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ABSTRACT: This article proposes an approach to assess the life-cycle of reinforced concrete 
bridge components by applying a cluster algorithm and a stochastic model for damage evolution. 
The k-means algorithm is used to identify families of bridge components that deteriorate at similar 
rates. A measure of performance, i.e., silhouette width, supports the choice of the optimal number 
of clusters. Once the cluster model is defined, a gamma process is fitted to the data on the evolution 
of the conditions that belong to each family. By simulating the gamma process, the cumulative dis-
tribution function of time to failure is calculated for each cluster of components. The procedure 
applies to reinforced concrete bridge components in Switzerland, whose inspection and mainten-
ance data is collected in the KUBA-DB database. This approach ensures that the expected service 
life of bridge components can be predicted with limited uncertainty.

1 INTRODUCTION

The management of existing infrastructure and its maintenance is an increasingly topical and rele-
vant issue for the well-being of our societies. While, on the one hand, and as a result of a period 
strongly marked by new construction, physical infrastructure assets are aging and increasingly in 
need of maintenance, on the other hand, investment in maintenance is insufficient and even declin-
ing. Keeping infrastructures in good condition is therefore a challenge, requiring highly advanced 
approaches that can significantly improve maintenance efficiency. Remaining useful life should be 
understood as the time remaining before the infrastructure reaches a critical condition and mainten-
ance is required to ensure safety, serviceability, or durability. However, and despite the fact that 
physical assets are ageing, only in few cases the condition has been judged critical, so that little 
information is available concerning the time when a critical condition is reached.

With the scope to increase maintenance efficiency, many infrastructure operators have 
undertaken a digitization process, which has led to the development of digital systems for 
managing infrastructure and its maintenance. Condition databases collect the results of peri-
odic visual inspections and special tests, which are represented by digital data of different 
types, such as images, and qualitative and quantitative information on the progress of degrad-
ation. An important information is the qualitative judgment issued at the end of each inspec-
tion which regards the criticality of damage, as well as the condition of the component and 
the object as a whole, which is also linked to the urgency of the maintenance intervention.

A maintenance intervention is deemed necessary when the safety, durability or serviceability of 
the component and therefore possibly also of the object are jeopardized by the deterioration pro-
cess. The judgment is expressed through an increasing condition index: the more significant the 
damage, the higher the index. The condition index can thus be interpreted as a measure of damage 
accumulation. The objects whose information is contained in these databases were built in different 
periods and therefore have different ages. As a result, not all the objects have already reached 
a critical condition. In addition to that, the objects have different characteristics, which affect their 
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robustness against aging in different ways. Since the information relating to objects in satisfactory 
condition are predominant over those in critical condition, the database is affected by the well- 
known problem of data imbalance, and information about the time in which the critical condition 
is reached cannot be directly derived from the database in most of the cases.

The evaluation of the time in which the damage reaches a critical condition is subject to uncer-
tainties that can significantly influence the maintenance planning and therefore must not be neg-
lected. One way to consider the uncertainties affecting the prediction of the remaining service life is 
to model damage evolution through probabilistic models such as Markov process or gamma pro-
cess (Frangopol et al., 2004). Markov process is currently the most commonly used approach in 
bridge maintenance models. However, it has some drawbacks: first, it does not provide any reliabil-
ity estimation, making it also difficult to link life-cycle analysis to structural reliability assessment; 
secondly, it is a condition model suitable for incorporating information from visual inspections, but 
not for predicting the attainment of conditions that have not already been observed. This represents 
a major problem in the case of imbalance data such as condition data. Gamma processes have so 
far been less applied, but do not have these drawbacks. The gamma process is suitable to model 
gradual damage monotonically accumulating over time, such as wear, fatigue, corrosion, crack 
growth, erosion, consumption, creep, swell, a degrading health index (van Noortwijk, 2009), as in 
the case of damage affecting civil infrastructures and reinforced concrete bridges. A gamma process 
can be fitted to available degradation data and used to assess the probability of reaching a critical 
condition as a function of time. Gamma processes have been already used for modelling fatigue 
damage evolution (Guida and Penta, 2015), deterioration of coating systems (Nicolai et al., 2007), 
and corrosion in reinforced concrete structures (Zhang et al., 2023). Modelling the deterioration as 
a gamma process is also suitable when visual inspections are involved and summarized into 
a condition index, provided that the condition index can be interpreted as a measure of damage 
accumulation (Edirisinghe et al., 2013).

Although uncertainties are inevitable, it is necessary to assess the probability of reaching 
a critical condition and consequently to predict the remaining service life as precise as possible. In 
other words, it is necessary to identify groups of objects, or objects components, which show simi-
larities in terms of condition evolution paths. Unsupervised learning techniques and cluster algo-
rithms are data mining techniques suited for finding patterns in big data sets. A review of the 
application of these techniques to life-cycle assessment can be found in Ghoroghi et al. (2022). Clus-
ter analyses have been already applied to identify spatial clusters of structurally deficient bridges 
(Amin et al., 2020), to identify damage patterns affecting bridges (Chang and Chi, 2019), to develop 
bridge deterioration models (Moscoso et al., 2022). Although a grouping of objects based on simi-
lar condition evolution paths has already been theorized and proposed by infrastructure operators 
(Marsili et al., 2018), this result has never been pursued in a completely empirical way, by applying 
cluster algorithms to condition databases for infrastructure management.

The objective of this paper is to assess the life-cycle of aging reinforced concrete (r.c.) bridge 
components by combining a cluster analysis with a stochastic process. The k-means algorithm is 
implemented to cluster bridge components with similar degradation paths. Once the families of 
bridge components with similar condition evolution have been identified, the gamma process is 
fitted to the data characterizing each cluster. This approach makes it possible to predict the service 
life of bridge component with higher precision and construct the cumulative distribution of time to 
reach an undesired condition, which can be referred to as time to failure, for each identified group 
of components. The paper is organized as follows: Section 2 gives some background information 
about the methods at the basis of the proposed approach, Section 3 presents the case study at 
which the procedure has been applied and Section 4 draws some conclusion.

2 METHODS

2.1  Gamma process

van Noortwijk (2009) presents a survey of gamma processes in maintenance. By following its 
presentation of gamma process, a random quantity X has a gamma distribution with shape 
parameter v40 and scale parameter u40 if its probability density function (PDF) is given by

2490



where IA xð Þ ¼ 1 for x 2 A and IA xð Þ ¼ 0 for x =2A and � að Þ ¼
R∞

z¼0 za� 1e� zdz is the gamma 
function for a40. Furthermore v tð Þ is a non-decreasing, right continuous, real valued func-
tion for t � 0 with v 0ð Þ ¼ 0. The gamma process with shape function v tð Þ40 and scale param-
eter u40 is a continuous time stochastic process X tð Þ; t � 0 with the following properties:

– X 0ð Þ ¼ 0 with probability one;
– X τð Þ � X tð Þ � Ga v τð Þ � v tð Þ; uð Þ; t 2 0; τ½ Þ;

– X tð Þ has independent increments.

X tð Þ represents the deterioration at time t, t � 0. Its probability density function is given by

in which

are the expectation and the variance, respectively.
Assuming H0 as the initial value of the damage accumulation index, failure occurs when the 

damage accumulation index H tð Þ ¼ H0 � X tð Þ reaches the critical level Hcrit. The time at which 
failure occurs is especially called Tcrit, which is also referred to as the first hitting time of the critical 
level Hcrit. Then the cumulative distribution function (CDF) of time to failure can be written as

where � a; xð Þ ¼
R ∞

z¼x za� 1e� zdz is the incomplete gamma function for x � 0 and a � 0.

2.2  Parameter estimation for the gamma process

Let us assume to model the temporal variability in the deterioration with a gamma process. 
Empirical studies show that the expected deterioration at time t is often proportional to 
a power law

in which c 4 0 and b 4 0 are constant. The gamma process is called stationary if the expected 
deterioration is linear in time, i.e., when b ¼ 1, and non-stationary when b ≠ 1.

Let us consider a typical data set of inspection times ti, i ¼ 1;…; n, where t05t15…5tn, 
and corresponding observations of the cumulative amounts of deterioration xi, i ¼ 1;…; n, 
where 0 ¼ x0 � x1 �… � xn. The parameter b can be determined based on engineering 
experience or estimated from data, according to a least square method (Hu et al., 2022)

The parameters c and u can be estimated according to different approaches such as method 
of maximum likelihood, method of moments, method of Bayesian statics. According to the 
method of moments (Hu et al., 2022)
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in which S2
Y is given by

and

2.3  The k-means algorithm

The k-means is one of the simplest and most efficient as well as most widely used partitional clus-
tering algorithms. The algorithm starts by choosing K representative points as the initial cen-
troids. Each point is then assigned to the closest centroid based on a proximity measure, usually 
the Euclidean distance metric. Once the clusters are formed, the centroids for each cluster are 
updated. The algorithm then iteratively repeats these two steps until a convergence criterion is 
met and the centroids do not change anymore. In particular, the objective function employed by 
k-means is the Sum of Squared Errors (SSE).

Given a set of m observation z1; z2; . . . ; zm in which each observation is a d-dimensional 
real vector, k-means clustering aims to partition the m observations into k � m sets 
D ¼ D1;D2; � � � ;Dk so as to minimize the SSE (Aggarwal and Reddy, 2014)

in which dk is the centroid of cluster Dk and Dkj j is the size of Dk.
The major factors that can impact the performance of the k-means algorithm are the follow-

ing: 1) Choice of the initial centroids; 2) Estimation of the number of clusters K. Several 
methods are proposed in the literature to tackle these factors. In this work, the k-means++ algo-
rithm is applied to select the initial centroids. According to this technique, the first cluster center 
is chosen uniformly at random from the data set. The next centroid is chosen randomly from 
the remaining data points with probability proportional to its distance from the point’s closest 
existing cluster center. The problem of estimating the correct number of clusters is addressed by 
calculating the silhouette coefficient. This performance measure is based on the calculation of 
the the intra- and inter-cluster distances. For a given point zj, first the average of the distances 
to all points in the same cluster is calculated. This value is set to ej. Then for each cluster that 
does not contain zj, the average distance of zj to all the data points in each cluster is computed. 
This value is set to fj. Using these two values the silhouette coefficient of a point is estimated. 
The average of all the silhouettes in the dataset is called the average silhouette width

and the larger its value, the higher the quality of clustering.
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3 CASE STUDY

3.1  KUBA-DB

The Federal Roads Office (ASTRA) is the Swiss authority for road infrastructure management. 
In the context of the maintenance of ASTRA’s engineering structures, inspection is of primary 
importance in order to detect damage at an early stage and to assess the current condition of the 
structure or the individual parts of the structure. Three different types of inspection can be car-
ried out: primary, intermediate and special. The findings of primary and intermediate inspec-
tions are damage processes and information collected during the inspection is collected in the 
database KUBA-DB. A set of homogeneous damage processes within the same segment of the 
structural member and having the same effects on the functionality of the component forms 
a damage group. Each damage group is assigned to a condition class, which describes the condi-
tion of a relevant area of the structural element. Five condition classes have been defined, from 
“good condition” class to “alarming condition” class, with which a condition index from 1 to 5 
is associated. Then, an assessment of the condition of the whole structural component is made, 
based on the damage groups and their effect on the safety and on the functionality of the com-
ponent. This information is than aggregated at higher level to determine the condition of the 
whole object.

3.2  Description of the procedure

Figure 1.  Flow chart summarizing the applied procedure.
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Figure 1 summarizes the applied procedure for the analysis of the data. The first step is to pre-
pare the data for analysis. In this step, data affected by inconsistencies due to human errors in 
their recording are removed, such as typing error. The data are cleaned and transformed into an 
appropriate format to perform the analysis. In a second step, the data for each structural com-
ponent are selected, focusing on those structural components that show significant deterioration 
in their condition, i.e., those for which the condition index has experienced at least an increase 
from 1 to 2 and from 2 to 3. Such components are able to provide relevant information on the 
development of their condition, which will allow the fitting of a gamma process. Then, cluster 
analysis is performed, considering a variable number of clusters and calculating for each cluster 
model the performance measure. In general, it is possible to identify between two and three fam-
ilies of components that show similar condition development. More families can be identified 
only if a larger data set is available. The performance measure, i.e., silhouette width, supports 
the choice of the optimal number of clusters and is supplemented with a visual inspection of the 
identified clusters. Once the cluster model has been defined, a gamma process is fitted to the 
data belonging to each identified cluster. The parameters of the gamma process are determined 
based on Equations 7, 8, 9. Their definition allows a Monte Carlo simulation of the gamma 
process and the derivation of the mean time to failure as well as its CDF.

3.3  Results

For illustrative purposes, the results for a single component, namely the deck slab of 
reinforced concrete bridges, are reported. In a total of m ¼ 64 cases, the condition of the deck 
slab deteriorate significantly over time, and the condition index increases from 1 up to 3.

The cluster analysis with the k-means algorithm is performed considering the evolution of 
the condition index over time of the selected elements. Figure 2 shows the clusters identified in 
the case where K ¼ 2 and K ¼ 3. For each cluster model the average silhouette width is calcu-
lated (Figure 3). Results reveal that the silhouette width of the model characterized by three 
clusters (P K ¼ 3ð Þ ¼ 0:505) is higher than the silhouette width of the model characterized by 

Figure 2.  Results of k-means clustering for two and three centers.

Figure 3.  Silhouette plot of k-means clustering for 64 samples and two and three centers.
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two clusters (P K ¼ 2ð Þ ¼ 0:488). For this reason, the optimal number of clusters is three, and 
this model is assumed and considered in the subsequent analysis. The cluster analysis identifies 
three families of bridge deck slab that show markedly different condition evolution, which can 
be referred to as slow (cluster 1), normal (cluster 0) and fast (cluster 2). The next step is to fit 
the gamma process to the data characterizing each cluster, that is, to statistically estimate the 
parameters b, c, and u for each family of bridge deck slab. The results of the inspection, 
namely the condition index, must be first adjusted to obtain an index representing the accu-

mulation of deterioration over time. Hence, the condition index is transformed into a damage 
accumulation index through the following equation

which is considered to fit the gamma process.
It is assumed that the critical damage accumulation level is 4, which corresponds to the con-

dition index value 5, which is the critical value at which the component no longer fulfills 
a function (safety, serviceability, durability).

After that the parameters of the gamma process have been estimated (Table 1), a Monte Carlo 
simulation is performed (Figure 4). The Monte Carlo simulation allows the derivation of the aver-
age time to failure (Table 1) and the time to failure CDF for each identified cluster, which is 
shown in Figure 4. The CDF describes the trend of the failure probability as a function of time, 
which is directly related in statistical terms to the service life of the component. The average time 
to failure especially represents the expected service life of the component. Based on this result, it 
can be concluded that the group of components having a fast rate of deterioration has an 
expected service life of 43.6 years, the normal one of 52.4 years, and the slow one of 60.2 years.

4 CONCLUSIONS

The assessment of the remaining service life, understood as the service life before a degradation 
process reaches a critical level for which a maintenance intervention is deemed urgent, is an 
important step in improving the management of physical assets of infrastructure. Conscious of 

Table 1. Estimated parameters of the gamma process and average time to failure 
resulting from its simulation for each cluster.

b u c Average time to failure (year)

Cluster 0 1.7027 1.3333 0.0069 52.4
Cluster 1 2.3245 1.3333 0.0004 60.2
Cluster 2 1.0930 1.3333 0.0935 43.6

Figure 4.  Probabilistic models for life-cycle assessment.
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this, this article proposes an approach to assess the life-cycle of reinforced concrete bridge compo-
nents by applying an unsupervised learning technique and a stochastic process. A cluster analysis 
based on the k-means algorithm is applied to identify families of bridge components that degrade 
with similar rates. A gamma process is fitted to the data concerning the evolution of the degrad-
ation that characterizes each family. By simulating the gamma process, the average expected ser-
vice life of each family of components can be estimated. The simulation also allows the 
estimation of the time-dependent probability of damage exceeding a threshold level, called the 
probability of failure. An application of this approach to the case of reinforced concrete bridges 
in Switzerland, whose inspection results are contained in the KUBA-DB database, is developed. 
In particular, condition data related to the deck slab of reinforced concrete bridges is analyzed 
with the described procedure. Results reveal that three families of components whose condition 
evolves in a similar way can be identified. A performance measure, namely the silhouette width, 
supports the choice of the optimal number of clusters. Finally, it can be said that through this 
approach the service life of components can be predicted with reduced uncertainties.
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