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1 Introduction

The aim of this paper is to investigate the Hodge cohomology, that is the cohomology of

square-integrable harmonic forms, of ALF gravitational instantons.

ALF gravitational instantons arise in Euclidean approaches to quantum gravity [1],

as moduli space of monopoles [2], as quantum moduli spaces of supersymmetric gauge

theories [3], and as compactifications in string theory [4]. In the context of the geometric

models of matter framework [5], which aims to model static particles via Riemannian 4-

manifolds, their rôle as models for multi-particle systems has been considered in [6]. They

come in two infinite families: of type AK−1 and of type DK .

Square-integrable (L2) harmonic forms are of natural interest e.g. in relation with var-

ious duality conjectures arising in string theory and as electric fields associated to charged

particles in the geometric models of matter framework.

On a compact orientable Riemannian manifold de Rham cohomology is isomorphic

to Hodge cohomology, but on a non-compact manifold there is generally no such corre-

spondence. However if a Riemannian manifold M has a particular asymptotic behaviour

(metric of fibred boundary type or of cusp type), which includes that of ALF gravitational

instantons, then there is a relation between the Hodge cohomology of M and the ordinary

cohomology of a particular compactification XM of M [7]. We will refer to XM as the

Hausel-Hunsicker-Mazzeo (HHM) compactification of M . This work originated as an at-

tempt to elucidate the correspondence between M and XM in the particular case of ALF

gravitational instantons.

The plan of the paper is as follows: in section 2 we recall the topological properties of

an ALF gravitational instanton M and of its HHM compactification XM which are needed

in order to calculate the dimension of L2Hp(M), the space of square-integrable harmonic p-

forms on M . In section 3 we describe the metric properties of ALF gravitational instantons

and exhibit an explicit basis of L2H2(M), the only non-trivial Hodge cohomology group.

The results that we obtain are exact in the case of ALF AK−1, approximate in the case of

ALF DK where we rely on an asymptotic approximation of the true metric.
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2 The dimension of L2Hp(M)

A (non-compact) gravitational instanton is a complete hyperkähler 4-manifold with curva-

ture tensor decaying at infinity. An ALF (short for asymptotically locally flat) gravitational

instanton is, outside a compact set, the total space of a circle fibration over R3 or R3/Z2

with fibres of asymptotically constant length. Two infinite families of ALF gravitational

instantons are known: of type AK−1, Z ∋ K ≥ 1 and of type DK , Z ∋ K ≥ 0. ALF AK−1

is also known as multi Taub-NUT with K NUTs — the number of NUTs being the reason

why we prefer to work with AK−1 rather than with AK .

ALF gravitational instantons of type AK−1, K ≥ 2, are topologically the minimal

resolution of the Kleinian singularity C2/ZK . ALF gravitational instantons of type DK ,

K ≥ 3, are the minimal resolution of the Kleinian singularity C2/D∗
K−2, where D

∗
K denotes

the binary dihedral group of order 4K. As a consequence, ALF AK−1, K ≥ 2 (ALF DK ,

K ≥ 3), retracts onto a configuration of 2-spheres intersecting according to the Lie algebra

AK−1 (DK).

Small values of K need a separate description: ALF A0 is topologically C2. ALF

D0, the moduli space of centered SU(2) monopoles of charge 2 (or non-simply connected

Atiyah-Hitchin manifold), retracts onto the real projective plane P2(R). ALF D1, the

1-parameter family of deformations of the double cover of D0 (or simply connected Atiyah-

Hitchin manifold) discovered by Dancer [8], retracts onto a 2-sphere. ALF D2, the minimal

resolution of singularities of (R3 ×S1)/Z2, Z2 acting with two fixed points, retracts onto a

configuration of two 2-spheres intersecting according to the Lie algebra D2 ≃ A1 ×A1.

As a consequence of the topological properties mentioned above, the de Rham coho-

mology of ALF gravitational instantons is given by

Hp
dR (MK) =

⎧
⎪⎪⎨

⎪⎪⎩

R if p = 0,

RK if p = 2,

0 otherwise,

(2.1)

where MK stands for either AK or DK and R0 denotes the trivial vector space.

For both families M \ C, with C a suitable compact set, is a circle fibration over

N = I × Σ, with I an open interval and Σ a smooth 2-manifold. Let us parametrise the

interval I with a coordinate r and denote by Σr = {r}×Σ. Then the HHM compactification

XM of an ALF gravitational instanton M is obtained by collapsing the fibre above each

point of Σr in the limit r → ∞. Therefore M = XM \Σ∞ with Σ∞, which is diffeomorphic

to Σ, playing the rôle of the spatial infinity of M . It is known [7, 9] that XM is a closed

smooth manifold.1

By a result (corollary 1) in [7] we have

L2Hp(M) =

⎧
⎪⎪⎨

⎪⎪⎩

Hp(XM ,Σ∞;R) if p ≤ 1,

H2(XM ;R) if p = 2,

Hp(M ;R) if p ≥ 3,

(2.2)

1The HHM compactification can be defined in a wider context, but it is generally only a stratified space.
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where Hp(A;R), Hp(A,B;R) denote the singular and relative cohomology of A with real

coefficients. For a smooth manifold de Rham cohomology and singular cohomology over R
are isomorphic so we can work with the former. Since for any ALF gravitational instanton

Hp
dR(M) = 0 if p ≥ 3 and Hp(XM ,Σ∞;R) = 0 for p = 0, 1,

L2Hp(M) =

{
H2

dR(XM ) if p = 2,

0 otherwise.
(2.3)

In order to compute the dimension of L2H2(M) it is convenient to use a Mayer-Vietoris

sequence over the open sets U = XM \Σ∞, V an open neighbourhood of Σ∞ in XM . Since

for r > 0 Σr is the base of a circle fibration while for r = ∞ the fibres have collapsed to

zero size, V is a disk bundle over Σ∞, homotopically equivalent to Σ∞. The intersection

U ∩ V retracts onto a hypersurface of large r.

In the case of AK−1, Σr is diffeomorphic to the 2-sphere S2, and a hypersurface of large

r has the topology of S3 if K = 1 and of the lens space L(K, 1) if K > 1, see appendix A.

A Mayer-Vietoris sequence then gives

Hp
dR(XAK−1) =

⎧
⎪⎪⎨

⎪⎪⎩

R if p = 0, 4,

RK if p = 2,

0 otherwise,

(2.4)

hence

dim
(
L2H2(AK−1)

)
= K. (2.5)

In the case of DK , Σr is diffeomorphic to the real projective plane P2(R). A hyper-

surface of large r has the topology of S3/D∗
K−2 if K ≥ 3, of S3/D∗

2 if K = 0, of S3/D∗
1

if K = 1 and of (S2 × S1)/Z2 if K = 2, see appendix A. A Mayer-Vietoris sequence then

gives

Hp
dR(XDK ) =

⎧
⎪⎪⎨

⎪⎪⎩

R if p = 0, 4,

RK if p = 2,

0 otherwise,

(2.6)

hence

dim
(
L2H2(DK)

)
= K. (2.7)

Note how, differently from the case of AK−1, Σ∞ does not contribute to the middle dimen-

sion cohomology of XDK .

While H2
dR(XM ) was all we needed in order to calculate the dimension of L2H2(M),

we should point out that the topology of XAK−1 is known: XAK−1 is homeomorphic to

the connected sum of a number of copies of P2(C) (with our choice of orientation) equal

to dim
(
L2H2(AK−1)

)
= K [9]. In order to prove this result it is enough to show that

the intersection matrix of XAK−1 is definite and diagonal. Since XAK−1 is smooth closed

oriented and simply connected, the result follows from a theorem by Freedman [10].2 In

2Simply connectedness of XAK−1 , XDK can be shown by applying van Kampen’s theorem to the open

sets U , V used in the Mayer-Vietoris sequence.
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section 3 we will exhibit a basis {[ΣI ]} of H2(XAK−1 ;Z) from which the intersection matrix

of XAK−1 can be readily calculated and shown to have the fore mentioned properties.

3 A basis of L2H2(M)

While the computation of dim(L2H2(M)) relied only on the topology of an ALF gravi-

tational instanton and of its HHM compactification, in order to exhibit a basis we need

to take the metric into account. ALF gravitational instantons are geodesically complete

hence any square-integrable harmonic form is both closed and co-closed.

Let us start with the AK−1 family. By a result of Hitchin [11], any square-integrable

harmonic 2-form on AK−1 is anti self-dual with respect to the orientation induced by the

hyperkähler structure. In order to follow the conventions used in [5, 6] we will be using the

opposite orientation. Our strategy to construct a basis of L2H2(AK−1) will be therefore

to look for self-dual 2-forms and impose closure and square-integrability.

The forms {ΩI} that we are going to construct, see equation (3.14), have been found

before [12]. We reproduce them here for two reasons: on one hand to provide an explicit

derivation and a proof of the fact that they form a basis of L2H2(AK−1), both of which

are not available in the literature; on the other hand to clarify their topological origin:

as we will see [ΩI ] is the Poincaré dual of a 2-cycle [ΣI ] naturally emerging in the HHM

compactification of AK−1.

The metric of an AK−1 ALF gravitational instanton is of Gibbons-Hawking form,

ds2 = V (dr2 + r2dΩ2) + V −1(dψ + α)2, (3.1)

where dΩ2 = dθ2 + sin2 θ dφ2, (r, θ,φ) are spherical coordinates in R3, ψ ∈ [0, 2π) is an

angle, α is a 1-form locally such that dα = ∗3dV , ∗3 being the Hodge operator with respect

to the Euclidean metric on R3. The function V is given by

V = 1 +
1

2

K∑

I=1

1

||p− pI || , (3.2)

where ||·|| is the Euclidean norm in R3 and the points {pI} are K distinct points in R3,

fixed points of the U(1) isometry generated by the Killing vector ∂/∂ψ known as NUTs.

The metric can be smoothly extended to the points {pI} provided that they are all distinct.

We denote by (pIx, p
I
y, p

I
z) the Cartesian coordinates of pI . For future convenience let us

write V = 1 +
∑K

I=1 V
I , α =

∑
I α

I , with dαI = ∗3dV I .

If (rI , θI ,φI) are spherical coordinates centered at pI , the form αI is given locally, up

to addition of a closed 1-form, by the expression

αI =
1

2
cos θI dφI (3.3)

and has the usual Dirac string singularity along the surface x = pIx, y = pIy, with x, y, z

Cartesian coordinates on R3. The singularity can be avoided by defining the two gauge

– 4 –
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potentials

αI
(N) =

1

2

(
cos θI − 1

)
dφI for θI ̸= π,

αI
(S) =

1

2

(
cos θI + 1

)
dφI for θI ̸= 0.

(3.4)

Note that dαI
(N) = dαI

(S). Both αI
(N) and αI

(S) are not defined at pI where the angular

coordinates are ill-defined.

Introduce the orthonormal coframe

ei =
√
V dxi, i = 1, 2, 3,

e4 =
1√
V
(dψ + α).

(3.5)

We choose the orientation opposite to the one induced by the hyperkähler structure, so

our canonical volume element is

volAK−1 = e4 ∧ e1 ∧ e2 ∧ e3 = V −1r2 sin θ dψ ∧ dr ∧ dθ ∧ dφ. (3.6)

Start with the self-dual ansatz

Ω = ai

(
e4 ∧ ei +

1

2
ϵijke

j ∧ ek
)

= ai

[
(dψ + α) ∧ dxi +

V

2
ϵijk dx

j ∧ dxk
]
, (3.7)

with ai satisfying ∂ψai = 0, i = 1, 2, 3, and impose the closure condition

dΩ = 0 = dai ∧ (dψ + α) ∧ dxi + ai dα ∧ dxi +
1

2
d(aiV ) ∧ ϵijk dxj ∧ dxk. (3.8)

Since ∂ψai = 0, dai ∧ dxi = d
(
aidxi

)
must vanish hence, since H1

dR(AK−1) = 0, ai = ∂iA

for some function A. Using dα = ∗3dV (3.8) reduces to

d ∗3 d(AV ) = 0, (3.9)

that is A = f/V with V given by (3.2) and f harmonic with respect to the 3D Euclidean

Laplacian. Therefore

Ω = (dψ + α) ∧ dA+ V ∗3 dA (3.10)

is closed and self-dual hence harmonic.

We still need to impose square-integrability. We have

Ω ∧ ∗Ω = 2
3∑

i=1

(∂iA)2 volAK−1 . (3.11)

For large r

dA = d(f/V ) = df

(
1− k

2r
+O

(
r−2

))
+ f ·O

(
r−2

)
, (3.12)

volAK−1 = O(r2), therefore Ω is square-integrable if f is either constant or decays at infinity

like 1/r or faster. For f = −c constant we get

Ω|f=−c = c
[
dV −1 ∧ (dψ + α) + V −1 ∗3 dV

]
. (3.13)

– 5 –
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By Liouville’s theorem a harmonic function bounded from above or from below and

globally defined on Rn must be constant, hence to get a non-constant f we must allow

for poles. In order for Ω to remain smooth the poles of f must be located at the NUTs

positions. A harmonic function with the required decay at infinity and with poles at the

points pI must be of the form
∑

I cIV
I , with cI arbitrary constants and V I = 1/(2rI).

Since (3.10) depends linearly on f ,

Ω|f=∑
cI V I =

∑
cI Ω|f=V I (3.14)

and we only need to consider the 2-forms

ΩI ≡ Ω|f=V I/(2π)

=
1

2π
∂i

(
V I

V

)(
e4 ∧ ei +

1

2
ϵijke

j ∧ ek
)

=
1

2π

[
(dψ + α) ∧ d

(
V I

V

)
+ V ∗3 d

(
V I

V

)]
,

(3.15)

where the normalisation factor (2π)−1 has been chosen for future convenience. Note that

ΩI = dωI , with

ωI =
1

2π

(
αI − V I

V
(dψ + α)

)
=

1

2π

⎡

⎣αI

(
1− V I

V

)
− V I

V

⎛

⎝dψ +
∑

J ̸=I

αJ

⎞

⎠

⎤

⎦ . (3.16)

However ΩI is not exact as ωI is only locally defined. In fact near pI

ωI = − 1

2π

⎛

⎝dψ +
∑

J ̸=I

αJ

⎞

⎠+O
(
rI
)

(3.17)

and dψ is not well-defined at pI .

We can recover the case f = const by summing over all NUTs:

Ω∞ ≡
K∑

I=1

ΩI =
1

2π

[
dV −1 ∧ (dψ + α) + V −1 ∗3 dV

]
= Ω|f=−1/(2π) . (3.18)

The notation ∞ in Ω∞ is due to the fact that, as follows from equation (3.29) below, [Ω∞]

is the Poincaré dual of [Σ∞]. Note that Ω∞ = dω∞, with

ω∞ =
V −1

2π
(dψ + α). (3.19)

The form ω∞ is globally defined and vanishes at the NUTs positions because of the factor

V −1. In fact 2πω∞ is the metric dual of the Killing vector field ∂ψ. However ω∞ is not

square-integrable as

||ω∞||2 =
∫

AK−1

ω∞ ∧ ∗ω∞ =

∫

AK−1

volAK−1

2πV
= 4π

∫ ∞

0
r2 dr, (3.20)

therefore Ω∞ is exact but not L2-exact.

– 6 –
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In order to verify that {ΩI}, I = 1, . . . ,K, is a basis of L2H2(AK−1) we shall first

check that any subset of K − 1 elements is a basis of H2
dR(AK−1) by computing the period

matrix.

Let us first describe a convenient basis of H2(AK−1;Z). An ALF AK−1 gravitational

instanton retracts onto a configuration of 2-spheres intersecting according to minus the

Cartan matrix of the AK−1 Lie algebra.3 It is possible to represent the homology classes of

these 2-spheres by minimal area embedded 2-surfaces having the topology of a 2-sphere [4].

They are constructed as follow. Take the line segment connecting two distinct NUTs and

passing through no other NUT. Above each point of this line there is a circle, which collapses

to zero radius at both ends of the segment. Hence the resulting surface is topologically

a 2-sphere. By considering the induced metric one can check that, apart from a constant

factor, the area of this surface is equal to the length of the segment connecting the two

NUTs. Since straight lines minimise Euclidean length, the surface has minimal area, at

least among surfaces having the same topology. Some properties of these surfaces have

been studied in [6].

If pI , pJ are two NUTs such that the line segment connecting them passes through

no other NUT, denote by SI,J the associated minimal area surface, and by [SI,J ] the

corresponding homology class in H2(AK−1;Z). The construction is illustrated in figure 1

for the case K = 3. Consider the integral

∫

SI,J

ΩK . (3.21)

If we use spherical coordinates (r, θ,φ) such that the line through pI , pJ has constant

angular coordinates (θ = θ0,φ = φ0), we can parametrise SI,J as

SI,J = {(r,ψ, θ0,φ0) ∈ AK−1 : p
I
r ≤ r ≤ pJr ,ψ ∈ [0, 2π)}, (3.22)

where pIr (pJr ) is the r-coordinate of p
I (pJ). On SI,J we take the orientation dr∧dψ, with

r increasing in the direction of pJ .

Recall that ΩK = dωK , with ωK given by (3.16). If K ̸= I, K ̸= J then pK /∈ SI,J

and the term (V K/V )(dψ + α) is well defined on SI,J . If αK is globally defined on SI,J

then ΩK is exact and the integral vanishes, otherwise we can break the integration region

into two parts in each of which ΩK is exact. Define

ωK
(N) =

1

2π

(
αK
(N) −

V K

V
(dψ + α)

)
, ωK

(S) =
1

2π

(
αK
(S) −

V K

V
(dψ + α)

)
, (3.23)

with αK
(N), α

K
(S) given by (3.4) and let

SI,J(N) = {(r,ψ) ∈ SI,J : ΩK = dωK
(N)}, SI,J(S) = {(r,ψ) ∈ SI,J : ΩK = dωK

(S)}.
(3.24)

3The usual choice of orientation, opposite to (3.6), would give the plus sign. The Cartan matrix of the

Lie algebra AK−1 is tri-diagonal with 2 on the main diagonal and −1 above and below it.
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The surfaces SI,J(N), SI,J(S) have a circle parametrised by ψ as the common boundary, but

with opposite induced orientation, hence (3.21) reduces to

∫

S1
(αK

(N) − αK
(S)) = 0 (3.25)

as αK
(N) = 0 = αK

(S) when restricted to this circle.

If K = I, ϵ > 0, let SϵI,J = {(r,ψ) ∈ SI,J : pIr + ϵ ≤ r ≤ pJr }. Then ∂SϵI,J is a small

circle of radius ϵ and the induced boundary orientation is −dψ. On SϵI,J the form ΩI is

exact, hence

∫

SI,J

ΩI = lim
ϵ→0

∫

Sϵ
I,J

ΩI =
1

2π
lim
ϵ→0

∫

∂Sϵ
I,J

(
αI − V I

V
(dψ + α)

)
=

1

2π
lim
ϵ→0

∫

S1
ϵ

V I

V
dψ

=
1

2π
· 2π lim

p→pI

V I

V
= 1.

(3.26)

The case K = J is obtained from K = I by an orientation reversal, hence we obtain

the period matrix ∫

SI,J

ΩK = δKI − δKJ (3.27)

which has maximal rank K − 1. Therefore any K − 1 elements of {[ΩI ]} form a basis of

H2
dR(AK−1). As we noticed before Ω∞ =

∑
I ω

I is exact but not L2-exact hence {ΩI},
I = 1, . . . ,K, is a basis of L2H2(AK−1).

Label the NUTs so that the line segment from pI to pI+1 passes through no other NUT.

We can construct a basis {[W I,I+1]} ofH2
dR(AK−1) consisting of square-integrable harmonic

forms such that [W I,I+1] is the Poincaré dual of [SI,I+1]: define W I,I+1 = ΩI+1 − ΩI ,

I = 1, . . . ,K − 1, then

∫

SJ,J+1

W I,I+1 = δI−1
J + δI+1

J − 2δIJ . (3.28)

Since the HHM compactification of an ALF gravitational instanton is obtained by

collapsing the fibre above each point of Σr as r → ∞, Σ∞ can be thought as a 2-surface, in

the case of AK−1 a 2-sphere, worth of NUTs, see figure 1. Therefore any half-line connecting

a NUT pI to a point of the 2-sphere at infinity Σ∞ defines a surface ΣI , topologically a 2-

sphere, representing a homology class [ΣI ] ∈ H2(XAK−1 ;Z). We take on ΣI the orientation

dr ∧ dψ, with r increasing toward ∞. A computation similar to (3.26) gives

∫

ΣI

ΩJ = δJI , (3.29)

therefore [ΩI ] is the Poincaré dual of [ΣI ] in XAK−1 and {[ΩI ]}, I = 1, . . . ,K, is a basis of

H2
dR(XAK−1). Note that (3.29) also implies that surfaces ΣI , Σ̃I obtained by connecting

pI to two different points of Σ∞ are homologous. It is interesting to notice that [Ω∞], with

Ω∞ given by (3.18), is Poincaré dual in XAK−1 to the 2-cycle
∑K

I=1[ΣI ] = [Σ∞].

– 8 –
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p2

p3

p1

p2

p3

Σ∞

S
1,2  = Σ

1 - Σ
2

S
1,3  = Σ

1 - Σ
3

S 2,3
 = Σ 2 - Σ 3

Σ 1

Σ 2

Σ3

π

Figure 1. Homology of A2 and XA2 . Black filled dots correspond to NUTs. The surface at infinity
Σ∞ can be thought as a 2-sphere worth of NUTs. Connecting any two NUTs by a line segment
gives a 2-cycle. The angular coordinate ψ has been suppressed so 2-cycles appear as line segments,
the fibration by circles is shown in the box. Continuous lines correspond to the 2-cycles Σ1, Σ2, Σ3

generating H2(XA2 ;Z), dashed lines correspond to 2-cycles S1,2, S1,3, S2,3 generating H2(A2;Z).

Denote by S ·XS′ the intersection number of S and S′ inside the space X. By definition

of Poincaré dual we have

SI ·AK−1 SJ =

∫

AK−1

W I,I+1 ∧W J,J+1 = δI−1
J + δI+1

J − 2δIJ , (3.30)

ΣI ·XAK−1
ΣJ =

∫

XAK−1

ΩI ∧ ΩJ = δJI , (3.31)

which can be also checked by direct computation.

To summarise: {ΩI} is a basis of L2H2(AK−1), {[ΣI ]} is a basis of H2(XAK−1 ;Z)
and [ΩI ] is the Poincaré dual of [ΣI ]; {[W I,I+1]} is a basis of H2

dR(AK−1) with W I,I+1 a

harmonic square-integrable 2-form, {[SI,I+1]} is a basis of H2(AK−1;Z) with SI,I+1 a min-

imal area embedded surface, and [W I,I+1] is the Poincaré dual of [SI,I+1]. The homology

and cohomology of AK−1, XAK−1 are related by the equations [SI,I+1] = [ΣI ] − [ΣI+1],

[W I,I+1] = [ΩI+1] − [ΩI ]. Note that greek letters identify objects naturally related to

XAK−1 and latin letters identify object naturally related to AK−1. The (cohomology class

of the) 2-form Ω∞ ∈ L2H2(AK−1) which is singled out by the fact of being exact (but not

L2-exact) is Poincaré dual in XAK−1 to the cycle at infinity [Σ∞]. See also figure 1 for a

pictorial representation of these results.
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We now come to the DK family. The construction of the exact metric on DK is quite

involved [13], however there is an asymptotic approximation of Gibbons-Hawking form [14],

ds2 = V (dx2 + dy2 + dz2) + V −1(dψ + α)2, (3.32)

with α locally such that dα = ∗3dV , and

V = 1− 2

||p|| +
1

2

K∑

I=1

(
1

||p− pI || +
1

||p+ pI ||

)
, (3.33)

where {pI} are K distinct points in R3. There is the Z2 identification

ψ ∼ −ψ, θ ∼ π − θ, φ ∼ φ+ π. (3.34)

For future convenience write

V = 1− 2

||p|| +
k∑

I=1

V I+ +
k∑

I=1

V I−, (3.35)

with V I± = (2
∣∣∣∣p∓ pI

∣∣∣∣)−1 and define αI± via dαI± = ∗3dV I±.

As long as we work with the approximate metric (3.32) we can proceed as we did for

AK−1. By looking for self-dual, square-integrable harmonic forms on AK−1 we obtained

the expression

Ω = (dψ + α) ∧ d(f/V ) + V ∗3 d(f/V ) (3.36)

with f either constant or given by a superposition of poles located at the NUTs. Since we

did not make use of the detailed form of V , the expression is valid also for DK , but we now

need to take into account the Z2-identification (3.34) under which V is even, ψ and α are

odd. In order for Ω to be invariant f needs to be odd, hence we cannot have f = const or

containing a pole at the origin and other poles of f must appear in the odd combination

V I+ − V I−. Therefore we obtain K harmonic square-integrable 2-forms {ΩI} by taking

f = (V I+ − V I−)/(4π) with the normalisation factor chosen for future convenience.

We will now show that {[ΩI ]} is a basis of H2
dR(DK) by looking at the period matrix.

We first need to construct a convenient basis of H2(DK ;Z). To a line segment connecting

pI to pJ and passing through no other NUT is associated a minimal area 2-cycle SI,J

constructed as before. Label the points {pI} in (3.33) so that the line segment between pI

and pI+1 passes through no other NUT, and so does the line segment between pK−1 and

−pK . Denote by SI,I+1 the 2-cycle obtained by connecting the NUT pI to the NUT pI+1

and by SK−1,−K the 2-cycle obtained by connecting the NUT at pK−1 to the one at −pK .

Then {[S1,2], . . . , [SK−1,K ], [SK−1,−K ]} is a basis of H2(DK ;Z) with intersection matrix

minus the Cartan matrix of the Lie algebra DK whose representatives are (approximately)

minimal area embedded surfaces. Calculations similar to those we did for AK−1 show that
∫

SI,J

ΩK = δKI − δKJ , (3.37)

hence {ΩI} is an approximate basis of L2H2(DK), and {[ΩI ]} an approximate basis of

H2
dR(DK).
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We can also construct harmonic square-integrable representatives of the Poincaré duals

of the 2-cycles [SI,J ]: the combination [W I,I+1] = [ΩI+1] − [ΩI ], I = 1, . . . ,K − 1, is the

Poincaré dual of [SI,I+1], and [WK−1,−K ] = −([ΩK ] + [ΩK+1]) is the Poincaré dual of

[SK−1,−K ]. Finally, if ΣJ is the surface connecting pJ to a point on the surface at infinity

then {[ΣI ]}, I = 1, . . . ,K, is a basis of H2(XDK ;Z) with [ΣI ] Poincaré dual to [ΩI ] since
∫

ΣJ

ΩI = δIJ . (3.38)

As we can see, the main differences between the Hodge cohomology of AK−1 and DK

stem from the fact that the surface at infinity in DK does not contribute to the middle di-

mension homology ofXDK . In turn, this can be tracked down to the Z2-identification (3.34)

featured by DK but not by AK−1 as a consequence of the different properties of the un-

derlying topological manifolds.

A The topology of large r hypersurfaces

Outside a compact set the topology of an ALF gravitational instanton is that of (C2\{0})/Γ
with Γ a finite subgroup of SU(2). Let (z1, z2) be complex coordinates on C2.

For ALF AK−1, Γ = ZK . The action of ZK on C2 is generated by

(z1, z2) 2→ exp (i 2π/K) (z1, z2). (A.1)

In terms of spherical coordinates r ∈ (0,∞), θ ∈ [0,π], φ ∈ [0, 2π), α ∈ [0, 4π) (A.1)

becomes

r 2→ r, θ 2→ θ, φ 2→ φ, α 2→ α+ 4π/K. (A.2)

Therefore ZK only acts on the fibres and a hypersurface of large r is S3 for K = 1 (Hopf

fibration) and the lens space L(K, 1), a U(1) bundle over S2 with Chern number K, for

K > 1.4

For DK , K ≥ 3, Γ = D∗
K−2, the binary dihedral group of order 4(K − 2). The group

D∗
K has presentation

D∗
K = ⟨a, b : a2K = e, b2 = aK , b a b−1 = a−1⟩. (A.3)

The action of D∗
K−2 on C2 is generated by

a : (z1, z2) 2→ exp (iπ/(K − 2)) (z1, z2), (A.4)

b : (z1, z2) 2→ i(z̄2,−z̄1). (A.5)

or, in terms of the spherical coordinates (r, θ,φ,α),5

a : r 2→ r, θ 2→ θ, φ 2→ φ, α 2→ α+ 2π/(K − 2), (A.6)

b : r 2→ r, θ 2→ π − θ, φ 2→ π + φ, α 2→ −α. (A.7)

4The angle ψ ∈ [0, 2π) appearing in the asymptotic AK−1 metric (3.1) is related to α by ψ = Kα/2.
5The angle ψ ∈ [0, 2π) appearing in the asymptotic DK metric (3.32) is related to α̂ by ψ = (K − 2)α̂.
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For K ≥ 3 a large r hypersurface has therefore the topology of S3/D∗
K−2. Note that while

D∗
1 = Z4, its action on ALF D2 is different from the Z4-action on ALF A3.

ALF D0, the moduli space of charge 2 centred SU(2) monopoles, is modded out by

the transformations (see [15] where the angle we denote by α̂ is denoted by ψ)

I1 : r 2→ r, θ 2→ π − θ, φ 2→ π + φ, α̂ 2→ −α̂, (A.8)

I2 : r 2→ r, θ 2→ π − θ, φ 2→ π + φ, α̂ 2→ π − α̂, (A.9)

I3 : r 2→ r, θ 2→ θ, φ 2→ φ, α̂ 2→ π + α̂, (A.10)

with (r, θ,φ) as before and α̂ ∈ [0, 2π). Note that I3 ◦ I1 = I2. Since I1 = b, I3 = a|K=4,

a large r hypersurface in D0 has the same topology, S3/D∗
2, as one in D2, but opposite

orientation [16].

ALF D1 is modded out by I1 only. Since α̂ ∈ [0, 2π) we obtain the same identifications

as in (A.6) for K = 3. A large r hypersurface has therefore the same topology, S3/D∗
1, as

one in D3, but opposite orientation.

ALF D2 is the minimal resolution of (R3 × S1)/Z2 [16, 17]. If (r, θ,φ) are spherical

coordinates on R3 and α̂ ∈ [0, 2π) parametrises S1, the Z2-action is generated by

r 2→ r, θ 2→ π − θ, φ 2→ π + φ, α̂ 2→ 2π − α̂. (A.11)

The action (A.11) is antipodal on R3 but not on S1. A large r hypersurface has the

topology of (S2 × S1)/Z2.

Note that the ZK-action (A.1) and the D∗
K−2-action (A.4) have the origin of C2 as their

only fixed point, while the Z2-action (A.11) has two fixed points: (0, 0), (0,π) ∈ R3 × S1,

where 0 denotes the origin of R3.
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