢] to

the set ℎ(𝑆) = {ℎ(𝑥1), . . . , ℎ(𝑥𝑛)} of hash codes in the reduced universe [𝑟 ], and then we store ℎ(𝑆)
by means of a compact non-approximate range emptiness data structure.

We will describe the data structure in a moment. For now, we notice that because of the hash
function ℎ, a range emptiness query [𝑎, 𝑏] ∩ 𝑆 ≠ ∅ ? can be answered by verifying the existence of
a value ℎ(𝑥) ∈ ℎ(𝑆) such that{

ℎ(𝑎) ≤ ℎ(𝑥) ≤ ℎ(𝑏) if ℎ(𝑎) ≤ ℎ(𝑏),
ℎ(𝑥) ≤ ℎ(𝑏) ∨ ℎ(𝑥) ≥ ℎ(𝑎) otherwise.

(2)

The first case is straightforward, while the second one occurs if there is an overlap of the hashed
endpoints (i.e. ℎ(𝑎) > ℎ(𝑏)) as a consequence of the modulo and the reduced universe. If a value
ℎ(𝑥) which satisfies (2) is found, we answer “not empty”. Otherwise, we answer “empty”.

It should be clear that there can be no false negatives. For the false positives, there is the following
result (which is a straightforward generalisation of a result in [18]).

Lemma 3.1 ([18]). The approach based on the hash function (1) and the conditions (2) guarantees a
false positive probability of at most 𝜀 for query ranges of size 𝐿, and at most ℓ𝜀/𝐿 for ranges of size ℓ ≤ 𝐿.

Proof. A false positive occurs when no key in 𝑆 is in the query range 𝐼 but there is a hash
collision between a key 𝑥 ∈ 𝑆 and a point 𝑦 ∈ 𝐼 . From [18, Lemma 3.1], such a collision happens
with probability Pr[ℎ(𝑥) = ℎ(𝑦)] ≤ 1/𝑟 . The false positive probability is then given by a union
bound over all possible collisions between keys in 𝑆 , which are 𝑛, and points in 𝐼 , which are ℓ ≤ 𝐿,
thus it is ∑︁

𝑥∈𝑆

∑︁
𝑦∈𝐼

Pr [ℎ(𝑥)=ℎ(𝑦)] ≤
∑︁
𝑥∈𝑆

∑︁
𝑦∈𝐼

1
𝑟
=
𝑛ℓ

𝑟
=
𝑛ℓ
𝑛𝐿
𝜀

=
ℓ𝜀

𝐿
≤ 𝜀.

□

Storing hash codes succinctly. Having defined how approximate range emptiness can be achieved
through hashing, the following step is to store the hash codes ℎ(𝑆). Goswami et al. [18] store the
hash codes together with a sophisticated prefix search data structure from [4] to check hash codes
for inclusion in a query range. Our study proposes a much simpler data structure that builds on the
classic Elias-Fano integer code [14, 16] together with an efficient procedure to check hash codes
for inclusion in a range, explained below. As we will show, we will obtain a practical range filter,
which actually has an even better space than the solution of [18].

Let 𝑧1, . . . , 𝑧𝑛 be the deduplicated sorted set of hash codes in ℎ(𝑆).2 We split the length-⌈log 𝑟⌉
binary representation of each 𝑧𝑖 into a low part 𝑧lo

𝑖
consisting of the 𝑙 = ⌊log 𝑟

𝑛
⌋ = ⌊log 𝐿

𝜀
⌋ least

significant bits of 𝑧𝑖 , and a high part 𝑧hi
𝑖

consisting of the remaining ⌈log 𝑟⌉ − 𝑙 most significant
bits of 𝑧𝑖 . The low parts are concatenated into a vector 𝑉 [1, 𝑛] of 𝑙-bit cells, which thus takes
𝑛𝑙 = 𝑛⌊log 𝐿

𝜀
⌋ bits overall. The high parts are encoded in a bitvector 𝐻 [1, 𝑧hi𝑛 + 𝑛 + 1] where the

2Due to collisions there can be fewer than 𝑛 distinct hash codes, but we prefer using 𝑛 in our description and bounds for
simplicity. The space without the 𝑘 duplicates is 𝑘 log 𝐿

𝜀
bits lower, where the expected value of 𝑘 can be shown to be

𝜀 (𝑛 − 1)/(2𝐿) with classic hash tables analyses under the simple uniform hashing assumption [9].
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0000 110 0001 110 0100 000 0110 011 0110 101 0110 111 1000 010 1000 110 1011 011 1011 110

𝑉 110 110 000 011 101 111 010 110 011 110

𝐻 1 0 1 0 0 0 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0

𝑧1 = (𝑧hi1 𝑧lo1 )2 · · ·

︸ ︷︷ ︸
𝑙 = 3 bits

𝑧10 = (𝑧hi10 𝑧
lo
10)2

(𝑧hi1 + 1)th bit (𝑧hi10 + 10)th bit

select0 (𝑝) = 9
select0 (𝑝 + 1) = 13

𝑖 = select0 (𝑝) − 𝑝 + 1 = 4
𝑗 = select0 (𝑝 + 1) − 𝑝 − 1 = 6

1

2

3 𝑉 [4] = 0112 ≤ 1002
𝑝 = 01102 = 6

· · ·

=⇒ predecessor (52) = 𝑧4 = (𝑝)20112

Fig. 2. An example of Grafite storing the compressed hash codes 6, 14, 32, 51, 53, 55, 66, 70, 91, 94 (see Exam-
ple 3.2), and some steps needed for answering a range emptiness query (see Example 3.3).

positions 𝑧hi
𝑖
+ 𝑖 are set to 1, and the remaining positions are set to 0. This completes the succinct

encoding of ℎ(𝑆), whose bit-size can be shown to be upper bounded by 𝑛 log 𝐿
𝜀
+ 2𝑛.

Example 3.2. Suppose we are given the set 𝑆 = {9, 48, 50, 191, 226, 269, 335, 446, 487, 511} with
𝑛 = 10 keys, and the values 𝐿 = 4, 𝜀 = 0.4, thus giving 𝑟 = 𝑛𝐿/𝜀 = 100. Say we use the hash
function ℎ(𝑥) = (𝑞(⌊𝑥/𝑟⌋) + 𝑥) mod 𝑟 , where we choose 𝑞(𝑥) = ((𝑐1𝑥 + 𝑐2) mod 𝑝) mod 𝑟 with
parameters 𝑝 = 231 − 1, 𝑐1 = 10, and 𝑐2 = 5, thus giving the set of hash codes ℎ(𝑆) = {14, 53, 55, 6, 51,
94, 70, 91, 32, 66}. Figure 2 shows the binary representation of the integers 𝑧1 = 6, . . . , 94 = 𝑧𝑛
corresponding to the sorted set ℎ(𝑆) at the top (where the low 𝑙 = ⌊log 𝐿

𝜀
⌋ = 3 bits and the

remaining 4 bits are highlighted with different colours) and their Elias-Fano encoding via the
vectors 𝐻 and 𝑉 at the bottom.
Searching hash codes efficiently. We now describe how to search within the hash codes ℎ(𝑆) so
that both conditions in (2) can be checked efficiently.

For the first branch in (2), we need to augment the Elias-Fano encoding with an operation
that checks for the existence of an ℎ(𝑥) such that ℎ(𝑎) ≤ ℎ(𝑥) ≤ ℎ(𝑏). To this end, we use the
well-known predecessor (𝑦) operation, which given 𝑦 ∈ [𝑟 ], returns the largest element 𝑧𝑘 smaller
than or equal to 𝑦 [29]. We first compute 𝑧𝑘 = predecessor (ℎ(𝑏)) and then check if 𝑧𝑘 ≥ ℎ(𝑎). If
this is the case, then there is at least a hash code 𝑧𝑘 = ℎ(𝑥) in the range [ℎ(𝑎), ℎ(𝑏)], where 𝑥 ∈ 𝑆 .
Thus the first branch is satisfied, and the answer to the approximate range emptiness query is “not
empty”. If not, i.e. 𝑧𝑘 < ℎ(𝑎) ≤ ℎ(𝑏), then the first branch is not satisfied and the answer is “empty”.

The predecessor (𝑦) operation is implemented by first identifying the range of hash codes 𝑧𝑖 , . . . , 𝑧 𝑗
that share the same high part 𝑦hi of 𝑦, and then by binary searching in the subarray 𝑉 [𝑖, 𝑗] =
[𝑧lo
𝑖
, . . . , 𝑧lo

𝑗
] for the predecessor of 𝑦lo. Since 𝑉 [𝑖, 𝑗] might contain at most 2𝑙 configurations of

𝑙-bit integers, the binary search runs in 𝑂 (log 2𝑙 ) = 𝑂 (log 𝐿
𝜀
) time. Let us detail these steps for

completeness [28, 30, 31, 37]. For identifying the range [𝑖, 𝑗], we need the select𝑏 (𝑘) operation, which
returns the position of the 𝑘th 𝑏-bit in 𝐻 , for 𝑏 ∈ {0, 1} (we define select𝑏 (0) = 0). This operation
can be implemented in𝑂 (1) time using 𝑜 ( |𝐻 |) = 𝑜 (𝑛) bits [8, 20]. Then, by definition of𝐻 , the hash
codes 𝑧𝑖 , . . . , 𝑧 𝑗 with the same high part 𝑝 = 𝑦hi form a contiguous sequence of 1-bits in the subarray
𝐻 [𝑝+𝑖, 𝑝+ 𝑗] followed by a 0 in𝐻 [𝑝+ 𝑗+1]. Thus, the subarray𝐻 [𝑝+𝑖, 𝑝+ 𝑗+1] = 1𝑗−𝑖+10 corresponds
to the subarray 𝐻 [select0 (𝑝) + 1, select0 (𝑝 + 1)], and hence the range [𝑖, 𝑗] is given by setting the
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Algorithm 1: Construction of Grafite.
function Construct(𝑆 [1, 𝑛], 𝐿, 𝜀)
𝐺.𝑟 ← 𝑛𝐿/𝜀
𝐺.ℎ ← The hash function (1)
𝑉 ← An empty array of size 𝑛
for 𝑖 = 1 to 𝑛 do
𝑉 [𝑖] ← 𝐺.ℎ(𝑆 [𝑖])

Sort(𝑉 )
𝐺.ef ← BuildEliasFano(𝑉 )
return 𝐺

Algorithm 2: Range emptiness query in Grafite.
function RangeEmptinessQuery(𝐺 , 𝑎, 𝑏)
ℎ𝑎 ← 𝐺.ℎ(𝑎)
ℎ𝑏 ← 𝐺.ℎ(𝑏)
if ℎ𝑎 > ℎ𝑏 then

return “Not empty” iff 𝐺.ef .first ≤ ℎ𝑏 ∨𝐺.ef .last ≥ ℎ𝑎
return “Not empty” iff 𝐺.ef .predecessor (ℎ𝑏) ≥ ℎ𝑎

endpoints of these subarrays equal, thus yielding 𝑖 = select0 (𝑝) −𝑝 + 1 and 𝑗 = select0 (𝑝 + 1) −𝑝 − 1.
Finally, in the corner case that the binary search in 𝑉 [𝑖, 𝑗] finds that the predecessor of 𝑦 is
𝑧𝑖−1, we recover this element via a random access operation: the high part of 𝑧𝑖−1 is retrieved as
𝑧hi
𝑖−1 = select1 (𝑖 − 1) − (𝑖 − 1), and the low part is readily available as 𝑧lo

𝑖−1 = 𝑉 [𝑖 − 1].
For the second branch in (2), it is enough to random access the smallest and largest value in ℎ(𝑆),

i.e. 𝑧1 and 𝑧𝑛 , and do the comparison 𝑧1 ≤ ℎ(𝑏) ∨ 𝑧𝑛 ≥ ℎ(𝑎).
Algorithms 1 and 2 contain the pseudocode for the construction and query algorithms on Grafite,

respectively. For the construction, we notice that BuildEliasFano runs in linear time, while Sort
takes the time to sort 𝑛 integers of length ⌈log 𝑟⌉, for which there exist very efficient sequential
and parallel algorithms [3].

Example 3.3. Let us solve the range emptiness query for the range [44, 47] on the Grafite instance
of Example 3.2 and Figure 2. First, we compute ℎ(𝑎) = ℎ(44) = 49 and ℎ(𝑏) = ℎ(47) = 52. Then,
since ℎ(𝑎) ≤ ℎ(𝑏), we need to compute 𝑧𝑘 = predecessor (ℎ(𝑏)) and do the check 𝑧𝑘 ≥ ℎ(𝑎). As
depicted in Figure 2, we find such a 𝑧𝑘 by: 1 taking the high part 𝑝 = 01102 = 6 of ℎ(𝑏) = 52
and computing select0 (𝑝) = 9 and select0 (𝑝 + 1) = 13; 2 computing 𝑖 = select0 (𝑝) − 𝑝 + 1 = 4 and
𝑗 = select0 (𝑝 + 1) − 𝑝 − 1 = 6; 3 doing a binary search in 𝑉 [𝑖, 𝑗] for the predecessor of the low
part 1002 = 4 of ℎ(𝑏), which yields𝑉 [4] = 0112. This reveals that predecessor (ℎ(𝑏)) = 𝑧4 = 51, and
since 𝑧4 ≥ ℎ(𝑎) = 49, we return “not empty”, which is a false positive error since [44, 47] ∩ 𝑆 = ∅.

Combining the above description of Grafite with Lemma 3.1, and recalling the restriction on the
range size 𝐿 ≤ 𝑢𝜀/𝑛 (see Theorem 2.1 and the discussion below it), we can state the following result.

Theorem 3.4. Given a set of 𝑛 keys from a universe [𝑢], 𝜀 ∈ (0, 1), and 𝐿 ∈ [1, 𝑢𝜀/𝑛], Grafite takes
𝑛 log 𝐿

𝜀
+ 2𝑛 + 𝑜 (𝑛) bits of space and answers approximate range emptiness queries in time 𝑂 (log 𝐿

𝜀
)

with a false positive probability of at most 𝜀 for query ranges of size 𝐿, and at most ℓ𝜀/𝐿 for query
ranges of size ℓ ≤ 𝐿.
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Since 𝑛 log 𝐿
𝜀
+ 2𝑛 + 𝑜 (𝑛) = 𝑛 log 𝐿

𝜀
+ 𝑂 (𝑛), Grafite matches the space lower bound of the

approximate range emptiness problem (Theorem 2.1), thus it is space-optimal, while offering
constant time queries whenever 𝐿/𝜀 = 𝑂 (1).

Notice that Grafite has several important features. First, the false positive probability is bounded
regardless of the input set 𝑆 and query workload, thus solving the first challenge faced by known
practical range filters mentioned in Section 1. Second, the query time is independent of 𝑛 (and 𝑢),
thus making Grafite efficient even for large sets of input keys. Third, Grafite does not require any
sophisticated tuning procedure, but it can be used out of the box by just specifying 𝜀 and 𝐿.

We stress that, after 𝐿 has been set, Grafite can answer on both query ranges of size ℓ smaller
than 𝐿 (with a smaller chance of false positives than 𝜀) and larger than 𝐿 (with a higher chance of
false positives than 𝜀), because the presence of 𝐿 in Theorem 3.4 is technical and serves to make the
false positive probability ≤ 𝜀. As a matter of fact, since the space usage is log 𝐿

𝜀
+ 2 bits per key,3

we can build Grafite by just setting the space budget to a constant 𝐵, hence 𝜀 = 𝐿/2𝐵−2, and we can
answer range emptiness queries with a false positive probability of at most

ℓ𝜀

𝐿
=
ℓ𝐿/2𝐵−2

𝐿
=

ℓ

2𝐵−2 ,

in time

𝑂

(
log 𝐿

𝜀

)
= 𝑂

(
log 𝐿

𝐿/2𝐵−2

)
= 𝑂

(
log 2𝐵−2

)
= 𝑂 (𝐵),

thus proving the following result (which solves the second challenge faced by known practical
range filters mentioned in Section 1).

Corollary 3.5. Given a set of 𝑛 keys and a budget of 𝐵 = 𝑂 (1) bits per key, Grafite answers approx-
imate range emptiness queries in𝑂 (1) time with a false positive probability of at most min{1, ℓ/2𝐵−2},
where ℓ is the query range size.

Observe that, a similar derivation of Corollary 3.5 with the data structure of Goswami et al. [18]
would lead to a false positive probability higher (actually, strictly higher, due to the lower-order
terms we omit) than ℓ/2𝐵−3, which is worse than the one achieved by Grafite (see also Section 5).

Finally, we mention that instead of returning a boolean answer, Grafite can return an approximate
count of the keys that intersect the given query range without any change in its space or query time
complexity, thus potentially being a practical and efficient solution for this interesting problem
too [2]. It suffices to return the difference between the ranks at the hashed endpoints of the query
range (possibly adjusting the result with the expected number of collisions in the range, as per
Footnote 2), where the rank of a hashed element can be found easily during the predecessor operation
on the Elias-Fano sequence.

4 BUCKETING: A HEURISTIC RANGE FILTER
We now introduce a very simple heuristic range filter named Bucketing. Bucketing has the same
weakness of known heuristic range filters, namely, it provides little or no filtering on correlated
query workloads, thus its purpose is not to compete with Grafite, which instead provides robust and
consistent filtering effectiveness regardless of the input set and query workload. Rather, Bucketing
will serve us to show experimentally that, on certain inputs experimented in the literature, one does
not need to resort to the sophisticated heuristic filter designs proposed in the literature, because
simpler solutions can experimentally match or improve their filtering effectiveness while being
more efficient to query and construct.

3The 𝑜 (1) term we omit here can be just 0.035 bits per key in practice [23].
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Given a set 𝑆 = {𝑥1, . . . , 𝑥𝑛} of 𝑛 keys in the universe [𝑢], and given an integer 𝑠 ≥ 1, we split
the universe into 𝑢/𝑠 buckets of size 𝑠 . Then, we create a bitvector 𝐶 of size 𝑢/𝑠 that indicates with
1 in position 𝑖 if there exists at least a key 𝑥 ∈ 𝑆 that falls in the 𝑖th bucket. That is, 𝐶 is initially
empty, and we set 𝐶 [𝑥/𝑠] = 1 for each 𝑥 ∈ 𝑆 (we omit floors for simplicity).

Let 𝑡 be the number of 1-bits in𝐶 , which depends on the distribution of the input data. Clearly, 𝑡
cannot be more than the size of 𝐶 or than the number of elements in 𝑆 , thus 𝑡 ≤ min{𝑢/𝑠, 𝑛}. By
compressing 𝐶 with the Elias-Fano encoding, the total space occupancy is 𝑡 (log 𝑢

𝑡𝑠
+ 2) bits. The

construction can actually be done without creating 𝐶 by just considering the deduplicated list of
the 1-bit positions 𝑥1/𝑠, . . . , 𝑥𝑛/𝑠 .

The parameter 𝑠 allows us to trade the space with the coarseness of such a lossy encoding
of 𝑆 . Indeed, when 𝑠 = 1, we are losslessly encoding the input set (i.e. 𝑡 = 𝑛) and the space is
𝑛(log 𝑢

𝑛
+ 2) bits, whereas if 𝑠 = 𝑢 then a single bucket exists for the whole set (i.e. 𝑡 = 1) and its

single entry in 𝐶 is 1, thus the space is 0.
Similarly to Grafite (Section 3), we augment the Elias-Fano encoding of 𝐶 with select data

structures that occupy 𝑜 (𝑡) bits and allow us to compute the predecessor operation in𝑂 (log 𝑢
𝑡𝑠
) time.

Then, given a query range [𝑎, 𝑏], if predecessor (𝑏/𝑠) ≥ 𝑎/𝑠 is true, then𝐶 [𝑎/𝑠, 𝑏/𝑠] contains at least
a 1-bit and we answer “not empty”. Otherwise, we answer “empty”.

It goes without saying that false negatives are not possible and that a false positive happens
when [𝑎, 𝑏] ∩ 𝑆 = ∅ but there is a key 𝑘 ∈ 𝑆 such that 𝑘 < 𝑎 and 𝑘 falls into bucket number 𝑎/𝑠 ,
or symmetrically if 𝑘 > 𝑏 and 𝑘 falls into bucket number 𝑏/𝑠 . Similarly to other heuristic filters,
a bound on the false positive rate that holds regardless of the input data and query distributions
cannot be proved. Moreover, we expect this approach to provide no filtering as the correlation
increases, due to endpoints of the query range falling in non-empty buckets.

5 THEORETICAL COMPARISON
We now compare the space-time bounds of Grafite (Theorem 3.4) with those of the state-of-the-art
range filters discussed in Section 2. We distinguish two kinds of range filters, the ones that provide
a bounded false positive probability 𝜀 thus solving the approximate range emptiness problem
formulated in Section 1, and the heuristic ones, which do not provide any guarantee unless some
assumptions on the input data and query distribution are met. Therefore, the space complexity of
these latter range filters cannot and will not be compared with that of Grafite (unless under said
assumptions).

Table 1 summarises known and new bounds. Some complex time bounds are simplified with the
Ω-notation, which still allows comparing them with Grafite. All time bounds do not include the
𝑂 ((log𝑢)/𝑤) time to process the two endpoints of the query range, which is typically neglected
because any solution has to read them.

Goswami et al.’s solution. The data structure proposed for the 𝑤-bit word RAM model by
Goswami et al. takes 𝑛 log 𝐿

𝜀
+𝑂 (𝑛) + 𝑜 (𝑛 log 𝐿

𝜀
) bits, where the 𝑂 (𝑛) term hides 3𝑛 + 𝑜 (𝑛) bits [18,

§3.2]. Hence, Grafite is better in space than this data structure by an additive term𝑛+𝑜 (𝑛 log 𝐿
𝜀
), thus

it is closer to the space lower bound of approximate range emptiness data structures (Theorem 2.1).
On the other hand, the query time of Grafite is𝑂 (log 𝐿

𝜀
) while the query time of Goswami et al.’s

data structure is𝑂 ((log 𝑛𝐿
𝜀
)/𝑤). The former is higher than the latter when 𝑛 = 𝑂 ((𝐿/𝜀)𝑤−1). In the

case 𝐿/𝜀 = 𝑂 (1), then queries in both data structures take 𝑂 (1) time because it is usually assumed
𝑤 = Ω(log𝑛).
Rosetta.Rosetta allows tuning the false positive probability of its per-level Bloom filters. We use
the tuning from [25, §3.1] that achieves approximately 1.44 · 𝑛 log 𝐿

𝜀
bits of space by setting the
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Table 1. Summary of known and new results achieved by range filters. Recall that 𝑛 is the number of input
keys from a size-𝑢 universe, 𝐿 is an upper bound on the query range size, and 𝜀 is the false positive probability.

Space in bits Query time Practical impl.

H
eu

ris
tic



SuRF [40] (10 +𝑚)𝑛 + 10𝑧 + 𝑜 (𝑛 + 𝑧)* 𝑂 (log𝑢) ✓

SNARF [36] 𝑛 log𝐾 + 2.4𝑛† Ω(log𝑛) ✓

Proteus [21] ? ? ✓

bloomRF [27] ? 𝑂 (log 𝑢
𝑛
) ✓

Bucketing (this paper) 𝑡 log 𝑢
𝑡𝑠
+ 2𝑡 + 𝑜 (𝑡)‡ 𝑂 (log 𝑢

𝑡𝑠
) ✓

FP
R-

bo
un

de
d 

Theor. baseline (Sect. 2) 𝑛 log 𝐿
𝜀
+𝑂 (𝑛) 𝑂 (𝐿)

Goswami et al. [18] 𝑛 log 𝐿
𝜀
+ 3𝑛 + 𝑜 (𝑛 log 𝐿

𝜀
) 𝑂 ((log 𝑛𝐿

𝜀
)/𝑤)

Rosetta [25] 1.44 · 𝑛 log 𝐿
𝜀

Ω((log𝐿) log(2 − 𝜀))§ ✓

Grafite (this paper) 𝑛 log 𝐿
𝜀
+ 2𝑛 + 𝑜 (𝑛) 𝑂 (log 𝐿

𝜀
) ✓

Lower bound (Thm. 2.1) 𝑛 log
(
𝐿1−𝑂 (𝜀 )

𝜀

)
−𝑂 (𝑛)

* Using the space-efficient LOUDS-Sparse encoding, where 𝑧 is the number of internal nodes, and𝑚 is the given
number of suffix bits.

† 𝐾 ≥ 1 is a suitably large parameter of SNARF.
‡ 𝑠 is a positive integer parameter (higher values encode the input set more coarsely), and 𝑡 ∈ [1,min{𝑛,𝑢/𝑠 } ]

depends on the input data.
§ Expected time. Worst-case time is𝑂 (𝐿 log 1

𝜀
) .

probability of false positives to 𝜀 for the last-level Bloom filter and to 1/(2− 𝜀) for each other upper-
level Bloom filter. The space of Grafite is better, since 1.44 · log 𝐿

𝜀
< log 𝐿

𝜀
+2 if and only if 𝐿 < 23.36𝜀.

For the query time, the worst-case number of Bloom filter probes done by Rosetta is 𝑂 (𝐿) and
the expected number is Ω(log𝐿), as per the analysis in [25, §3.2]. The probe time of the last-level
Bloom filter is Θ(log 1

𝜀
), which is higher than the Θ(log(2−𝜀)) probe time of each other upper-level

Bloom filter. So the worst-case query time of Rosetta is 𝑂 (𝐿 log 1
𝜀
), which is worse than the query

time of Grafite, and the expected query time of Rosetta is Ω((log𝐿) log(2− 𝜀)), which is equivalent
to the query time of Grafite if 𝜀 is a constant.

SuRF. Let 𝑧 be the number of internal nodes in the Fast Succinct Trie at the core of SuRF, and recall
it stores one leaf and𝑚 suffix bits for each of the 𝑛 input keys. The trie uses the LOUDS-Dense
encoding for the upper levels and LOUDS-Sparse for the lower levels. Following [40, §2.5], we
assume the more space-efficient LOUDS-Sparse encoding is used, in which each node takes 10
bits. Considering the 𝑜 (𝑧 + 𝑛) bits for the rank/select data structures, the total space sums up
to 𝑛𝑚 + 10(𝑛 + 𝑧) + 𝑜 (𝑛 + 𝑧) = (10 +𝑚)𝑛 + 10𝑧 + 𝑜 (𝑛 + 𝑧) bits. From this analysis (confirmed
by experiments), we infer that SuRF needs at least 10 bits per key, which can be restrictive in
applications with a low space budget.

The query time of SuRF is given by the time to traverse the trie and then compare the suffix bits.
Thus, for a trie of height ℎ, the time is 𝑂 (ℎ) if the suffix bits fit into a machine word (thus they
can be accessed in constant time), and if each branching step takes constant time, e.g. because the
trie has a constant bounded fan-out. Since the input keys are of length 𝑂 (log𝑢), the query time
is 𝑂 (ℎ) = 𝑂 (log𝑢). Even for a fairly large 𝐿 ≤ 𝑢𝜀/𝑛 (cf. Theorem 3.4), Grafite is faster than SuRF
because it has query time 𝑂 (log 𝐿

𝜀
) = 𝑂 (log 𝑢

𝑛
).
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SNARF. SNARF was shown to take approximately 𝑛 log𝐾 + 2.4𝑛 bits, where 𝐾 is a suitably large
parameter impacting on the false positive rate [36, §5]. For the query time, the paper does not
give a precise analysis, but we notice that it requires performing a binary search on the sample
of 𝑛/𝑡 keys (where 𝑡 is a constant) to identify the correct spline model, followed by decoding the
compressed bit array. Due to the binary search, SNARF takes time Ω(log 𝑛

𝑡
) = Ω(log𝑛), which is

already at least asymptotically the query time of Grafite. Indeed, Grafite binary searches on a range
with min{𝑛, 𝐿/𝜀} keys.

Under the assumption of uniform keys, uniform query workload, and 𝑢 ≫ 𝑛𝐾 , SNARF was
shown to have a false positive probability of (𝑢/𝐾)/(𝑢−𝑛𝐿) for query ranges of size 𝐿 [36, §3]. This
is approximated to 1/𝐾 under the additional assumption of 𝑛𝐿 ≪ 𝑢. In such a restricted setting,
SNARF takes log𝐿 − 0.4 bits per key less than Grafite with 𝜀 set to 1/𝐾 . On the flip side, SNARF
suffers a high false positive rate in correlated workloads (see Section 6.2).

Proteus. The Proteus paper [21] does not provide a closed formula for the space and the query
time taken by this data structure. Indeed, Proteus tunes its configuration parameters (𝑙1, 𝑙2) via an
algorithm whose inputs are the keys, a query workload, and a space budget (cf. [21, Alg. 1]). This
makes it difficult to provide a satisfactory space bound other than for the extreme configurations
that turn it into either a full Fast Succinct Trie, or a full Prefix Bloom Filter.

For the query time, we could not derive a satisfactory analysis either, but we observe that Proteus
uses a Fast Succinct Trie on prefixes of uniform depth 𝑙1 and a Prefix Bloom Filter for prefixes of
length 𝑙2 > 𝑙1, thus it might require a trie traversal plus several queries to the Prefix Bloom Filter
(our experiments will show that Proteus is much slower than Grafite).

bloomRF. The authors of bloomRF build a model of the false positive rate given a space budget in
[27, §5–6]. We prefer to not report this model here due to its complicated design and assumptions,
but we content ourselves to notice that it is influenced by the input data distribution (cf. the
constant 𝐶 in [27]), thus making bloomRF a heuristic solution.

The query time of bloomRF is given by the time to compute 𝑘 = ⌈log 𝑢
𝑛
/Δ⌉ hash functions, where

Δ ≥ 1 is a parameter of the data structure [27, §6]. Thus bloomRF has query time 𝑂 (log 𝑢
𝑛
), which

is no better than Grafite for the same considerations we make above for SuRF.

REncoder. The authors of REncoder show in [38, §4] that, under some assumptions, a false positive
probability of 𝜀 can be obtained using 𝑂 (𝑛(𝑘 + log 1

𝜀
)) bits of space, where 𝑘 is the number of hash

functions used in REncoder. This result is hard to compare with Grafite due to the lack of 𝐿 in
the space bound (which seems to conflict with the lower bound of Theorem 2.1), due to the big-𝑂 ,
and due to the use of 𝑘 , which also impacts on the query time (no precise indications on how to
set 𝑘 are given). In any case, the analysis in [38, §4.C] suggests that REncoder too is affected by
correlated workloads, which is confirmed by our experiments of Section 6.2.

6 EXPERIMENTS
We now perform the largest experimental comparison among range filters, both in terms of dataset
size and in the number of tested solutions, and we show that:

(1) The vast majority of existing range filters provide no filtering or much degraded filtering
and query performance in the case of correlated query workloads. Instead, Grafite is among
the (few) robust range filters, and it offers the overall best false positive rate (FPR) and query
time already starting from mildly correlated query workloads.

(2) On uncorrelated query workloads, Bucketing offers, simultaneously, a filtering effectiveness
that is very close to or better than the one achieved by the best-performing heuristic range
filters, 5–13× faster queries, and 5–24× faster construction than them.
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(3) Among robust range filters, Grafite is the best choice because it offers, simultaneously, the
best FPR by up to 5 orders of magnitude, 9–92× faster queries, and 4–10× faster construction.

Then, we conclude this experimental section by summarising our findings in terms of recom-
mendations on which range filter to adopt for an application (Section 6.7).

6.1 Experimental Setup
All the experiments are run on a machine equipped with a 1.80 GHz Intel Xeon E5-2650Lv3 CPU
and 64 GB of RAM. The code of Grafite and the competitors is in C++ and is compiled with gcc-11.
Our source code is available at https://github.com/marcocosta97/grafite.
Competitors. As motivated in Section 2, we compare Grafite and Bucketing with the following
state-of-the-art range filters: SuRF [40], Rosetta [25], SNARF [36],4 Proteus [21] and REncoder [38],
including its variants REncoderSE and REncoderSS. This makes our study the largest one in terms
of number of considered competitors.

Rosetta, Proteus and REncoderSE are auto-tuned on a sample of the queries with the procedures
designed by the respective authors. For SuRF, we use real suffixes when testing against range
queries and hashed key suffixes when testing against point queries, as suggested by [40].
Datasets. We use synthetic and real-world datasets used in previous range filters evaluations
[21, 25, 36, 38, 40]:
• Uniform: 200M keys chosen uniformly at random from [0, 264).
• Books: 200M keys representing Amazon book sale popularity.
• Osm: 200M coordinates of locations from Open Street Map.

By using up to the entire dataset to build the range filters, we double the scale of the previously
largest evaluation [36].

We build each range filter with space budgets ranging between ≈ 8 and 28 bits per key, which
covers a large spectrum of trade-offs [25, 38].5 We ensure that the space of a range filter does not
exceed an explicit encoding of the input keys, namely log 𝑢

𝑛
+ 2 bits per key via an Elias-Fano

encoding, since this approach would solve the problem without false positives as discussed after
Theorem 2.1.
Query workloads. Following the literature [21, 25, 36, 38], we execute 10M range emptiness
queries of the form [𝑥, 𝑥 + 𝐿 − 1] in a single thread. We distinguish between batches of point queries
in which 𝐿 = 20, small range queries in which 𝐿 = 25, and large range queries in which 𝐿 = 210.

For the synthetic dataset (Uniform), the left endpoint 𝑥 is chosen according to the following
strategies:
• Uncorrelated: 𝑥 is chosen uniformly at random from [0, 264).
• Correlated: a key 𝑘 is chosen uniformly at random from the dataset, and then 𝑥 is chosen

uniformly at random from [𝑘, 𝑘 + 230(1−𝐷 ) ], where 𝐷 is the correlation degree that ranges
from 0 (uncorrelated) to 1 (correlated) [36]. If not explicitly varied, we set 𝐷 = 0.8.

For the real datasets, the left endpoint 𝑥 is a key extracted (and removed) from the dataset. Notice
that this query workload may be a mix of correlated and uncorrelated query ranges, depending on
the distribution of the original input keys, from which 𝑥 is extracted.
4During the experiments we found that SNARF returns some false negatives, which is contrary to the definition of (range)
filter. The authors believe this is due to computation overflows in the learned model, recommending the use of SNARF
on significantly smaller input numbers (personal communication, Kapil Vaidya, 17 April 2023). We still experiment with
SNARF, with the hope the false negatives do not affect its performance.
5SuRF takes no less than 10 bits per key, as per our analysis in Section 5, and some configurations are not shown due to
crashes. Some configurations of Proteus results in the same design thus giving overlapped points in our figures.
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In all the above strategies, we enforce the generation of empty queries by discarding the query
ranges that intersect the dataset. This way, we evaluate the false positive rate (FPR) as the ratio
between the number of “not empty” answers and the size of the batch. In a separate experiment,
we also test the query time of range filters on non-empty queries. Note that the query time does
not include the time to access a slow resource, such as a disk or a network drive, where the dataset
might be stored. This time can vary greatly depending on the FPR and the hardware, or it might
even be absent if the application requires no further check of a “not empty” answer (i.e. checking
whether it is a true positive or not).

Other datasets and query workloads. We ought to report that we have also experimented with
(i) a dataset generated from a normal distribution (mean of 263, standard deviation of 264 × 0.1,
which allows covering the universe and generating large range queries) in combination with the
Uncorrelated and Correlated query workloads, and (ii) the Uniform dataset in combination with
a normal query workload. In all these cases, consistently with previously published evaluations [21,
36], we found no interesting change in the relative performance of range filters compared to using
Uniform only, so we do not show them.

We have also experimented with the Fb dataset used in [21, 36, 38] but we found it to be too
simple to be included in our evaluation because the mean value of the keys is ≈ 238, and if we
exclude the last 21 keys (that are larger than 238), then an Elias-Fano encoding of the dataset would
provide no false positives in just log 238

200·106 + 2 ≈ 12 bits per key. Indeed, we report that Grafite,
due to its optimal design, provides an FPR of 0 on Fb when given a budget of only 12 bits per key,
while the other range filters may still give false positives (as shown also in the papers above).

6.2 Robustness of Range Filters
Our first experiment aims to differentiate robust range filters from heuristic ones, thereby empha-
sising the necessity of treating them separately due to their distinct guarantees. We consider the
Uniform dataset and the Correlated query workload where the correlation degree 𝐷 is varied
from 0 to 1, using a space budget for the range filters fixed to 20 bits per key.

The results in Figure 3 show that the FPR of Grafite and Rosetta is not affected by correlation,
so we classify them as robust range filters. Grafite offers a better FPR than Rosetta by up to two
orders of magnitude. The FPR of REncoder is affected by correlation, but this effect diminishes for
larger range sizes. Grafite offers a better FPR than REncoder by up to four orders of magnitude.

The FPR of Proteus too suffers from increased correlation, but it does not reach 1. In the case
of slightly correlated (i.e. 𝐷 < 0.5) large range queries, Proteus shows a smaller FPR than Grafite,
while Grafite has a better FPR in all the other cases. We stress that Proteus is auto-tuned on the
input keys and the query workload, so it has an advantage due to overfitting. In applications where
the workload shifts, it might not retain this advantage.

The FPR of SuRF, SNARF and Bucketing approaches 1 for correlation degrees beyond 0.4, thus
failing to provide any kind of filtering (the drop of FPR of SuRF in point queries is expected because
it ends up comparing hashed key suffixes). The same holds for REncoderSS and REncoderSE for
correlation degrees beyond 0.7 (the latter in the case of large range queries).

For what concerns the query time, Grafite is the fastest effective range filter across the various
query range sizes and correlation degrees (Bucketing is the fastest range filter, but it is not always
effective, as commented above). The query time of Proteus, Rosetta and REncoder increases for
increasingly large query ranges, up to about 3 orders of magnitude more with respect to Grafite.
The query time of Proteus, REncoderSE and REncoderSS is affected by the correlation degree, which
is another reason to classify them as non-robust.
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Fig. 3. The majority of range filters provide no filtering (Bucketing, SNARF, SuRF, REncoderSS) or much
degraded filtering and query performance (Proteus, REncoderSE) as the key-query correlation increases. An
adversary could exploit this weakness to make an attack on the availability of the system employing these
heuristic range filters. Instead, Grafite and Rosetta are robust range filters, while REncoder is robust for large
range queries. Grafite offers significantly better query time and FPR than Rosetta and REncoder.

In summary, with the exception of Grafite, Rosetta and, to a lesser extent, REncoder, the vast
majority of range filters provide no filtering (SNARF, SuRF, REncoderSS) or much degraded filtering
and query performance (Proteus, REncoderSE) in the case of correlated query workloads. This is
a significant concern given the importance of these workloads in applications that care about the
local properties of data [25] or given that malicious users could exploit this weakness to increase
the network or disk accesses the range filters are deployed to prevent, thus posing a risk on the
availability of a data system. Instead, Grafite is the overall best range filter in terms of FPR and query
time already starting from mildly correlated query workloads, independently of the query range size.

Given the large number of competitors and the widely different guarantees they provide, our
next experiments will focus separately on heuristic range filters, namely SNARF, SuRF, Proteus,
REncoderSS, and REncoderSE, and on robust range filters, namely Grafite, Rosetta, and REncoder.

6.3 Evaluation of Heuristic Range Filters
Figure 4 shows the results of our experiments with heuristic range filters. Each column of the plot
corresponds to a query range size (point, small and large), and each row corresponds to a dataset
(the first two rows are the Correlated and Uncorrelated query workloads we experiment on
Uniform data, and the other two rows correspond to the Books and Osm datasets). At the right of
each row, we show a table with the query time of each range filter, averaged over the various space
configurations and query range sizes, and next to each query time we show its ratio with respect
to the fastest range filter.

In Correlated, in line with the experiment of Section 6.2, heuristic range filters provide no
filtering (SNARF, REncoderSS, and SuRF, whose performance on point queries is commented in
Section 6.2) or little filtering (Proteus and REncoderSE). These last two filters are actually advantaged
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Bucketing 67 (1.0×)
SuRF 275 (4.1×)

SNARF 576 (8.6×)
REncoderSS 732 (10.93×)
REncoderSE 4074 (60.81×)

Proteus 28638 (427.43×)

Bucketing 70 (1.0×)
Proteus 227 (3.24×)

SuRF 228 (3.26×)
REncoderSE 351 (5.01×)
REncoderSS 352 (5.03×)

SNARF 895 (12.79×)

Bucketing 277 (1.0×)
SuRF 423 (1.53×)

REncoderSS 527 (1.9×)
REncoderSE 528 (1.91×)

Proteus 573 (2.07×)
SNARF 1817 (6.56×)

Bucketing 456 (1.0×)
REncoderSE 466 (1.02×)
REncoderSS 467 (1.02×)

SuRF 567 (1.24×)
Proteus 719 (1.58×)
SNARF 2908 (6.38×)

Fig. 4. Comparison among heuristic range filters. In the first row, only Proteus and REncoderSE provide some
range query filtering (albeit unsatisfactorily, as discussed in Section 6.2) because they are auto-tuned on the
correlated query workload. In the other rows, a simple solution like Bucketing provides very close or better
FPR, and much better query time than all the other heuristic range filters. We remark that, unlike the other
range filters, SNARF suffers from false negatives (see Footnote 4).

by being auto-tuned on the query workload, which might not be realistic in some applications due
to rapidly-changing workloads or due to the additional space needed by query logs (which we did
not account in their space usage).

For the other datasets, we notice that the filtering effectiveness of Bucketing essentially matches
(on Uncorrelated and Books) or is very close (Osm) to the one of the best-performing heuristic
range filter that is typically either SNARF (which, however, suffers from false negatives, see
Footnote 4) or REncoderSE/SS, while simultaneously providing up to 13× faster queries than
SNARF and up to 5× faster queries than REncoderSE/SS. Moreover, Bucketing provides the best
construction times, as we will show in Section 6.6.
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Fig. 5. Grafite dominates all other robust range filters by providing up to 5 orders of magnitude better FPR
and up to 92× faster queries. These substantial improvements, coupled with its performance guarantees
(Corollary 3.5), make Grafite the range filter of choice in applications handling a variety of data distributions
and query workloads, even adversarial ones.

6.4 Evaluation of Robust Range Filters
We now experiment with robust range filters, namely Grafite, Rosetta, and REncoder (note this last
one is slightly less robust in the case of small range queries, as discussed in Section 6.2).

As Figure 5 shows, in all datasets and query range sizes, Grafite dominates Rosetta and REncoder
both in terms of FPR and query time. In particular, in terms of FPR, Grafite is up to 4 orders of
magnitude more effective than REncoder, and up to 5 orders of magnitude more effective than
Rosetta. In terms of query time, Grafite is 9.5–11.1× faster than REncoder, and 81.7–92.3× faster
than Rosetta. Besides, we observe that Grafite has the most predictable FPR across all combinations
of datasets, query workloads, and range sizes.

This consistent and substantial improvement of the state of the art corroborates the theoretical
advantage of Grafite over prior solutions (Section 5), and demonstrates its potential to become the
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Fig. 6. The query time of range filters can vary a lot also in the case of non-empty queries, as shown in these
plots with a logarithmic time axis. Grafite and Bucketing provide the best query times among robust and
heuristic range filters, respectively.

range filter of choice in applications handling a variety of data distributions and query workloads
(even adversarial ones).

6.5 Performance on Non-EmptyQueries
We now experiment with queries that intersect the input dataset to show their impact on the query
time. We use the Uniform dataset and create a query range [𝑥, 𝑥 + 𝐿 − 1] by first picking a key 𝑘
randomly from the dataset, and then picking the left endpoint 𝑥 randomly in [𝑘 − 𝐿 + 1, 𝑘].

Figure 6 shows the results: among heuristic range filters, Bucketing provides up to 3 orders of
magnitude faster queries than the others; among robust range filters, Grafite provides the fastest
queries, up to 1 order of magnitude faster than REncoder and up to 2 orders of magnitude faster
than Rosetta.

A remark is necessary at this point. Even though filters are typically used in applications to
prevent unnecessary (due to empty queries) network or disk accesses, they also increase CPU usage
(regardless of the actual emptiness of the queried range). In some cases, high CPU usage might not
compensate for the reduction in access frequency to a slow resource, thus making the choice of a
query-efficient range filter preferable, even if it has a higher FPR. For example, Rosetta and Proteus
in Figure 6 take up to 61.2 and 101.5 microseconds per query, respectively, which is comparable to
the access latency of an SSD. In other cases, the opposite might be true, i.e. the cost of accessing a
slow resource might be too high to be able to afford a range filter with a lower FPR but better CPU
usage; thus the choice of which range filter to use ultimately depends on the specific application.

6.6 Construction Efficiency
Figure 7 shows the construction time of the various range filters as the number of keys increases
from 105 to 108. We use the Uniform dataset (other datasets do not change our conclusions) and
average the construction time over the different space budgets. We do not show REncoderSE and
SS because their construction time is identical to that of REncoder. For both Rosetta and Proteus,
the plot shows with a light colour the impact of the tuning process, which was evaluated with an
Uncorrelated query workload of 𝑛/10 small range queries.

Among heuristic range filters, Bucketing is the fastest to construct, from 1.8 to 30.2× faster
than the others. In particular, compared to its closest competitors in terms of FPR (see Section 6.3),
Bucketing is 8.6–23.9× faster to construct than REncoderSE and 4.9–6.5× faster than SNARF.

Among robust range filters, Grafite is the fastest to construct, 6.7–10.3× faster than Rosetta and
3.8–7.9× faster than REncoder.
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Fig. 7. Grafite has the best construction time among robust range filters (Rosetta and REncoder). Bucketing
has the best construction time among heuristic range filters.

Furthermore, the construction time of both Grafite and Bucketing is linear for increasing values
of 𝑛 (note the plot shows the construction time per key), which makes them highly scalable.

Actually, Grafite could achieve an even better construction time by using other sorting algo-
rithms [3] in place of the spreadsort algorithm we are using, or by enabling multi-threaded sorting
(not shown in the plots for fairness with the single-threaded competitors). For example, by using
the parallel block_indirect_sort algorithm from the Boost library, the construction time for
200M keys with just 2 threads is reduced from 28.0 to 18.8 s (a 1.5× speedup), with 4 threads to
15.8 s (1.8× speedup), with 8 threads to 14.0 s (2.0× speedup)

6.7 Discussion and Recommendations
We now summarise our experimental findings by providing some guidance on which range filter
to adopt for an application.

First and foremost, one should determine whether guarantees on the filtering effectiveness and
query performance are needed regardless of the input data and future queries. If the answer is
affirmative, then range filters providing a bounded FPR for a given space budget (and vice versa)
are the choice, and among them Grafite is the best option.

For example, if future queries are correlated (i.e. close) to the input keys, the existing heuristic
range filters provide little to no filtering, thus impacting the overall performance of the system
(and possibly cloud costs) due to the network or disk accesses the filters are deployed to prevent.
Correlated queries are common in practice [25], and malicious users can artificially issue them
with just the knowledge of (a subset of) the keys. In these cases, Grafite is again the best option
since it is unaffected by correlated queries.

If the application has no or infrequent correlated queries, and the query distribution does
not change after the range filter is evaluated on a query sample and deployed, we recommend
considering also Bucketing, Proteus, REncoderSS (and possibly SNARF, but refer to Footnote 4),
which could provide better filtering effectiveness than Grafite. For example, Proteus can auto-tune
itself and obtain a good FPR (see the rightmost plot in Figure 3). REncoderSS can offer a good FPR
without any auto-tuning in some cases with small range queries (see last two rows of Figure 4).
Bucketing always offered the best query and construction times in our experiments, and very good
FPR in many cases (see Figure 4). Other than the FPR, query and construction times, deciding which
range filter to adopt in a real application should consider factors like the cost of a false positive
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(e.g., in terms of latency or cloud costs) and the frequency of queries (which impact on the CPU
usage). Thus the best choice ultimately depends on the peculiarities of the application.

7 CONCLUSION
We introduced Grafite, a range filter that solves the lack of robustness in current practical solutions
by providing strong theoretical guarantees on the false positive probability, optimal space usage,
and very efficient and effective performance across many datasets, query workloads, and range
sizes. We also introduced Bucketing, which simplifies the design of existing heuristic range filters
while empirically providing very close or better filtering effectiveness, and much faster query and
construction times, thus possibly resulting in a simple substitute for them.

For future work, we mention a more in-depth study of the Bucketing approach, which could
be made workload-aware (e.g. by creating larger buckets for key ranges that are queried less
frequently), or combined with Grafite. It is also worth engineering and experimenting with an
extension of Grafite to string keys, for example by treating strings as integers and choosing 𝑟 as a
power of two, say 𝑟 = 2𝑘 for some 𝑘 > 0, so that the hash function (1) can be efficiently implemented
via bitwise and arithmetic operations as ℎ(𝑥) = (𝑞(𝑥≫𝑘) + 𝑥) & (𝑟 − 1), where 𝑞 could be chosen
to be a practical hash function for strings like xxHash. Another open problem is to support the
insertion of new keys in Grafite and Bucketing, for which dynamic Elias-Fano representations could
help [33]. Finally, we mention again that Grafite can easily return an approximate count of the
keys that intersect the given query range without any change in its space or query time complexity,
thus potentially being a practical and efficient solution for this other interesting problem too [2].
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