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Abstract—This paper deals with the problem of adaptive vector
subspace signal detection in partially-homogeneous Gaussian
disturbance and structured (unknown) deterministic interference
within the framework of invariance theory. It is first proved
that the Maximal Invariant Statistic (MIS) for the problem
at hand is scalar-valued and coincides with the well-known
Adaptive Normalized Matched Filter (ANMF) evaluated after
data projection in the complementary subspace of the interfering
signal. Secondly, the statistical characterization of the MIS under
both hypotheses is derived. Then, it is shown the statistical
equivalence of (Two-step) Generalized-Likelihood Ratio test, Rao
and Wald tests, as well as the more recently considered Durbin
and Gradient test, to the above statistic. Finally, simulation
results are provided to confirm our findings and analyze the
performance trend of the MIS with the relevant parameters.

Index Terms—Adaptive Radar Detection, Constant False-
Alarm Rate (CFAR), Invariance Theory, Maximal Invariants,
Vector subspace Model, Partially-homogeneous interference, Co-
herent Interference.

I. INTRODUCTION

A. Motivation and Related Works

THE PROBLEM of adaptive detection has been object of
enormous interest in the last decades. Many excellent

works appeared in the open literature, dealing with the design
and performance analysis of suitable detectors under several
specific settings (see for instance [1] and references therein).

Most of the proposed solutions assume a Homogeneous
Environment (HE), wherein a set of secondary data (free of
signal) components, but sharing the same spectral properties
of the disturbance in the cells under test (primary data), is
available [2], [3]. The HE often leads to elegant closed-form
solutions which provide satisfactory performance in many
cases [4], [5]. Unfortunately, the HE might not be met in some
realistic situations: see, for example [6]–[8].
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Indeed, relevant scenarios are often non-homogeneous due
to environmental factors and system considerations [6]–[8].
Among the frequently used assumptions to depict a non-
homogeneous scenario there is the Partially Homogeneous
Environment (PHE), i.e., both the test data and secondary data
share the same disturbance covariance matrix structure up to an
unknown scaling factor. Though keeping a relative tractability
of the considered model, the present assumption provides
increased robustness by allowing the (expected) power level
of the disturbance to differ between the test data and the
set of training data, which may appear in practice due to
variations in terrain as well as the presence of guard cells [6],
[8], [9]. Additionally, the PHE subsumes the HE as a special
case. It is worth noticing that in more challenging scenarios,
such as the naval context with high resolution Radars, more
advanced disturbance models, such as spherically-invariant
random processes, should be considered in order to account
for clutter heterogeneity, as in [10].

The well-known Adaptive Normalized Matched Filter
(ANMF) [11], [12], also known as Adaptive Coherence Es-
timator (ACE) [13] is the most common detector employed in
PHE. In fact, it was proved to be the Generalized Likelihood
Ratio Test (GLRT) for the aforementioned model in [14]. In
the same paper, it was also shown that the same test could
be obtained as the result of a two-step GLRT (2S-GLRT)
design procedure, that is, devising the GLRT under known
covariance of the disturbance and then making it adaptive via
its substitution with the sample covariance matrix of secondary
data. Later, the strong appeal of the ACE was confirmed
in [15], where it was shown that other two theoretically-
founded detection approaches, such as the Rao and Wald
tests, both lead to the ANMF. It is worth remarking that the
equivalence of GLRT and 2S-GLRT in PHE also holds in the
case of a target return belonging to a multi-rank subspace,
as proved in [16]. Such assumption is very important as
it it represents an effective analytic tool to incorporate the
partial knowledge of the target response in the detector design
and, hence, to mitigate the performance degradation due to
steering vector errors [17]–[19]. In fact, by constraining the
target steering vector to lie in a suitable subspace of the
observation space, it is possible to capture the energy of
the potentially distorted wavefront of a mainlobe target. As
a result, design architectures based on this model have the
potential of declaring the presence of targets whose signature
differs from the nominal one. Evidently, the subspace idea
can be similarly adopted to model coherent interfering signals
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impinging on the radar antenna, whose directions of arrival
have been estimated within some uncertainty. For instance, in
[4], [20] the authors devise adaptive decision schemes to reveal
extended targets when the interference comprises a random
contribution (referring to clutter and thermal noise) and a
structured unwanted component. In this respect, the present
work similarly exploits the subspace approach for modeling
both the signal and coherent interference signatures.

Other remarkable studies concerning detectors design in
PHE appeared in the literature in the last years. A multi-
dimensional analysis was conducted in [21], where an in-
variant approach was proposed to derive the MIS and a
two-step GLRT with distributed targets and rank-one signals.
Remarkably, the latter test was shown to have a Constant
False-Alarm Rate (CFAR). On the other hand, Rao and Wald
tests were developed in [22] to detect distributed (range-
spread) targets with perfect knowledge of the target steering
vector. More recently, Liu et al. treated adaptive detection of
multidimensional (subspace) signals through the derivation of
several well-founded architectures, such as the (2S-) GLRT,
the Rao test and the Wald test (as well as other heuristic
statistics) [23].

Last but not least, the PHE has been employed in conjunc-
tion with a-priori knowledge of the covariance disturbance,
thus giving rise to knowledge-aided detectors. For example,
an interesting work analyzed a “generalized” PHE, that is,
a partially-specified a-priori distribution of the disturbance
covariance matrix was assumed under a Bayesian approach
[24]. In the aforementioned study, it was shown that a closed
form of the GLRT exists and still coincides with the standard
ACE. Similarly, a knowledge-aided version of the ACE via
the Bayesian approach was also proposed in [25], where
the a-priori distribution of the covariance disturbance was
completely specified. The peculiarity of the PHE in the design
of adaptive detectors was exploited along with the assumption
of a per-symmetric covariance structure for devising a plain
GLRT in [26]. Later, Rao and Wald tests were derived in the
same context in [27]. Also, a per-symmetric ACE was obtained
in [28], as the result of a 2S-GLRT technique in a PHE.
Finally, adaptive detectors with range estimation capabilities
(and possibly in the case of oversampling) were also developed
in the PHE in the recent works [29] and [30], respectively.

We point out that all the aforementioned works (with the
sole exception of [21]) differ from the literature [18], [19],
[31], [32], where the adaptive (subspace) detection problem
has been handled by resorting to the so-called Principle of
Invariance [33], [34]. Indeed, the aforementioned principle,
when exploited at the design stage, allows to focus on decision
rules enjoying some desirable practical features. The prelimi-
nary step consists in identifying a suitable group of transfor-
mations which leaves the formal structure of the hypothesis
testing problem unaltered. Of course, the group invariance
requirement leads to a (lossy) data reduction. The least com-
pression of the original data ensuring the desired invariance is
represented by the Maximal Invariant Statistic (MIS), which
organizes the original data into equivalence classes. Therefore,
every invariant test can be expressed in terms of the MIS [34].
Accordingly, the parameter space is usually compressed after

reduction by invariance and the dependence on the original
set of parameters is mapped into a maximal invariant in the
parameter space (the induced maximal invariant) [34]. When
referring to radar adaptive detection, the mentioned principle
represents an effective tool for obtaining a statistic which
is invariant with respect to the set of nuisance parameters,
therefore constituting the natural enabler for CFAR rules. With
specific reference to the PHE and subspace signals (that is, in
absence of structured interference), the most relevant works
in this context are represented by [35], [36], where it was
demonstrated that the MIS is the ACE. Also, in [36] it was
claimed that the corresponding likelihood ratio is a monotone
function of its argument. Such result implies that the ACE is
also the Uniformly Most Powerful Invariant (UMPI) test.

Differently, the adaptive subspace detection in the joint pres-
ence of random and subspace structured interference in a PHE
under the realm of invariance, to the best of our knowledge,
has not been considered yet. In this context, we remark that
a recent study, based on invariance theory, appeared in [37],
dealing with structured interference but focusing however on
the HE. In this respect, the aim of this paper is to build upon
the results of [37] and fill this gap. To this end, this work is
focused on adaptive detection of a subspace signal competing
with two interference sources. The former is a completely
random term, modeled as a Gaussian vector with unknown
covariance matrix, and represents the returns from clutter and
thermal noise. The latter is a subspace structured signal (with
unknown location parameters) and accounts for the presence of
(possible) multiple pulsed coherent jammers impinging on the
radar antenna from some directions. Also, as anticipated, the
non-homogeneity between the primary and the secondary data
is modeled through the use of the PHE. Hence, the practical
importance of the resulting group action is explained as a
way to impose the CFAR property with respect to: (i) the
clutter plus noise covariance matrix, (ii) the jammer location
parameters and (iii) the difference in the expected power of
the random disturbance among test and secondary data.

B. Summary of the Contributions
The main contributions of the present work can be summa-

rized as follows:
• The considered problem is analytically formulated as a

binary hypothesis test and the Principle of Invariance is
exploited at the design stage to concentrate the atten-
tion on radar detectors enjoying some desirable practical
features. We start from the more intuitive canonical
form representation for the problem, developed in [37].
Such representation usually helps obtaining the maximal
invariant statistics and gaining insights on the problem
under investigation; The group of transformations which
leaves the problem invariant is identified, thus allowing
the search for a MIS.

• Given the aforementioned group of transformations, we
are able to derive the explicit expression of the MIS,
which coincides with the ANMF after projecting out
the jammer interference. Such result encompasses that in
[36], obtained in the absence of deterministic structured
interference.
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• For the model under investigation, we obtain the closed-
form expressions for the (2S-) GLRT, the Rao test and
the Wald test [38], as well as the Gradient test [39] and
the Durbin test [40]. We then demonstrate that they are
all statistically equivalent to the MIS, thus extending the
result in [15], which does not consider the presence of
deterministic interference.

• A theoretical performance analysis of the MIS is ob-
tained, in terms of its distribution under both hypotheses.
This also allows to obtain its false-alarm and detection
probabilities in explicit form. The problem of synthesiz-
ing the Most Powerful Invariant (MPI) detector [34] is
also addressed and a discussion on the existence of the
UMPI test is provided.

C. Paper Organization and Manuscript Notation

The remainder of the paper is organized as follows: in
Sec. II, we formulate the problem under investigation; in
Sec. III, we obtain the MIS for the problem at hand and
provide its statistical characterization; in Sec. IV, we derive all
the aforementioned theoretically-founded detectors and verify
their statistical equivalence to the MIS; finally, in Sec. V we
draw some simulation results and in Sec. VI we provide some
concluding remark. Proofs and derivations are confined to the
Appendices.

Notation - Lower-case (resp. Upper-case) bold letters denote
vectors (resp. matrices), with an (resp. An,m) representing
the n-th (resp. the (n,m)-th) element of the vector a (resp.
matrixA); RN , CN , and HN×N are the sets of N -dimensional
vectors of real numbers, of complex numbers, and of N ×N
Hermitian matrices, respectively, while R+ denotes the set of
positive-valued real numbers; E{·}, (·)T , (·)†, Tr [·], ‖·‖, <{·}
and ={·}, denote expectation, transpose, Hermitian, matrix
trace, Euclidean norm, real part, and imaginary part operators,
respectively; 0N×M (resp. IN ) denotes the N ×M null (resp.
identity) matrix; 0N (resp. 1N ) denotes the null (resp. ones)
column vector of length N ; det(A) denotes the determinant
of matrix A; ∂f(x)

∂x denotes the gradient of scalar valued
function f(x) w.r.t. vector x arranged in a column vector,
while ∂f(x)

∂xT its transpose (i.e., a row vector); the symbol
“∼” means “distributed as”; x ∼ CNN (µ,Σ) denotes a
complex (proper) Gaussian-distributed vector x with mean
vector µ ∈ CN×1 and covariance matrix Σ ∈ HN×N ;
b ∼ CβM,N (resp. b ∼ CβM,N (δ)) denotes a random variable
distributed according to a complex central (resp. a complex
noncentral) Beta distribution with (M,N ) complex degrees
of freedom (resp. with (M,N ) complex degrees of freedom
and noncentrality parameter δ); f ∼ CFN,M (resp. f ∼
CFN,M (δ)) denotes a random variable distributed according to
a complex central (resp. a complex noncentral) F-distribution
with (N,M ) complex degrees of freedom (resp. with (N,M )
complex degrees of freedom and noncentrality parameter δ);
PA denotes the orthogonal projection of the full column rank
matrix A, that is, PA , [A(A†A)−1A†], while P⊥A its
complement, that is, P⊥A , (I − PA).

II. PROBLEM FORMULATION

In this section, we describe the detection problem at hand
and recall its canonical form representation. Assume that a
sensing system collects data from N > 1 channels (spatial
and/or temporal). The returns from the cell under test, after
pre-processing, are properly sampled and organized to form
a N -dimensional vector, denoted with r. We want to test
whether r contains useful target echoes or not, assuming
the presence of an additional interfering signal. The target
signature is modeled as a vector in a known subspace, spanned
by H ∈ CN×r, where r ≥ 1 and H is assumed a full
column rank matrix. Therefore, the useful echoes are modeled
in a non-redundant form as Hp with p ∈ Cr×1 (i.e., as a
linear combination of the columns of H). On the other hand,
the interference component consists of two contributions. The
former is representative of the combined (random) effect of
clutter echoes and thermal noise, while the latter accounts for
possible coherent sources impinging on the receive antenna
from directions different to that where the radar system is
steered1. More specifically, the structured interfering signal
is assumed to belong to a known subspace, spanned by
J ∈ CN×t, where t ≥ 1 and J is assumed a full column
rank matrix; hence, the interference can be expressed in a
non-redundant form as Jq, where q ∈ Ct×1 (i.e., as a linear
combination of the columns of J ). The attractiveness of the
model under investigation consists in effectively dealing with
scenarios where the presence of one or multiple coherent
pulsed jammers from standoff platforms attempt to protect
a target located in the mainlobe of the radar antenna (with
reference to Doppler processing). Finally, we assume that also
the matrix

[
J H

]
∈ CN×J , where J , (t + r) < N , is

full column rank, namely that the columns of J are linearly
independent of those of H . Such assumption implies non-
overlapping uncertainty regions for the target and (coherent)
interference steering vectors.

In summary, the decision problem at hand can be formulated
in terms of the following binary hypothesis test

H0 :

{
r = Jq + n0,

rk = n0k, k = 1, . . . ,K

H1 :

{
r = Hp+ Jq + n0

rk = n0k, k = 1, . . . ,K

(1)

where
• Hp ∈ CN×1and Jq ∈ CN×1 are the target and interfer-

ences signatures, respectively, with p and q deterministic
and unknown vectors;

• n0 ∼ CNN (0N ,M0) and n0k ∼ CNN (0N , γM0),
k = 1, . . . ,K, where the positive definite covariance

1Indeed, in order to face with deceptive signals, a certain knowledge of their
constitutive parameters is required, which can be estimated by means of an
Electronic Support Measure (ESM) system. However, the estimates depend on
several factors which increase the uncertainty tied to the estimation procedure.
For instance, the direction of arrival estimate of a jamming signal usually
possesses a non-zero root mean square error which determines an uncertain
angular sector [θ1, θ2] (which also depends on the operating frequency). As a
consequence, the spatial signature of the coherent interference is not perfectly
known. Therefore, at the design stage, the partial knowledge of such parameter
can be accommodated by modeling the structured interferer as a vector which
belongs to a subspace covering the whole angular sector.
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matrix M0 ∈ HN×N and the scaling factor γ ∈ R+ are
both unknown deterministic quantities (such assumptions
determine a PHE).

The model in Eq. (1) can be recast in the more convenient
canonical form, as shown in [37]. Indeed, we first consider the
QR decomposition [41] of the partitioned matrix

[
J H

]
=

QR, where Q ∈ CN×J is a slice of a unitary matrix and
R ∈ CJ×J is a non-singular upper triangular matrix. Then, we
define a unitary matrix U ∈ CN×N whose first J columns col-
lectively equal Q. Then the product U †Q rotates the columns
of Q onto the first J elementary vectors of the standard basis
of CN×1, i.e., U †Q =

[
Et Er

]
where we have denoted

Et ,
[
It 0t×(N−t)

]T
and Er ,

[
0r×t Ir 0r×(N−J)

]T
,

respectively. Thus, without loss of generality, we can cast the
problem in the equivalent form:

H0 :

{
z = Et θ10 + n,

zk = nk, k = 1, . . . ,K

H1 :


z = Et θ11 +Er θ2︸ ︷︷ ︸

Aθe

+n

zk = nk, k = 1, . . . ,K

, (2)

where we have used the notation z , U †r ∈ CN×1

and zk , U †rk ∈ CN×1, for the transformed primary
and secondary data, respectively. Additionally, θ1i ∈ Ct×1

and θ2 ∈ Cr×1 have been used to denote the unknown
deterministic vectors accounting for the interference and the
useful signal, respectively. Then, aiming at a compact notation,
we have defined A ,

[
Et Er

]
and θe ,

[
θT11 θT2

]T
in

Eq. (2). With reference to the disturbance, we have defined
n ∼ CNN (0N ,M) and nk ∼ CNN (0N , γM), respectively,
with M , U †M0U representing the transformed covariance
matrix. Finally, for the sake of notational convenience, we
denote the matrix collecting primary and secondary data as
Z ,

[
z z1 · · · zK

]
.

The probability density function (pdf) of the transformed
data, when the hypothesis H1 is in force, is denoted by
f1(· ; ·):

f1(Z;θe,M) = π−N(K+1) det(M)−(K+1) γ−NK

× exp
(
−Tr

[
M−1((z −Aθe)(z −Aθe)† + γ−1S)

])
, (3)

where we have defined S ,
∑K
k=1 zkz

†
k, while the corre-

sponding pdf underH0, denoted in the following with f0(· ; ·),
can be obtained replacing Aθe with Etθ10 in Eq. (3).

In the present manuscript we will consider decision rules
which declare H1 (resp. H0) if Φ (Z) ≥ η (resp. Φ (Z) < η),
where Φ(·) : CN×(K+1) → R indicates the generic form of a
decision statistic based on Z and η denotes the threshold set
to guarantee a predetermined probability of false alarm (Pfa).
Finally, for notational convenience, we define the matrices
A1 , S−1/2A and A0 , S−1/2Et, respectively, which will
be thoroughly exploited in the remainder of the manuscript.

III. MAXIMAL INVARIANT STATISTIC

In what follows, we will search for functions of data
sharing invariance with respect to those parameters (namely,

the nuisance parameters M , θ1i and γ) which are irrelevant
for the specific decision problem. To this end, we resort to
the so-called “Principle of Invariance” [34], whose main idea
consists in finding transformations that properly cluster data
without altering: (i) the formal structure of the hypothesis
testing problem given by H0 : ‖θ2‖ = 0, H1 : ‖θ2‖ > 0;
(ii) the Gaussian assumption for the received data matrix under
each hypothesis; (iii) the subspace containing the useful signal
components. The next subsection is devoted to the definition
of a suitable group which fulfills the above requirements.

A. Desired invariance properties

First, let us consider the sufficient statistic2 {z,S}. Now,
denote by GL(N) the linear group of N × N non-singular
matrices and introduce the sets

G ,

G ,
 G11 G12 G13

0r×t G22 G23

0(N−J)×t 0(N−J)×r G33

 ∈ GL(N) (4)

: G11 ∈ GL(t), G22 ∈ GL(r), G33 ∈ GL(N − J)} ;

and

F ,
{
f ,

[
f1

0N−t

]
∈ CN×1 : f1 ∈ Ct×1

}
, (5)

along with the composition operator “◦”, defined as:

(Ga,fa, γa)◦ (Gb,fb, γb) = (GbGa,Gbfa+fb, γaγb) . (6)

The sets and the composition operator are here represented
compactly as L , (G × F × R+, ◦). Then, it is not difficult
to show that L constitutes a group3. Also, the aforementioned
group leaves the hypothesis testing problem in Eq. (2) invariant
under the action `(·, ·) defined by:

`(z,S) =
(
Gz + f , γGSG†

)
∀(G,f , γ) ∈ L . (7)

The proof of the aforementioned statement is omitted for the
sake of brevity and can be obtained following similar steps as
in [37]. Moreover, it is important to point out that invariance
of the hypothesis testing problem w.r.t. L implies that the latter
group preserves the family of distributions (that is,Gz+f and
GSG† are Gaussian- and Wishart-distributed, respectively),
while not altering the peculiar structure of the hypothesis
testing under investigation (including the subspaces A and
Et). At the same time, L determines those transformations
(through the action `(·) defined in (7)) which are relevant from
a practical point of view, as they allow claiming the CFAR
property (with respect to M , θ1i and γ) as a consequence of
the invariance.

2Indeed, Fisher-Neyman factorization theorem ensures that the optimal
decision from {z,S} is tantamount to deciding from raw data Z [42].

3Indeed L satisfies the following elementary axioms: (i) it is closed with
respect to the operation “◦”, (ii) it satisfies the associative property and (iii)
there exist both the identity and the inverse elements.
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B. Derivation of the MIS

In Sec. III-A we have identified a group L which leaves the
problem under investigation unaltered. It is thus reasonable
finding decision rules that are invariant under L. In order
to accomplish this objective, we invoke the Principle of
Invariance because it allows to construct statistics that organize
data into distinguishable equivalence classes. Such functions
are referred to as Maximal Invariant Statistics and, given the
group of transformations, every invariant test can be written
as a function of the maximal invariant [33]. Therefore, MIS
represents the least compression of raw data {z,S} providing
invariance under L.

Before presenting the explicit expression of the MIS, we
give the following preliminary definitions based on the parti-
tioning of z and S:

z =

z1

z2

z3

 , S =

S11 S12 S13

S21 S22 S23

S31 S32 S33

 , (8)

where z1 ∈ Ct×1, z2 ∈ Cr×1, and z3 ∈ C(N−J)×1,
respectively; Sij , (i, j) ∈ {1, 2, 3}× {1, 2, 3}, is a sub-matrix
whose size can be obtained replacing 1, 2, and 3 with t, r,
and (N − J), respectively. We are thus ready to present the
proposition providing the expression of a MIS for the problem
at hand.

Proposition 1. A MIS with respect to L for the problem in
Eq. (2) is given by:

t(z,S) ,
ta
tb

=
z†2.3 S

−1
2.3z2.3

z†3S
−1
33 z3

, (9)

where z2.3 , (z2 − S23S
−1
33 z3) and S2.3 , (S22 −

S23S
−1
33 S32), respectively.

Proof: The proof is given in Appendix A.
Some important remarks are now in order.
• The MIS is simply given by the ratio of ta and tb, where

the second component (tb) represents an ancillary part,
that is, its distribution does not depend on the hypothesis
in force; such result generalizes that obtained [36] for the
case of no subspace interference.

• Exploiting [34, Thm. 6.2.1], every invariant test may be
written as a function of Eq. (9). Therefore, it naturally
follows that every invariant test is CFAR.

• It is useful observing that the numerator and the denom-
inator of the MIS can be also re-written as (the proof is
omitted for the sake of brevity as similar steps can be
found in [4]):

ta = z†w1 (P⊥A0
− P⊥A1

) zw1 , (10)

tb = z†w1P
⊥
A1
zw1 , (11)

where we have denoted zw1 , S−1/2z and we recall
that A1 = S−1/2A and A0 = S−1/2Et, respectively.
We recall that these quantities relate to whitened data and
subspaces based on the sole signal-free samples. Sec. IV
will heavily rely on these results to establish statistical
equivalence of some decision statistics and the MIS.

• Since all the maximal invariant statistics are related by
one-to-one transformations, the following statistic:

tk ,
t(z,S)

1 + t(z,S)
=

ta
ta + tb

=
z†w1(PA1

− PA0
) zw1

z†w1P
⊥
A0
zw1

(12)

is also a MIS.
• Finally, it can be shown that the computational complex-

ity of (9) is dominated by the term O(KN2), where O(·)
denotes the usual Landau notation. Indeed, such term
arises from the computation of the unscaled covariance
S ,

∑K
k=1 zkz

†
k required for evaluation of partioning

elements defined in (8). Those are in fact needed in the
inverse matrices employed at numerator and denominator.

C. Statistical distribution of the MIS
This subsection is devoted to the statistical characterization

of the MIS under both hypotheses. The obtained results are
based mainly on previous findings in [37] and thus only the
main steps will be underlined in what follows. First, we notice
that MIS t(z,S) in Eq. (9) can be rewritten as:

t(z,S) =
τk

1− β
, (13)

where we have denoted τk , ta
1+tb

and β , 1
1+tb

, respectively.
Secondly, it can be shown that

β ∼ CβK−(N−J)+1, N−J , (14)

as β is a function of the sole ancillary part of the MIS.
Therefore, its distribution does not depend on the hypothesis
being in force4.

On the other hand, given β the random variable τk is
distributed as

τk|β,H1 ∼ CFr,K−(N−t)+1(δ) (15)

when H1 is in force and

τk|β,H0 ∼ CFr,K−(N−t)+1 (16)

when H0 holds, where we have denoted δ2 , SINR × β,
with SINR , (θ†2M

−1
2.3 θ2) being the Signal-to-Interference-

plus-Noise-Ratio (SINR). We underline that M2.3 is defined
as M2.3 , (M22 −M23M

−1
33 M32), where an analogous

partitioning as that defined for S in Eq. (8) has been exploited.
Therefore, collecting the aforementioned results, the pdfs

of t(z,S) under H1 and H0 can be expressed (by means of
marginalization) as:

ft(x|H1) =

1ˆ

0

(1− y) fτk(x (1− y)|β = y; δ) fβ(y) dy ,

ft(x|H0) =

1ˆ

0

(1− y) fτk(x (1− y)|β = y; δ = 0) fβ(y) dy ,

(17)

4We recall that the present analysis is based on perfect matching conditions,
that is, the nominal steering vectors of the target and the interference equal
the actual ones. In the case of mismatch, the analysis could be generalized
following [43].
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respectively.
Finally, we conclude the section with a discussion on

the induced maximal invariant in the parameter space [34].
The induced maximal invariant represents the reduced set of
unknown parameters on which the hypothesis testing in the
invariant domain depends. It can be readily shown that for
our model this corresponds to SINR , (θ†2M

−1
2.3 θ2). As a

result, when the hypothesis H0 is in force, the SINR equals
zero and thus ft(x|H0) does not depend on any unknown
parameter. Therefore every function of the MIS satisfies the
CFAR property.

IV. DETECTORS DESIGN

In this section we consider several decision statistics de-
signed according to well-founded design criteria. Initially,
we concentrate on the derivation of the well-known GLRT
(including its two-step version) [14], [36], Rao and Wald tests
[38]. Then, we devise the explicit form of less commonly
used detection statistics, such as the Gradient (Terrell) test
[39] and the Durbin (naive) test [40], which have been shown
to be asymptotically distributed as the three aforementioned
detectors (under very mild technical conditions).

A. Preliminary definitions

As a preliminary step towards the derivation of suitable
detectors for the problem at hand, we give the following
auxiliary definitions:
• θr ,

[
<{θ2}T ={θ2}T

]T ∈ R2r×1 is the vector
collecting the parameters of interest;

• θs ,
[
θTs,a θTs,b

]T ∈ R(2t+N2+1)×1 is the vec-
tor of nuisance parameters containing: (a) θs,a ,[
<{θ1i}T ={θ1i}T

]T ∈ R2t×1; (b) θs,b ,[
γ Ξ(M)T

]
∈ R(N2+1)×1 where Ξ(·) is a real-valued

column vector, mapping M to its (equivalent) minimal
description in terms of N2 independent variables;

• θ ,
[
θTr θTs

]T ∈ R(2J+N2+1)×1 is the overall
unknown parameter vector;

• θ̂0 ,
[
θTr,0 θ̂Ts,0

]T
, with θr,0 = 02r (that is, the true

value of θr under H0) and θ̂s,0 denoting the Maximum
Likelihood (ML) estimate of θs under H0;

• θ̂1 ,
[
θ̂Tr,1 θ̂Ts,1

]T
, with θ̂r,1 and θ̂s,1 denoting the

ML estimates of θr and θs, respectively, under H1.

B. GLR

The generic form of the GLR is given by [38]:

max{θe,M , γ} f1(Z; θe,M , γ)

max{θ10,M , γ} f0(Z; θ10,M , γ)
. (18)

A detailed derivation is here skipped as it can be easily
obtained by generalizing [15] to the case of additional de-
terministic interference. Therefore, we will only highlight the
main steps in what follows. First, it can be shown that:

θ̂e = (A†S−1A)
−1

A†S−1z , (19)

θ̂10 = (E†tS
−1Et)

−1

E†tS
−1z , (20)

under H1 and H0, respectively, while the corresponding ML
estimates for the scale parameter γ are:

γ̂1 =
N

K + 1−N
1

z†w1P
⊥
A1
zw1

(21)

under H1, and

γ̂0 =
N

K + 1−N
1

z†w1P
⊥
A0
zw1

(22)

under H0. Finally, the ML estimates of the covariance matrix
M (under H1 and H0, respectively) are:

M̂1 =
1

K + 1

[
1

γ̂1
S + (S1/2P⊥A1

zw1)

×(S1/2P⊥A1
zw1)†

]
, (23)

M̂0 =
1

K + 1

[
1

γ̂0
S + (S1/2P⊥A0

zw1)

×(S1/2P⊥A0
zw1)†

]
. (24)

Therefore, after substitution, the final form of the N -th root
of GLR is given by:

tglr ,
z†w1P

⊥
A0
zw1

z†w1P
⊥
A1
zw1

(25)

= 1 +
ta
tb

= 1 + t(z,S) , (26)

where Eq. (26) directly follows from considerations in Sec.
III-B, thus proving statistical equivalence of GLR to the MIS.

Finally, before proceeding further, we state some useful
properties of ML covariance estimates (later exploited in this
paper) in the form of the following lemma.

Lemma 2. The ML estimates of M under H1 and H0 satisfy
the following equalities:

M̂−1
1 A = (K + 1) γ̂1 S

−1A , (27)

M̂−1
0 Et = (K + 1) γ̂0 S

−1Et . (28)

Proof: The proof is analogous to that presented in [4] and
thus not reported here for the sake of brevity.

C. Two-step GLR (2S-GLR)

The 2S-GLRT design procedure consists in evaluating the
GLR statistic under the assumption that R ,Mγ is known
and then plugging-in a reasonable estimate ofR obtained from
secondary data. Of course this implies the estimation of the
inverse scale parameter ν , γ−1 from the primary data. As
for the (one-step) GLR, we only underline the main steps and
a detailed derivation is omitted for brevity. The GLR statistic
for known R can be expressed in implicit form as [17]:

max{θe, ν} f1(z;θe, ν,R)

max{θ10, ν} f0(z;θ10, ν,R)
. (29)

The ML estimates of θe (under H1) and θ10 (under H0) are
equal to

θ̂e(R) = (A†R−1A)
−1

A†R−1z , (30)

θ̂10(R) = (E†tR
−1Et)

−1

E†tR
−1z , (31)
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respectively, while the ML estimates for the (inverse) scale
parameter ν are:

ν̂1(R) =
1

N
(z†R−1/2P⊥

Ă1
R−1/2 z) , (32)

ν̂0(R) =
1

N
(z†R−1/2P⊥

Ă0
R−1/2 z) , (33)

when H1 and H0 are in force, respectively. In Eqs. (32) and
(33), we have also exploited the definitions Ă1 , (R−1/2A)
and Ă0 , (R−1/2Et), respectively. Therefore, after substitu-
tion, the following statistic is obtained (as the N -th root of
Eq. (29)):

z†R−1/2P⊥
Ă0
R−1/2 z

z†R−1/2P⊥
Ă1
R−1/2 z

. (34)

We recall that the expression in Eq. (34) depends on R, the
latter being unknown. Therefore, we now turn our attention
on finding an estimate for the covariance R. Clearly, in order
to obtain a meaningful estimate to be plugged in both the
numerator and denominator of Eq. (29), such estimate should
be based only on signal-free (secondary) data.

It is not difficult to show that such estimate is given by
the sample covariance based only on secondary data, that is,
R̂sd = K−1S = K−1

∑K
k=1 zkz

†
k. Then, substitution of R̂sd

into Eq. (34) leads to the final form of 2S-GLR:

t2s−glr ,
z†w1P

⊥
A0
zw1

z†w1P
⊥
A1
zw1

. (35)

From direct comparison of Eq. (35) with Eq. (25) the following
important proposition can be immediately stated.

Proposition 3. The 2S-GLR statistic t2s−glr in Eq. (35)
coincides with the one-step GLR statistic in Eq. (25). Thus
it is statistically equivalent to MIS obtained in Eq. (9).

D. Rao statistic

The generic form for the Rao statistic is given by [38]:

∂ ln f1(Z;θ)

∂θTr

∣∣∣∣
θ=θ̂0

[I−1(θ̂0)]θr,θr
∂ ln f1(Z;θ)

∂θr

∣∣∣∣
θ=θ̂0

(36)

where

I(θ) , E
{
∂ ln f1(Z;θ)

∂θ

∂ ln f1(Z;θ)

∂θT

}
, (37)

denotes the Fisher Information Matrix (FIM) and
[I−1(θ)]θr,θr indicates the sub-matrix obtained by selecting
from the FIM inverse only the elements corresponding to the
vector of signal parameter θr.

In order to obtain the explicit form of Rao statistic, we first
observe that:

∂ ln f1(Z;θ)

∂θ∗2
= E†rM

−1(z −Etθ11 −Erθ2)︸ ︷︷ ︸
, gr

, (38)

where ∂ ln f1(Z;θ)
∂θ∗2

denotes the complex gradient of a real
function [44], whose explicit expression is

∂ ln f1(Z;θ)

∂θ2
=

1

2

[
∂ ln f1(Z;θ)

∂ <{θ2}
− j ∂ ln f1(Z;θ)

∂ ={θ2}

]
(39)

and also satisfies

∂ ln f1(Z;θ)

∂θ∗2
=

(
∂ ln f1(Z;θ)

∂θ2

)∗
, (40)

from which it is readily inferred that:

∂ ln f1(Z;θ)

∂ <{θ2}
= 2<{gr},

∂ ln f1(Z;θ)

∂ ={θ2}
= 2={gr} . (41)

Therefore, collecting the above results we get:

∂ ln f1(Z;θ)

∂θr
=
[
2<{gr}T 2={gr}T

]T
. (42)

We now turn our attention to the evaluation of (θr,θr) block
of FIM inverse. Such evaluation can be greatly simplified by
exploiting the following equality:

[I−1(θ)]θr,θr = [I−1
a (θ)]θr,θr , (43)

where

Ia(θ) , E

{
∂ ln f1(Z;θ)

∂
[
θTr θTs,a

]T ∂ ln f1(Z;θ)

∂
[
θTr θTs,a

]} , (44)

as the block terms corresponding to (θr, γ), (θs,a, γ), (θr,Ξ)
and (θs,a,Ξ) in the FIM I(θ) are all null. Evaluation of Ia(θ)
in Eq. (44) is obtained starting from the following observation:

∂ ln f1(Z;θ)

∂
[
θTr θTs,a

]T = P
∂ ln f1(Z;θ)

∂
[
<{θe}T ={θe}T

]T , (45)

where P is a suitably defined permutation matrix5:

P ,


0r×t Ir 0r×t 0r×r
0r×t 0r×r 0r×t Ir
It 0t×r 0t×t 0t×r

0t×t 0t×r It 0t×r

 . (46)

Then exploiting Eq. (45), we obtain:

Ia(θ) = (47)

P E

{
∂ ln f1(Z;θ)

∂
[
<{θe}T ={θe}T

]T ∂ ln f1(Z;θ)

∂
[
<{θe}T ={θe}T

]} P T

Using an analogous rationale as in Eq. (42), it can be proved
that:

∂ ln f1(Z;θ)

∂
[
<{θe}T ={θe}T

] =
[
2<{ge}T 2={ge}T

]
, (48)

where we have similarly defined ge , A†M−1(z−Et θ11−
Er θ2). The explicit expression of the inner matrix in Eq. (47)
is obtained exploiting the result in (48) and is given by:[

2<{K} −2={K}
2={K} 2<{K}

]
, (49)

where K , (A†M−1A). Tedious mathematical steps reveal
that:

I−1
a (θ) = P

[
1
2<{K

−1} − 1
2={K

−1}
1
2={K

−1} 1
2<{K

−1}

]
P T , (50)

5Recall that every permutation matrix is a special orthogonal matrix, that
is P−1 = P T .
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since the block structure in Eq. (49) is closed under inversion6.
Then, extracting the (θr,θr) block provides:

[I−1
a (θ)]θr,θr =

[
1
2<{B} −

1
2={B}

1
2={B}

1
2<{B}

]
, (51)

where we have defined:

B ,
[
E†rM

−1Er (52)

−(E†rM
−1Et)(E

†
tM

−1Et)
−1E†tM

−1Er

]−1

.

Given the specific structure of Eqs. (51) and (42), it can be
recognized the proportionality (by a factor 1/2) of Eq. (36) to
an equivalent Hermitian quadratic form:

trao ,
(
g†rB gr

)∣∣
θ=θ̂0

. (53)

The substitution θ → θ̂0 only requires replacing the true M
with M̂0 (given by Eq. (23)) in B. Differently, θ → θ̂0 on
gr implies substitution of θ11, θ2, and M with θ̂10 (given
by Eq. (20)), 0r and M̂0 (given by Eq. (23)), respectively.
Simple manipulations7 then give:

trao = z†w0 (PĀ1
− PĀ0

) zw0, (54)

where we have denoted Ā0 , M̂
−1/2
0 Et, Ā1 , M̂

−1/2
0 A

and zw0 , M̂
−1/2
0 z, respectively. We recall that these

quantities relate to whitened data and subspaces based on ML
covariance estimate under H0.

Proposition 4. The Rao statistic trao in Eq. (54) can be
expressed in the alternative form:

trao =
N tk

K+1
K+1−N + N

K+1−N tk
, (55)

which thus proves that Rao statistic is statistically equivalent
to MIS obtained in Eq. (12), since Eq. (55) is a monotone
function of the MIS tk.

Proof: The proof is given in Appendix B.

E. Wald statistic

The generic form for the Wald statistic is given by [38]:

(θ̂r,1 − θr,0)T {[I−1(θ̂1)]θr,θr}−1 (θ̂r,1 − θr,0) . (56)

First, we notice that θr,0 = 02r. Then, we observe that
θ̂r,1 can be obtained via the following steps. We recall that
θ̂r,1 =

[
<{θ̂2}T ={θ̂2}T

]T
, where θ̂2 ∈ Cr×1 is simply

a sub-vector of θ̂e ∈ CJ×1 (obtained by taking its last r
elements), whose closed-form expression is given in Eq. (19),
thus leading to:

θ̂2 = Λ21

(
E†tS

−1z
)

+ Λ22

(
E†rS

−1z
)
, (57)

6Indeed KK−1 = IJ implies both the equivalences <{K}<{K−1}−
={K}={K−1} = IJ and <{K}={K−1}+={K}<{K−1} = 0J×J .
A similar pair of equalities can be also drawn from K−1K = IJ . Therefore,
the aforementioned set of conditions ensures that the inner matrix in Eq. (50)
corresponds to the inverse of Eq. (49).

7The steps are very tedious and a similar proof can be found in [4].

where we have partitioned the matrix Λ , (A† S−1A)−1 as

Λ =

[
Λ11 Λ12

Λ21 Λ22

]
, (58)

where Λij , (i, j) ∈ {1, 2}×{1, 2}, denotes a sub-matrix whose
size can be obtained replacing 1 and 2 with t and r, respec-
tively. Since it holds Λ21 = −Λ22 (E†rS

−1Et) (E†tS
−1Et)

−1

and by virtue of Lemma 2, we obtain:

θ̂2 = (K + 1) γ̂1 Γ22E
†
rS
−1/2P⊥A0

zw1 , (59)

where we have partitioned the matrix Γ , (A† M̂−1
1 A)−1

analogously as Λ in Eq. (58). We now focus on evaluation of
the matrix in Eq. (56), which is achieved by an analogous
procedure as the case of FIM block needed for Rao test
evaluation in Sec. IV-D. Indeed, starting from Eq. (51), it can
be proved that:

{[I−1(θ̂1)]θr,θr}−1 =

[
1
2<{Γ

−1
22 } − 1

2={Γ
−1
22 }

1
2={Γ

−1
22 } 1

2<{Γ
−1
22 }

]
, (60)

as the block structure is closed under inversion. Finally,
exploiting the well-known equivalence between a real-valued
Hermitian quadratic form and its real symmetric quadratic
counterpart, we demonstrate proportionality (by a factor 2)
of Eq. (56) with:

θ̂†2 Γ−1
22 θ̂2 = z†w1P

⊥
A0

(S−1/2Er Γ22E
†
r S
−1/2)

× P⊥A0
zw1 (K + 1)2γ̂2

1 , twald . (61)

Tedious manipulations then give the alternative (and more)
compact form:

twald = (K + 1) γ̂1 z
†
w1 (PA1 − PA0) zw1 . (62)

The technical details are not reported here, since a similar
proof can be found in [4]. We only underline that this is
achieved by proving the matrix equivalence:

P⊥A0
S−1/2Er Γ22E

†
r S
−1/2P⊥A0

=

1

(K + 1)γ̂1
(PA1

− PA0
) . (63)

Based on the compact form of Wald statistic in Eq. (62), we
can now claim the following important result.

Proposition 5. The Wald statistic twald in Eq. (62) can be
expressed in the alternative form:

twald =
(K + 1)N

K + 1−N
t(z,S) , (64)

which thus proves that Wald test is statistically equivalent to
MIS obtained in Eq. (9).

Proof: The proof is obtained substituting Eq. (21) into
(62) and from direct comparison with Eq. (9) (with the help
of the alternative expressions provided in Eqs. (10) and (11),
respectively).
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F. Gradient (Terrell) statistic

The Gradient (Terrell) test requires the evaluation of the
following statistic [39], [45]:

∂ ln f1(Z;θ)

∂θTr

∣∣∣∣
θ=θ̂0

(θ̂r,1 − θr,0) . (65)

The appeal of Eq. (65) arises from the fact that it does not
require neither to invert the FIM nor to evaluate a compressed
likelihood function under both hypotheses (as opposed to
GLR, Wald, and Rao statistics). As a consequence, this struc-
tural simplicity can make the Gradient statistic computation
easier. Moreover, under some mild technical conditions, such
test is asymptotically equivalent to the GLR, Rao and Wald
statistics [39].

In order to obtain the explicit form of Terrell statistic,
we first recall that θr,0 = 02r. Also, we observe that θ̂r,1
can be similarly obtained as in the case of Wald test, that
is, θ̂r,1 =

[
<{θ̂2}T ={θ̂2}T

]T
, where closed form of θ̂2

has been reported in Eq. (59). Similarly, the log-likelihood
gradient evaluated θ = θ̂0 in Eq. (65) is obtained similarly
as in the case of Rao test, and it is equal to Eq. (42),
where gr,0 , E†rM̂

−1
0 (z−Etθ̂10). Therefore, combining the

aforementioned results, Eq. (65) is proved to be equal to

tgrad , <{g†r,0 θ̂r,1} = <{z†w1P
⊥
A0
S−1/2Er

×γ̂1(K + 1)Γ22E
†
rM̂

−1
0 (z −Etθ̂10)} . (66)

After some manipulations, we obtain the following alternative
(compact) form of Gradient statistic:

tgrad = <{z†w1 (PA1
− PA0

)S1/2 M̂
−1/2
0 zw0} . (67)

As done previously, the detailed steps are not reported here,
since a similar proof can be found in [4]. Although seemingly
different from Eq. (12), the following statistical equivalence
result is proved hereinafter.

Proposition 6. The Gradient (Terrell) statistic tgrad in
Eq. (67) can be expressed in the alternative form:

tgrad = N tk , (68)

which thus proves that Gradient (Terrell) test is statistically
equivalent to MIS obtained in Eq. (12).

Proof: The proof is given in Appendix C.

G. Durbin (Naive) statistic

The Durbin test (also referred to as “Naive test”) consists
in the evaluation of the following decision statistic [40]:

(θ̂r,01 − θr,0)T
{[
I
(
θ̂0

)]
θr,θr

[
I−1

(
θ̂0

)]
θr,θr

×[
I
(
θ̂0

)]
θr,θr

}
(θ̂r,01 − θr,0) , (69)

where the estimate θ̂r,01 is defined as:

θ̂r,01 , arg max
θr

f1(Z;θr, θ̂s,0) . (70)

In general, the Durbin statistic is asymptotically equivalent to
GLR, Rao, and Wald statistics, as shown in [40]. However,

for the considered problem, a stronger result holds, as stated
by the following theorem.

Proposition 7. The Durbin statistic for the hypothesis testing
model considered in Eq. (2) is coincident with the Rao statistic.
Therefore, the test is statistically equivalent to the MIS.

Proof: The proof is given in Appendix D.

H. Table summary and related discussion

In Tab. I, we gather all the results obtained in the previous
sub-sections. First, the most important claim is that all the
considered tests are statistically equivalent to the MIS, which
is recognized as an ANMF (ACE) in the complementary
subspace of the deterministic interference. Hereinafter we
discuss such result in relationship to the existing literature.

We recall that statistical equivalence of the GLRT to the
MIS in the case of no structured interference was first proved
in [14], [36]. The same equivalence result was later shown
to hold for Rao and Wald tests in [15]. The findings in the
present manuscript confirm that statistical equivalence of the
three well-known statistics to the MIS still holds in presence
of an additional structured interference.

Additionally, in Sec. IV-G we have proved that Durbin test
coincides with the Rao test in the finite sample case. Such
result not only extends the findings obtained for quite general
signal models in a homogeneous scenario [4], [46], but also
further confirms the effectiveness of the MIS as a theoretically-
founded decision statistic, that is, also arising from the Durbin
test construction.

Similar conclusions apply to the case of Gradient (Terrell)
test, whose statistical equivalence to the MIS (and, as an
immediate consequence, to all the other tests) represents a
result whose peculiarity only pertains to the PHE, since in the
homogeneous case only statistical equivalence to (one-step)
GLRT holds [4].

V. SIMULATION RESULTS

In the previous section we have shown that all the consid-
ered statistics are statistically equivalent to the MIS. For this
reason, in the following, we concentrate on its performance
assessment. To this end, we first provide the false alarm
and detection probabilities of the MIS in a (convenient) one-
dimensional integral form, as reported in Eqs. (73) and (74),
respectively (at the top of next page). The detailed derivation
is not reported here, as it can be obtained by generalizing
the results contained in [43]. Indeed, the two probabilities are
calculated by noticing that:

Pmis
fa =Eβ{Pr(τk ≥ η (1− β)|β,H0)} , (71)

Pmis
d = 1− Eβ{Pr(τk ≤ η (1− β)|β,H1)} . (72)

The probability term within the expectation (depending on β)
in the above equations corresponds to the (complementary)
cumulative distribution function of a complex F-distribution,
whose explicit expression is available [43]. Differently, the
outer expectation cannot be evaluated in closed form and a
numerical integration is usually performed.
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Table I
DETECTORS COMPARISON AND THEIR FUNCTIONAL DEPENDENCE OF THE MIS (VIZ. CFARNESS).

Detector Standard Expression MIS function

GLR/2S-GLR
z
†
w1P

⊥
A0

zw1

z
†
w1P

⊥
A1

zw1
1 + t(z,S)

Rao/Durbin z†w0 (PĀ1
− PĀ0

)zw0 N tk/
(

(K+1)
K+1−N

+ N
K+1−N

tk

)
Wald z†w1 (PA1

− PA0
)zw1 (K + 1)γ̂1

(K+1)N
K+1−N

t(z,S)

Gradient <{z†w1 (PA1
− PA0

)S1/2 M̂
−1/2
0 zw0} N tk

Pmis
fa =

K!

(N − J − 1)! (K −N + J)!

r−1∑
`=0

(
K −N + J

`

)ˆ 1

0

(1− x)N−J−1+` η`
[

x

1 + η(1− x)

]K−N+J

dx (73)

Pmis
d = 1− K!

(N − J − 1)! (K −N + J)!

ˆ 1

0

xK−N+J (1− x)N−J−1[η(1− x)]r

[1 + η(1− x)]K−N+J

K−N+t∑
k=0

(
K −N + J

r + k

)
[η(1− x)]k

× exp

(
− SINRx

1 + η(1− x)

) k∑
i=0

(
SINRx

1 + η(1− x)

)i
1

i!
dx (74)

Also, for the sake of completeness, we will also consider in
our analysis the MPI detector, i.e., the clairvoyant (since its
implementation requires the SINR to be known in advance)
test based on the likelihood ratio of the MIS, whose expression
is given by:

tmpi ,
ft(x|H1)

ft(x|H0)
, (75)

where ft(x|Hi), i ∈ {0, 1}, is obtained from Eq. (17). In what
follows we compare the tests based on the two statistics via
simulation results.

In Fig. 1, we report the probability of detection Pd vs. the
SINR (assuming Pfa = 10−3) for MIS and MPI detectors.
We recall that the SINR = (θ†2M

−1
2.3θ2) corresponds to the

induced maximal invariant (cf. Sec. III-C). Two cases have
been considered: scenario (a), corresponding to r = 2 and
t = 4 (small uncertainty on the target steering vector, high
uncertainty on the interferer steering vector) and scenario (b),
corresponding to r = 4 and t = 2 (higher uncertainty on
the target steering vector, smaller uncertainty on the interferer
steering vector). As to the disturbance, we model it as an
exponentially-correlated Gaussian vector with covariance ma-
trix (in canonical space) M = σ2

nIN +σ2
cMc, where σ2

n > 0
is the thermal noise power, σ2

c > 0 denotes the clutter power,
and the (i, j)-th element of Mc is given by 0.95|i−j|. The
clutter-to-noise ratio σ2

c/σ
2
n is set here to 30 dB, with σ2

n = 1.
All the curves have been obtained via standard Monte Carlo

(MC) counting techniques, except for those describing MIS
performance evaluated through the theoretical expressions in
Eqs. (73) and (74), respectively (solid and dashed lines for
K = 16 and K = 24). More specifically, with reference to MC
techniques, the thresholds necessary to ensure a preassigned
value of Pfa have been evaluated exploiting (2 · 103)/Pfa
independent trials, while the Pd values are estimated over 3 ·
104 independent trials.

We point out that the specific value of the deterministic in-
terference θ1i, as well as the scale parameter γ, does not need
to be specified at each trial considered (for both Pfa and Pd
evaluation); the reason is that the performance of each detector
depends is independent on nuisance parameters under H0, as a
consequence of the invariance property. Differently, under H1

their performance depends on the unknown parameters solely
through the induced maximal invariant, which is independent
on θ1i and γ (cf. Sec. III-C).

In order to average the performance of Pd with respect to
θ2, for each independent trial we generate8 the signal vector as
θ2 = αBθg , where θg ∼ CN (0r, Ir) and αB ∈ R. The latter
coefficient is a scaling factor used to enforce a deterministic

SINR value, that is, αB ,
√

SINR /
(
θ†gM

−1
2.3θg

)
.

From inspection of the figure, the following considera-
tions can be drawn. First of all, as expected MIS curves
obtained with MC simulations coincide with the theoretical
ones provided by Eqs. (73) and (74), respectively. Secondly,
the ACE (viz. MIS) and the MPI detector performance seem
to coincide for all the considered scenarios. This numerical
evidence allows us to conjecture that also in the case of
additional structured interference the ACE may correspond to
the UMPI test, thus constituting a possible extension of the
result claimed in [36]. Thirdly, it is evident that increasing the
number of secondary data K leads to improved performance of
both detectors. Finally, we notice that performance in scenario
(b) are worse than those corresponding to the scenario (a).
This is simply explained as the increased rank of the target
return subspace means increased uncertainty in the knowledge
of the true steering vector of the target.

8We point out that different sampling procedures for θ2 would lead to the
same performance, as long as the value αB ensures the SINR to assume a
deterministic value.
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Figure 1. Pd vs. SINR for MIS (theoretical vs. simulated: solid and dashed
lines vs. “×” and “+” markers) and MPI (“�” and “◦” markers) detectors;
setup parameters: N = 8, K ∈ {16, 24}. Scenario (a) (red plots) r = 2,
t = 4; Scenario (b) (blue plots) r = 4, t = 2.

VI. CONCLUSIONS

In this paper we provided a complete study for the problem
of adaptive detection of a vector subspace target in the
presence of vector subspace interference for PHE. The study
has been conducted with the help of the statistical theory
of invariance. We first obtained the group of transformations
leaving the hypothesis testing problem invariant, thus allowing
the identification of transformations which enforce the CFAR
property. Then, a MIS was derived for the aforementioned
group. It was found that the MIS for the problem at hand
coincides with the ACE (ANMF) in the complementary sub-
space of the structured interference. Furthermore, a statistical
characterization of the obtained MIS under both hypotheses
was obtained.

Then, we focused on the derivation of GLR, 2S-GLR, Rao,
Wald, Durbin, and Gradient statistics for the considered prob-
lem. Remarkably, all the aforementioned statistics have been
shown to be statistically equivalent to the MIS. The statistical
characterization of the MIS was exploited for the derivation
of explicit forms of detection and false alarm probabilities in
one-dimensional integral form. Finally, simulation results were
provided with the intent of investigating the performance of
the aforementioned test in comparison to the (clairvoyant) MPI
detector. Numerical evidence has shown that the test based on
the MIS may represent the UMPI test also in a scenario with
additional structured interference, thus extending the claim of
[36].

APPENDIX A
PROOF OF PROPOSITION 1

The proof is obtained by noticing that the action `(·, ·) (cf.
Eq. (7)) can be re-interpreted as the sequential application of
the following sub-actions:

`1(z,S) = (Gz + f ,GSG†) ∀(G,f) ∈ L1

`2(z,S) = (z, γS) ∀γ ∈ L2, (76)

where L1 , {G × F , ” ◦ ”} and L2 , {R+, ” × ”} (i.e.,
the composition operator for L2 simply corresponds to the

product). Then, it is recognized that the MIS for the sub-
action `1(·, ·) has been already obtained in [37], as the former
represents the relevant action enforcing desirable invariances
in a homogeneous background (viz. γ = 1). Such statistic is
two-dimensional and given by t(z,S) =

[
ta tb

]T
, where

ta , z†2.3 S
−1
2.3z2.3 and tb , z†3S

−1
33 z3, respectively. Now,

define the action `?2(·, ·) acting on the couple of positive-valued
scalars (a1, a2) (which correspond to ta and tb, respectively)
as:

`?2(a1, a2) =
(
γ−1a1, γ

−1a2

)
∀ γ ∈ L2. (77)

It is not difficult to show that a MIS for the elementary
operation `?2(·, ·) in Eq. (77) is given by t2(a1, a2) , a1

a2
.

This is clearly achieved by verifying that both invariance and
maximality properties [34] hold for t2(·, ·). Indeed invariance
follows from t2(γ−1a1, γ

−1a2) = γ−1a1
γ−1a2

= a1
a2

= t2(a1, a2),
while maximality can be proved as follows. Suppose that
t2(a1, a2) = t2(ā1, ā2), which implies:

ā2 =
ā1

a1
a2 . (78)

Then there exists a γ ∈ L2, equal to γ = a1
ā1

, which ensures(
γ−1a1, γ

−1a2

)
= (ā1, ā2). This demonstrates that t2(a1, a2)

is a MIS for `?2(·, ·). Additionally, we notice that

t(z̄, S̄) = t(z,S)⇒
t(z̄, γS̄) = t(z , γS) , ∀γ ∈ L2, (79)

since t(z, γS) = 1
γ t(z,S) holds. Therefore, exploiting [34,

p. 217, Thm. 6.2.2], it follows that a MIS for the action `(·, ·)
is the composite function t(z,S) , t2(t(z,S)) = ta

tb
=

z†2.3 S
−1
2.3z2.3

z†3S
−1
33 z3

.

APPENDIX B
PROOF OF PROPOSITION 4

In this Appendix we derive the alternative form of Rao
statistic in Eq. (55). To this end, we consider each term
in the difference of Eq. (54) separately. We start from ex-
pression in Eq. (24) and notice that M̂0 can be rewritten
as M̂0 = M̄0 + v0v

†
0, where M̄0 , [γ̂0(K + 1)]−1 S

and v0 , (K + 1)−1/2S1/2P⊥A0
zw1, respectively. Therefore,

after (repeated) application of matrix inversion lemma [41], it
readily follows that:

M̂−1
0 = M̄−1

0 − M̄
−1
0 v0v

†
0 M̄

−1
0

1 + v†0 M̄
−1
0 v0

, (80)

(A†M̂−1
0 A)−1 =

(
A†M̄−1

0 A
)−1−(

A†M̄−1
0 A

)−1 (
A†M̄−1

0 v0

) (
A†M̄−1

0 v0

)† (
A†M̄−1

0 A
)−1

1 + v†0M̄
−1
0 v0 +

(
A†M̄−1

0 v0

)† (
A†M̄−1

0 A
)−1 (

A†M̄−1
0 v0

) .
(81)

Then, exploiting Eq. (80), we get:

A†M̂−1
0 z

= A†M̄
−1/2
0

[
M̄
−1/2
0 z − M̄

−1/2
0 v0(v†0M̄

−1
0 z)

1 + v†0M̄
−1
0 v0

]
. (82)
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The term within square brackets in Eq. (82) also equals[
(K + 1−N)

(K + 1)
IN +

N

(K + 1)
PA0

]
M̄
−1/2
0 z . (83)

Such result is drawn noticing that the following equality holds

(v†0 M̄
−1
0 z)

1 + v†0 M̄
−1
0 v0

=
N√
K + 1

, (84)

and observing that v0 = (K + 1)−1/2
(
M̄

1/2
0 P⊥A0

M̄
−1/2
0 z

)
.

Also, exploiting Eq. (81), it is proved:

M̄
−1/2
0 A(A†M̂−1

0 A)−1A†M̄
−1/2
0

= PA1

[
IN −

M̄
−1/2
0 v0v

†
0M̄

−1/2
0

x0

]
PA1 (85)

where we have used the projector equivalence P
M̄
−1/2
0 A

=

PA1 and we have also defined

x0 , 1 + v†0 M̄
−1
0 v0

+ v†0 M̄
−1
0 A

(
A†M̄−1

0 A
)−1

A†M̄−1
0 v0 . (86)

Then, it provides:

z†w0PĀ1
zw0 = z†w1

[
N [(K + 1−N)PA1

+NPA0
]
2
zw1

(K + 1−N)z†w1P
⊥
A0
zw1

− N2

K + 1

t2k
x0

]
(87)

Moreover, we recall that the second term in (54) can be
rewritten as:

z†w0PĀ0
zw0 =

(K + 1)N

(K + 1−N)

z†w1PA0zw1

z†w1P
⊥
A0
zw1

, (88)

where we have exploited Lemma 2. Combining Eqs. (87) and
(88), we obtain:

trao =
N(K + 1−N)

K + 1
tk −

N2

K + 1

t2k
x0

. (89)

Finally, noticing that x0 = 1+ N
K+1−N + N

K+1−N tk, we prove
the claimed result.

APPENDIX C
PROOF OF PROPOSITION 6

Hereinafter we show that the gradient statistic is statistically
equivalent to the MIS, by proving Eq. (68). With this intent,
we analyze each term in the difference of Eq. (67) separately.

As in Appendix B, we rewrite the estimated covariance
(under H0) M̂0 as M̂0 = M̄0 +v0 v

†
0, where M̄0 , [γ̂0(K+

1)]−1 S and v0 , (K + 1)−1/2S1/2P⊥A0
zw1, respectively.

Therefore, after application of matrix inversion lemma (as in
Eq. (80)), it readily follows that:

M̂−1
0 z = (K + 1) γ̂0

×

S−1z + γ̂0

(
z†w1P

⊥
A0
zw1

) (
S−1/2PA0zw1

)
1 + γ̂0 z

†
w1P

⊥
A0
zw1

 . (90)

Then, exploiting the result in Eq. (90), it follows:

(PA1
− PA0

)S1/2M̂−1
0 z

=
(K + 1)γ̂0(PA1 − PA0)zw1

1 + γ̂0 z
†
w1P

⊥
A0
zw1

(91)

= N
(PA1

− PA0
)zw1

z†w1P
⊥
A0
zw1

(92)

where second line arises from (PA1 − PA0)PA0 = 0N×N
and the final expression is obtained by exploiting the closed
form of γ̂0, given in Eq. (22). Therefore, substitution of Eq.
(92) into (67) provides

<
{
z†w1(PA1

− PA0
)S1/2M̂−1

0 z
}

= N
z†w1 (PA1

− PA0
) zw1

z†w1P
⊥
A0
zw1

, (93)

where <{·} has been dropped, since Eq. (93) contains only
Hermitian (real-valued) quadratic forms. This concludes the
proof.

APPENDIX D
PROOF OF PROPOSITION 7

In order to prove coincidence between Rao and Durbin tests,
it suffices to show the equivalence (cf. Eqs. (36) and (69))

∂ ln f1(Z;θ)

∂θr

∣∣∣∣
θ=θ̂0

=
[
I
(
θ̂0

)]
θr,θr

(θ̂r,01 − θr,0) , (94)

for the model under investigation. Following Eq. (42),
we know that left hand side in Eq. (94) equals[
2<{gr,0}T 2={gr,0}T

]T
, where

gr,0 = E†rM̂
−1/2
0 P⊥Ā0

zw0 . (95)

Differently the right hand side of Eq. (94) can be calculated as
explained hereinafter. Indeed, we first notice that θr,0 = 02r.
Then, we observe that θ̂r,01 can be shown to be equal to

θ̂r,01 =
[
<{ψ0}T ={ψ0}T

]T
, (96)

where:

ψ0 , (E†r M̂
−1
0 Er)

−1E†r M̂
−1/2
0 (z −Etθ̂10) (97)

= (E†r M̂
−1
0 Er)

−1E†r M̂
−1/2
0 P⊥Ā0

zw0. (98)

Clearly, Eq. (98) is obtained by plugging in the closed form
expression of θ̂10 (given by Eq. (20)) in Eq. (97). Furthermore,
the block (θr,θr) of the FIM of interest (evaluated in θ = θ̂0)
equals: [

I
(
θ̂0

)]
θr,θr

=

[
2<{Ψ0} −2={Ψ0}
2={Ψ0} 2<{Ψ0}

]
, (99)

where we have defined Ψ0 , (E†r M̂
−1
0 Er). Combining

Eqs. (96) and (99), and exploiting the well-known equivalence:[
<{D} −={D}
={D} <{D}

] [
<{δ}
={δ}

]
=

[
<{Dδ}
={Dδ}

]
, (100)
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where D and δ denote a generic matrix and a generic vector,
respectively, it holds:[

I
(
θ̂0

)]
θr,θr

θ̂r,01 = 2

[
<{Ψ0ψ0}
={Ψ0ψ0}

]
, (101)

which thus proves Eq. (94) and, consequently, the claimed
proposition.
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