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Abstract

Our study is motivated by the solution of Mixed-Integer Non-Linear Pro-
gramming (MINLP) problems with separable non-convex functions via the Se-
quential Convex MINLP technique, an iterative method whose main character-
istic is that of solving, for bounding purposes, piecewise-convex MINLP relax-
ations obtained by identifying the intervals in which each univariate function
is convex or concave and then relaxing the concave parts with piecewise-linear
relaxations of increasing precision. This process requires the introduction of
new binary variables for the activation of the intervals where the functions are
defined. In this paper we compare the three different standard formulations
for the lower bounding subproblems and we show, both theoretically and com-
putationally, that—unlike in the piecewise-linear case—they are not equivalent
when the perspective reformulation is applied to reinforce the formulation in
the segments where the original functions are convex.

Keywords: Piecewise-Convex MINLP Problems; Perspective Reformulation;
Formulations Comparison; Sequential Convex MINLP Technique

1 Introduction

The Sequential Convex Mixed-Integer Non-Linear Programming (SC-MINLP) tech-
nique, introduced in [5, 6], aims at solving non-convex Mixed-Integer Non-Linear
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Programs (MINLPs) in which non-convexity is restricted to sums of univariate func-
tions, i.e.,

min
∑

j∈N cjxj

fi(x) +
∑

j∈H(i) gij(xj) ≤ 0 i ∈M
lj ≤ xj ≤ uj j ∈ N
xj ∈ Z j ∈ I

where the multivariate functions fi : Rn → R are convex while the univariate functions
gij : R → R are non-convex. All sets M , N , I ⊆ N , and H(i) ⊆ N are finite, and lj
and uj are finite bounds for the xj with j ∈ H(i), i.e., those appearing in some gij
function for some i ∈ M . SC-MINLP is less generic than solvers like Baron [12, 11],
Couenne [1], SCIP [2], but, as it exploits some mathematical properties of the class
of MINLPs at hand, it can be more efficient on the problems it can handle.

In the SC-MINLP technique, a lower bound is obtained by solving a convex
MINLP obtained as follows. Let us consider a pair i, j where i ∈ M, j ∈ H(i).

We first compute the s(ij) + 1 breakpoints lj = l1ij < l2ij < ... < l
s(ij)
ij < l

s(ij)+1
ij = uj

that separate subintervals of the domain of xj where gij is concave or convex, using
the second derivative of gij(xj). Then, we define S(ij) = {1, . . . , s(ij)}, Š(ij) = {s ∈
S(ij) | gij is convex in [lsij, l

s+1
ij ]}, and Ŝ(ij) = {s ∈ S(ij) | gij is concave in [lsij, l

s+1
ij ]}.

In the intervals in Ŝ(ij), we replace the concave function gij by its convex envelope
(a linear function), thus obtaining a piecewise-convex MINLP whose continuous re-
laxation is convex. In the original description of SC-MINLP [5, 6, 4], the incremental
model, described in the next section, was used to formulate the piecewise-convex
functions. Motivated by this setting we study and compare different formulations
of piecewise-convex MINLP problems. This has been done in the piecewise-linear
case in [3], showing that the three “textbook” formulations, namely the incremental,
the convex combination, and the multiple choice formulation are equivalent in terms
of continuous relaxations bounds. In [13], new so-called logarithm formulations are
introduced, one for each textbook formulation, that use less binary variables so as
to potentially speed-up the Mixed Integer Linear Programming (MILP) solvers. In
this paper we prove that, somewhat surprisingly, the results for the linear case do
not carry over to the nonlinear one, in that one formulation—incidentally, the one
employed in [5, 6, 4]—is weaker than the other two even when all are strengthened by
the use of the Perspective Reformulation (PR) technique [8, 7]. Our computational
experience proves that the stronger formulation of the subproblem directly translates
in better performances of the SC-MINLP technique.

2 MIP Models for SC-MINLP

We now discuss the generalization of the textbook formulations for piecewise-linear
functions to piecewise-convex ones.
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2.1 Incremental model

In the Incremental Model (IM), which was used in the original version of SC-MINLP
[5, 6, 4]), each sub-interval [lsij, l

s+1
ij ] has a segment load variable xsij which assumes

value zero unless xs−1
ij reaches its maximum value, that is, xsij > 0 only if xs−1

ij =

lsij− ls−1
ij . The binary variables ysij are defined by the condition that ysij = 1 if xsij > 0,

and ysij = 0 otherwise. The “plain” version of the formulation would then have terms

gij(l
s
ij + xsij) − ysijgij(lsij) in each constraint i ∈ M for j ∈ H(i) and s ∈ Š(ij). How-

ever, it is well-known that the semi-continuous variable xsij, governed by the binary
variables ysij, lends itself to the PR technique [4] that can considerably strengthen the
continuous relaxation of the problem. This comes at the cost of “more nonlinear”
functions and possibly the introduction of further auxiliary variables, resulting, e.g.,
in

min
∑

j∈N cjxj (1)

f̄i(x) +
∑

j∈H(i)

∑
s∈Š(ij) z

s
ij ≤ 0 i ∈M (2)

zsij ≥ [gij(l
s
ij + xsij/y

s
ij)− gij(lsij)]ysij s ∈ Š(ij) , j ∈ H(i) , i ∈M (3)

y1
ij = 1 , y

s(ij)+1
ij = 0 j ∈ H(i) , i ∈M (4)

xj = lj +
∑

s∈S(ij) x
s
ij j ∈ H(i) , i ∈M (5)

(ls+1
ij −lsij)ys+1

ij ≤ xsij ≤ (ls+1
ij −lsij)ysij s ∈ S(ij) , j ∈ H(i) , i ∈M (6)

ysij ∈ {0, 1} s ∈ S(ij), j ∈ H(i), i ∈M (7)

xj ∈ Z j ∈ I (8)

where f̄i = fi(x)+
∑

j∈H(i) gij(l
1
ij)+

∑
s∈Ŝ(ij) α

s
ijx

s
ij and αs

ij = (gij(l
s+1
ij )−gij(lsij))/(ls+1

ij −
lsij) is the slope of the linear function for “concave” intervals s ∈ Ŝ(ij). In particular,

(3) implements the PR of the “plain” constraint. In (4), y
s(ij)+1
ij = 0 is just a syntactic

trick to write (6) in an uniform way avoiding the “border effect” of the last segment.
Instead, y1

ij = 1 is significant: the constraint may be avoided, allowing y1
ij = 0 to

happen when xj = lj, but, by dint of having less solutions, the continuous relaxation
is clearly stronger if we fix the variable.

2.2 Multiple-choice model

An alternative formulation is the Multiple-Choice Model (MCM) where, for each
s ∈ S(ij), the load variable xsij defines the total load xsij = xj and ysij = 1 if xj lies on

the sub-interval [lsij, l
s+1
ij ], and xsij = ysij = 0 otherwise. In this formulation, exactly

one ysij will equal one. In this case, the “plain” terms in the constraints would have
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the form gij(x
s
ij)− ysijgij(0): strengthened with the PR technique yields

zsij ≥ [gij(x
s
ij/y

s
ij)− gij(0)]ysij s ∈ Š(ij) , j ∈ H(i); , i ∈M (9)

xj =
∑

s∈S(ij) x
s
ij j ∈ H(i) , i ∈M (10)

lsijy
s
ij ≤ xsij ≤ ls+1

ij ysij s ∈ S(ij) , j ∈ H(i) , i ∈M (11)∑
s∈S(ij) y

s
ij = 1 i ∈M , j ∈ H(i) (12)

together with (1), (2), (7) and (8), except that now f̄i in (2) is rather fi(x) +∑
j∈H(i) gij(0)

∑
s∈Š(ij) y

s
ij +

∑
s∈Ŝ(ij)(α

s
ijx

s
ij + (gij(l

s
ij)− αs

ijl
s
ij)y

s
ij).

The third “textbook” formulation is the Convex Combination Model (CCM) [3], which
can be succinctly described as follows. On each s ∈ S(ij), xsij from MCM is replaced
by the pair of (convex combination) variables λsij and µs

ij, i.e., xsij = lsµs
ij +ls+1λsij, un-

der the constraint ysij = µs
ij+λsij. For each continuous solution (x, y) of the MCM, it is

easy to obtain a solution (µ, λ, y) of the CCM with the same value of the constraint (9)

by just taking (dropping the ij index for simplicity) µs = ls+1−xs/ys

ls+1−ls ys = ls+1ys−xs

ls+1−ls and

λs = xs/ys−ls
ls+1−ls y

s = xs−lsys
ls+1−ls . Since the opposite result is trivial, CCM and MCM have

equivalent continuous relaxation bound and we can restrict ourselves to comparing
IM with MCM.

3 Incremental Model vs Multiple Choice Model

While in the piecewise-linear case IM and CCM have equivalent continuous relax-
ations [3], this is no longer true in the general piecewise-convex case. In fact, while
MCM describes the convex envelope of the piecewise function, IM does not. The first
point comes from [10, §3.1], which considers a x ∈ Rn partitioned into x = [xk]k∈K ,
where each xk is either 0 or belongs to a compact convex set (for our purposes, a
polytope Pk = { xk : Akxk ≤ bk }, although this is not necessary in general). Let
gk be a convex objective function defined on Pk with gk(0) = 0 and ck be a fixed
activation cost. For the alternatives function

g(x) =


gk(xk) + ck if xk ∈ Pk and xh = 0 ∀ h ∈ K \ {k}
0 if x = 0
+∞ otherwise

.

the convex envelope of g can be described as

co g(x) = min
∑

k∈K θ
kgk(xk/θk)∑

k∈K θ
k ≤ 1

Akxk ≤ bkθk , θk ≥ 0 k ∈ K

This construction is exactly the one applied to each function gij when formulating
the Multiple Choice Model; as a consequence

Corollary 1. In the Multiple Choice Model, constraints (9)–(12) describe the convex
envelope of each function gij.
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Thus, the lower bound provided by MCM is not lower than the lower bound
produced by IM. The following example shows that the MCM bound can be strictly
better than the IM bound.

Example 1. Consider the problem min{ y : y ≥ g(x) , 0 ≤ x ≤ 2π } for g(x) =
− sin(x): the feasible region [0, 2π] is divided in the two intervals [0, π], where g is
convex, and [π, 2π], where g is concave, as shown in Figure 1. The original function
g(x) is represented by the black dotted line, while the function after the piecewise-
convex reformulations is shown in a solid line, as well as its feasible region in gray.

0.0 1.0 2.0 3.0 4.0 5.0 6.0

x

-1.0

-0.5

0.0

0.5

1.0

y

-sin(x)

Fig. 1: Example where the continuous re-
laxations of MCM and IC are different.

0.0 1.0 2.0 3.0 4.0 5.0 6.0

x

-1.0

-0.5

0.0

0.5

1.0

y

sin(x)

Fig. 2: Example where the continuous re-
laxations of MCM and IC are equivalent.

The feasible region to this problem, when integrality constraints are present, is
the same for both MCM and IC: however, this is no longer true for the continuous
relaxation. To illustrate this, we fix the value of the variable x for each point in
the interval and plot the optimal value of the continuous relaxation of IM and MCM,
respectively, in blue and red. Thus, the example proves that the continuous relaxation
of IM can be weaker than that of MCM. However, in a particular case the two
formulations can be proven to be equivalent:

Proposition 2. If the domain of the gij can be partitioned into two subsets [l1, l2]
and [l2, l3] so that gij is concave in the former and convex in the latter, then the
continuous relaxations of MCM and IM are equivalent.

This is depicted in Figure 2 for g(x) = sin(x). The proof of this proposition is not
difficult but rather long and technical, and therefore we postpone it to the appendix.

4 Computational Results

We test our approach on two classes of MINLPs problems with the required structure:
the Non-linear Continuous Knapsack (NCK) and the Uncapacitated Facility Location
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(UFL) problems. To solve the piecewise-convex MINLP we use Perspective Cuts
[8, 4], due to their advantageous property of linearising the “complex” terms [gij(l

s
ij +

xsij/y
s
ij) − gij(lsij)]ysij and [gij(x

s
ij/y

s
ij) − gij(0)]ysij in the formulations, as well as their

good performances w.r.t. possible alternatives [9]. Since our test problems contain no
other nonlinearities save for the gij, this reduces the Convex MINLP in SC-MINLP
to a MILP, that we then solve with CPLEX 12.10 with a time limit of 10000 seconds.
Our results only consider the MILP of the first iteration of SC-MINLP, in which Ŝ(ij)
are the original ones. Subsequent iterations would split some of the intervals in some
Ŝ(ij), which is unlikely to qualitatively change the results of interest here, which
are only related to how the formulation behaves on the Š(ij) intervals (that do not
change along iterations).

4.1 Non-Linear Continuous Knapsack

The NCK problem, already considered in [4], is

max
{ ∑

j∈N pj :
∑

j∈N wjxj ≤ C , pj ≤ gj(xj) , 0 ≤ xj ≤ Uj j ∈ N
}

We report results on two sets of instances. In all the cases we randomly generated 10
instances for each value of |N | ∈ {10, 20, 50, 100, 200, 500, 1000}, the weight wj were
uniformly randomly drawn from [1, 100], the capacity is C = 50

∑
j wj, and Uj = 100

for all j. Then, in the first group

gj(xj) =
cj

1 + bj exp(−aj(xj + dj))

where, for all j ∈ N , aj ∈ [0.1, 0.2], bj ∈ [0, 100], cj ∈ [0, 100], and dj ∈ [−100, 0] were
uniformly drawn in the corresponding intervals. This results in at most 2 intervals
for each gj. In the second set, instead,

gj(xj) = 7.5 sin

(
π
xj − 10

40

)
− 15 cos

(
π
xj − 10

80

)
+ 19.5

which rather yields 4 intervals.

In Table 1, each row shows the average results of the 10 instances corresponding to one
value of |N |; in particular, for each formulation we report the objective function of the
best solution found, the total execution time, and the total number of Perspective
Cuts (PC) generated. We then concentrate on the root node relaxation (“Relax”
columns) for which we report again the execution time and the number of PCs,
together with the relative gap of the correspondig bound w.r.t. the optimal integer
solution.

As expected, both formulations produce the same optimal integer solutions. When
the number of intervals is two, also the continuous relaxations are equivalent, down
to exactly the same number of generated PCs; this is clearly a case in which the
hypotheses of Proposition 2 are satisfied. However, for a larger number of intervals
the MCM bound is significantly better, which directly translates in much lower total
running times, especially as |N | increases.
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Table 1: Computational results for Non-linear Continuous Knapsack problem

Inst. IM MCM IM relax. MCM relax.

Int. Size Time Cuts Time Cuts Gap Time Cuts Gap Time Cuts
2 10 0.02 114.70 0.03 105.60 0.48 0.01 50.30 0.48 0.01 50.30
2 20 0.03 187.40 0.03 179.80 0.18 0.01 92.20 0.18 0.02 92.20
2 50 0.05 448.20 0.05 448.20 0.02 0.02 246.10 0.02 0.02 246.10
2 100 0.09 759.00 0.09 759.50 0.00 0.04 499.00 0.00 0.05 499.00
2 200 0.21 1614.50 0.22 1635.90 0.00 0.09 989.40 0.00 0.08 989.40
2 500 0.45 3293.90 0.45 3202.20 0.00 0.22 2504.50 0.00 0.22 2504.50
2 1000 1.12 5949.60 1.00 5896.30 0.00 0.45 5039.40 0.00 0.43 5039.40
4 10 0.06 348.40 0.04 239.70 1.31 0.01 108.10 0.17 0.01 78.80
4 20 0.09 533.90 0.04 325.90 1.00 0.02 225.40 0.03 0.02 155.10
4 50 0.41 1546.10 0.16 886.70 0.80 0.04 501.90 0.01 0.04 360.30
4 100 0.91 2332.30 0.26 1416.30 0.83 0.10 1058.90 0.00 0.07 733.50
4 200 3.10 4171.30 0.54 2369.80 0.85 0.22 2255.20 0.00 0.15 1481.00
4 500 20.34 8931.70 2.40 5141.40 0.80 0.69 5611.90 0.00 0.42 3613.30
4 1000 174.67 18249.10 4.51 8480.70 0.83 1.92 11029.20 0.00 1.20 7363.50

4.2 Non-linear Uncapacitated Facility Location

In the UFL problem, each facility k ∈ K can satisfy part of the demand required by
the consumers in T . In this nonlinear version, the shipping cost skt is defined by a
non-convex function, yielding the formulation

min
∑

k∈K Ckyk +
∑

t∈T
∑

k∈K skt (13)

skt ≥ a(sin(b wkt) + c wkt)
2 t ∈ T , k ∈ K (14)∑

k∈K wkt = 1 t ∈ T (15)

0 ≤ wkt ≤ yk t ∈ T , k ∈ K (16)

yk ∈ {0, 1} k ∈ K (17)

The variable wkt represents the portion of demand of consumer t satisfied by facility k.
The binary variable yk activates the facility k at a fixed cost Ck (uniformly generated
in [1, 100]). The parameters a, b and c are defined for three different types of instances
according to Figures 3-5, where the functions contain 1, 2, or 3 convex intervals. The
number of non-convex constraints is |K| · |T |, where we generated three different sizes
(|K|, |T |) ∈ (6, 12), (12, 24), (24, 48).

Table 2 present the computational results for the problem, where each row repre-
sents the average of the 10 instances generated for each type. In the columns of the
integer solutions of the problem, the “#O” column reports the number of instances
that were solved to optimality of the instances, and “Gap” is the value obtained from
CPLEX. The other columns in this table have the same meaning as in the previous
table.

The results show that MCM is always better than IM, even in the case of two seg-
ments: this is because, as Figure 3 shows, the function here is convex-concave rather
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Fig. 3: Function for UFL
instances of type 1 (a=15;
b=2; c=1).
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Fig. 4: Function for UFL
instances of type 2 (a=25;
b=5; c=5).
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Fig. 5: Function for UFL
instances of type 3 (a=25;
b=10; c=5).

Table 2: Computational results for Non-linear Uncapacitated Facility Location prob-
lem

IM MCM IM - Relax MCM - relax

Inst. Time Gap Cuts #O Time Gap Cuts #O Time Gap Cuts Time Gap Cuts
6x12x1 0.60 0.00 1772 10 0.46 0.00 1619 10 0.05 7.79 803 0.05 5.13 809
6x12x2 0.45 0.00 1964 10 0.32 0.00 1861 10 0.07 4.28 1082 0.07 0.44 954
6x12x3 7254.68 2.49 33356 4 4449.73 0.73 14565 7 0.23 92.76 2490 0.14 14.10 1302

12x24x1 3.68 0.00 10745 10 3.30 0.00 10317 10 0.25 8.96 3330 0.23 8.33 3359
12x24x2 1148.31 0.16 23917 9 196.46 0.00 15677 10 0.32 8.34 3993 0.31 3.48 3782
12x24x3 10000.08 20.66 128509 0 10000.03 12.52 45311 0 1.26 99.80 5978 1.09 18.30 5062
24x48x1 123.30 0.00 65840 10 98.89 0.00 67111 10 1.91 15.04 15377 1.78 14.81 15401
24x48x2 10000.04 4.71 104814 0 10000.04 3.03 83944 0 1.95 12.29 15345 1.84 6.85 14754
24x48x3 10000.13 28.94 183575 0 10000.06 14.10 99062 0 10.38 99.92 20899 17.17 18.23 22284

than concave-convex and therefore does not satisfy the hypotheses of Proposition 2.
Yet, the most significant improvements in the root node gap (from almost 100% to
around 10%) are obtained when the number of segments is larger. This does not
always result in a decreased running time due to the difficulty of the instances as the
size grows, but at least it results in significantly lower final gaps.

5 Conclusions

Motivated by the SC-MINLP technique we have studied the tightness of the con-
tinuous relaxation bounds of the three “textbook” formulations for piecewise-convex
functions. Unlike in the linear case, where they are all equivalent, one of them is
shown to be weaker than the other two (unless in the concave-convex case with just
two intervals), which does have a significant impact on actual computational re-
sults. We therefore believe that the result is significant, in that, given the well-known
equivalence for the linear case, there may be a tendency to assume that the choice
among these formulations is irrelevant: in fact, we precisely fell in this trap ourselves.
Instead, the choice of the formulation is (as it often happens) important for final per-
formances, and this may impact the many applications, besides SC-MINLP, where
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piecewise-convex functions are used.
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for MINLP with separable non-convexity. In Jon Lee and Sven Leyffer, editors,
Mixed Integer Nonlinear Programming, pages 315–347, New York, NY, 2012.
Springer New York.

[7] A. Frangioni, F. Furini, and C. Gentile. Approximated perspective relaxations: a
project&lift approach. Computational Optimization and Applications, 63(3):705–
735, 2016.

[8] A. Frangioni and C. Gentile. Perspective cuts for a class of convex 0–1 mixed
integer programs. Mathematical Programming, 106(2):225–236, 2006.

[9] A. Frangioni and C. Gentile. A computational comparison of reformulations
of the perspective relaxation: SOCP vs. cutting planes. Operations Research
Letters, 37(3):206–210, 2009.

9



[10] Antonio Frangioni, Claudio Gentile, and James Hungerford. Decompositions
of semidefinite matrices and the perspective reformulation of nonseparable
quadratic programs. Mathematics of Operations Research, 45(1):15–33, 2020.

[11] Nikolaos V. Sahinidis. BARON 21.1.13: Global Optimization of Mixed-Integer
Nonlinear Programs, User’s Manual, 2017.

[12] Mohit Tawarmalani and Nikolaos V. Sahinidis. A polyhedral branch-and-cut
approach to global optimization. Mathematical Programming, 103:225–249, 2005.

[13] Juan Pablo Vielma, Shabbir Ahmed, and George Nemhauser. Mixed-integer
models for nonseparable piecewise linear optimization: unifying framework and
extensions. Operations Research, 58:303–315, 2010.

Appendix

Here we present the proof of Proposition 2. As in the pictures, we consider the
solution of the continuous relaxation of the two models as a function of x. To avoid
having variables with the same names, for IM we replace zs with γs, ys with ψs, and
xs with φs. We, thus, have

gIM(x) = min g(l1) + α1φ1 + γ2 (18)

γ2 ≥ [g(l2 + φ2/ψ2)− g(l2)]ψ2 (19)

x = l1 + φ1 + φ2 (20)

(ls+1 − ls)ψs+1 ≤ φs ≤ (ls+1 − ls)ψs s = 1, 2 (21)

ψ1 = 1 , ψ3 = 0 (22)

gMCM(x) = min g(0)y2 + α1x1 + [g(l1)− α1l1]y1 + z2 (23)

x = x1 + x2 (24)

z2 ≥ [g(x2/y2)− g(0)]y2 (25)

lsys ≤ xs ≤ ls+1ys s = 1, 2 (26)

y1 + y2 = 1 (27)

y1, y2 ≥ 0 (28)

Note that in both models

α1 =
g(l2)− g(l1)

l2 − l1
. (29)

Given an optimal solution (φ, ψ, γ) for gIM(x), (x, y, z) defined by

ys = ψs − ψs+1 , xs = φs + lsψs − ls+1ψs+1 s = 1, 2 (30)

z2 = [g(x2/y2)− g(0)]y2 (31)

is feasible for the MCM. Indeed, (24) is satisfied by (30) and (20):

x1 + x2 = φ1 + l1 − l2ψ2 + φ2 + l2ψ2 = l1 + φ1 + φ2 = x.
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For s = 1, 2, constraints (26) are satisfied because of (30) and (21):

ls(ψs − ψs+1) ≤ φs + lsψs − ls+1ψs+1 ≤ ls+1ψs − ls+1φs+1 ≡
≡ (ls+1 − ls)φs+1 ≤ φs ≤ (ls+1 − l2)φs ≡ lsys ≤ xs ≤ ls+1ys

The multiple choice constraint (27) is satisfied because of (30) and (22):

y1 + y2 = 1− ψ2 + ψ2 = 1

Then, the variable z2 is computed through (31), (30), and (22):

z2 = [g(x2/y2)− g(0)]y2 = [g(l2 + φ2/ψ2)− g(0)]ψ2. (32)

Finally, the objective value of (x, y, z) in the MC model is

g(0)y2 + α1x1 + [g(l1)− α1l1]y1 + z2 =
g(0)ψ2 + α1(φ1 + l1 − l2ψ2) + [g(l1)− α1l1](1− ψ2) + z2 =
g(0)ψ2 + α1φ1 + g(l1)− g(l1)ψ2 − α1(l2 − l1)ψ2 + g(l2 + φ2/ψ2)ψ2 − g(0)ψ2 =

g(l1) + α1φ1 − [g(l1) + g(l2)−g(l1)
l2−l1 (l2 − l1)]ψ2 + g(l2 + φ2/ψ2)ψ2 =

g(l1) + α1φ1 + [g(l2 + φ2/ψ2)− g(l2)]ψ2 ≤ g(l1) + α1φ1 + γ2 = gIM(x),

where the first equality comes from (30) and (22), the second equality comes from (32),
the third equality comes from (29), the fourth equality comes from simple algebra,
and the final inequality comes from (19). All this proves that gMCM(x) ≤ gIM(x):
since Corollary 1 implies gIM(x) ≤ gMCM(x), necessarily gIM(x) = gMCM(x).

Example 1 shows that Proposition 2 does not hold if we switch the segments, i.e.,
g is convex in [l1, l2] and concave in [l2, l3]. One may still wonder why the above
argument cannot be repeated in this case, where we rather have

gIM(x) = min g(l1) + γ1 + α2φ2

γ1 ≥ [g(l1 + φ1/ψ1)− g(l1)]ψ1 = g(l1 + φ1)− g(l1) (33)

(20) , (21) , (22)

gMCM(x) = min g(0)y1 + z1 + α2x2 + [g(l2)− α2l2]y2

z1 ≥ [g(x1/y1)− g(0)]y1 (34)

(24) , (26) , (27) , (28)

Comparing (33) with (34) we see that the Perspective Reformulation has no effect
on IM, while it strengthens MCM; the crucial equality in (33) comes from ψ1 = 1 in
(22), i.e., (4). Not fixing the variable would make the IM relaxation even weaker, and
thus the result would then a fortiori hold.
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