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Abstract. In this paper we prove a large deviation principle (LDP) for the empirical measure of a general system of mean-field
interacting diffusions with singular drift (as the number of particles tends to infinity) and show convergence to the associated McKean–
Vlasov equation. Along the way, we prove an extended version of the Varadhan Integral Lemma for a discontinuous change of measure
and subsequently a LDP for Gibbs and Gibbs-like measures with singular potentials.

Résumé. Dans cet article, nous prouvons un principe des grandes déviations (PGD) pour la mesure empirique d’un système général
de diffusions interagissant en champ moyen avec une dérive singulière (lorsque le nombre de particules tend vers l’infini) et montrons
la convergence vers l’équation de McKean–Vlasov associée. En cours de route, nous prouvons une version étendue du lemme intégral
de Varadhan pour un changement discontinu de mesure et par la suite un PGD pour les mesures de type Gibbs avec des potentiels
singuliers.
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1. Introduction

In this work we study the limiting behaviour of weakly interacting, or mean field, diffusions, where the interaction depends
only on the empirical measures of the particles. For every N ∈ N the particle system is defined by the coupled stochastic
differential equations (SDEs) ⎧⎪⎪⎨

⎪⎪⎩
dX

N,i
t = bt

(
X

N,i
t ,

1

N

N∑
i=1

δ
X

N,i
t

)
dt + dWi

t ,

X
N,i
0 i.i.d. with law ρ0.

(1.1)

Here W 1, . . . ,WN are independent d-dimensional Brownian motions, ρ0 is a given initial distribution, and b is a measure-
dependent drift vector. A common example for b is of the form

(1.2) bt (x,μ) =
∫
Rd

ϕ(t, x − y)dμ(y),

for some interaction kernel ϕ. Such type of drifts commonly appear in models of classical physical systems, biological
systems such as the collective motion of micro-organisms (bacteria, cells, etc.), and flocking and swarming behavior of
animals, granular media, as well as models in opinion formation.

When b is sufficiently regular, the limiting behaviour of the particle system for a large particle number is well under-
stood. For example, when b is Lipschitz and bounded, the empirical measure

zN
X := 1

N

N∑
i=1

δXN,i ,

converges to the law of the McKean–Vlasov equation [58,60]

(1.3)

{
dXt = bt

(
Xt,Law(Xt )

)
dt + dWt,

X0 with law ρ0.

Moreover a large deviation principle (LDP) holds for the empirical measure zN
X , as N → ∞, see e.g. [7,10,11].

The case of a singular interaction, that is irregular b, has been widely studied too. The convergence of the system (1.1)
to the corresponding McKean–Vlasov equation has been shown for various examples of singular drifts, most of them of
the form (1.2) with singular interaction kernel ϕ, e.g. [3,6,30,33,41,42] (see Section 4.4 for detailed explanations).

However, establishing LDPs for these singular drifts has remained unsolved. Apart from the work by Fontbona in
[29], where an LDP for the time-marginals of (zN

X) was shown for a repulsive kernel ϕ(x) = 1/x, little is known to our
knowledge. We aim to fill this gap, by providing LDP results and new tools for a large class of singular measure-dependent
drifts.

As the main example, we consider the following drift

(1.4) bt (x,μ) := ψ

(
x,μ,

∫
Rd

ϕ(t, x − y)dμ(y)

)
,

where ψ :Rd ×P(Rd) ×Rd → Rd , with P(Rd) the space of probability measures equipped with the bounded Lipschitz
metric dBL. We will show an LDP when ψ is Lipschitz and the interaction kernel is in an appropriate Lp space. More
precisely, combining several key statements from Section 4 (see Proposition 4.16, Remark 4.18 and Proposition 4.24), we
obtain the following result:
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Theorem 1.1. Suppose that

(i) (Lipschitz property) ψ : Rd ×P(Rd)×Rd →Rd is jointly globally Lipschitz, i.e. there exists some constant M > 0,
such that for all w,x, y, z ∈ Rd and μ,ν ∈P(Rd):∣∣ψ(x,μ, z) − ψ(y, ν,w)

∣∣ ≤ M
(|x − y| + dBL(μ, ν) + |z − w|);

(ii) (Linear growth) there exists a constant L > 0 such that for all x, z ∈ Rd , μ ∈P(Rd):

|ψ |(x,μ, z) ≤ L
(
1 + |z|);

(iii) (Exponential moment) for all β > 0, the initial distribution ρ0 satisfies∫
Rd

eβ|x| dρ0(x) < ∞;

(iv) (Regularity) for p,q ∈ [2,∞] with d/p + 2/q < 1,

ϕ ∈ Lq
(
(0, T ),Lp

(
Rd

)) + L∞(
(0, T ) ×Rd

)
.

Then the family {QN } of laws of empirical measures zN
X for X = (XN,1, . . . ,XN,N) satisfying (1.1), with drift b as in

(1.4), has an LDP with rate function

F(μ) =
{

R
(
μ‖Wμ

)
if R(μ‖W) < ∞,

+∞ otherwise.

Here, R(μ‖ν) is the relative entropy of μ w.r.t. ν defined by

R(ν‖μ) :=
⎧⎨
⎩

∫
log

(
dν

dμ

)
dν if ν � μ,

+∞ otherwise,

Wμ is the law of a process X
μ
t satisfying the SDE

dX
μ
t = b

(
X

μ
t ,μt

)
dt + dWt,

and W = Law(W), where W is a Brownian motion with initial law ρ0 (and μt is the time marginal of μ at time t ).
Furthermore, zN

X converges almost surely to the unique minimizer of F(μ), which is the unique law of the solution to
the McKean–Vlasov SDE (1.3).

An application of Theorem 1.1 with q = ∞ is the case of a drift b of the form (1.2), with

ϕ(t, z) = |z|αg

(
z

|z|
)

1|z|≤R + h(z)1|z|>R,

with g : Sd−1 → Sd−1 and h : Rd → Rd both Borel bounded, R > 0, and exponent α satisfying

α > −1 for d ≥ 2, and α > −1/2 for d = 1.

Here the inequality for d = 1 arises from the fact that we require |z|α ∈ L
p

loc(R
d) for some p with p ≥ 2, while for d > 1

the constraint p > d comes into play.
In fact, we prove LDP and convergence to the McKean–Vlasov equation for systems with singular drifts under more

general assumptions, see Theorem 4.5 and the examples in Sections 4.3, 4.4, where we include many-particle interaction
(that is, dependence of b on μ⊗k) and interaction kernels ϕ merely satisfying

E
[
eβ

∫ T
0 |ϕ|2(t,W 1

t ,W 2
t ) dt

]
< ∞, ∀β ∈R,

where W 1, W 2 are independent Brownian motions with common initial law ρ0.
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Note that even the convergence result to the McKean–Vlasov SDE in Theorem 1.1 is new: while some works do show
convergence for the class of drifts (1.2) with even more singular ϕ [6,30,41], we are not aware of a result that covers drifts
of the form (1.4) under our assumptions.

Our proof of the LDP relies on using a singular change of measure via Girsanov’s theorem and an approximation by
regular drifts. Indeed, Girsanov’s theorem gives at least formally

dQN

dP N
(μ) = e−NE(μ), μ ∈ P

(
C

([0, T ];Rd
))

,(1.5)

where QN is the law of the empirical measure zN
X of the interacting particle system X = (XN,1, . . . ,XN,N) satis-

fying (1.1), P N is the law of the empirical measures zN
W of N independent d-dimensional Brownian motions W =

(W 1, . . . ,WN) and

E(μ) =
∫

V (x,μ)μ(dx),

V (x,μ) = −
∫ T

0
bt (xt ,μt ) · dxt + 1

2

∫ T

0

∣∣bt (xt ,μt )
∣∣2

dt.

(1.6)

By Sanov’s theorem, {P N } satisfies an LDP with rate function R(·‖W). We need to transfer this LDP to an LDP for {QN }
and, to deal with this, we extend a classical tool in large deviation theory, Varadhan’s Integral Lemma. We believe that
this extension and other underlying results are relevant on their own and they might also prove helpful in future works on
singular drifts. Let us briefly state our strategy.

In a nutshell, Varadhan’s Integral Lemma (or Varadhan’s Lemma for short) allows one to transfer the LDP through a
continuous change of measure and is in fact a natural extension of Laplace’s method to infinite dimensional spaces. To
be precise, let {zN } be a family of random variables on a probability space (	,A,P), taking values in a Polish space X
endowed with its Borel σ -algebra B(X ). The classical Varadhan’s Lemma (cf. [12,14,62]) reads as follows.

Proposition 1.2 (Varadhan’s Integral Lemma). Suppose P N satisfies an LDP with good rate function I :X → [0,∞],
and let E : X →R be any continuous and bounded function. Then the family of measures {QN } defined by

dQN

dP N
(μ) := 1

ZN

e−NE(μ) for P N -almost every μ ∈X ,(1.7)

with normalizing constants ZN , satisfies an LDP with good rate function

(1.8) F(μ) := (I + E)(μ) − inf
ν∈X

(I + E)(ν).

Subsequently, various extensions have been developed in the past decades to relax the assumption of continuity; for
example to deal with singular functionals or contractions for Gibbs measures on Rd [4,8,18,36], or on abstract spaces
[2,12,20,21,32,47,49]. We refer to the background paragraphs in Sections 2 and 3 for a more detailed discussion, and only
highlight a few points here.

A common thread in some of the extensions above are various approximation arguments. For example, as outlined in
[14] on exponential approximations, the family {QN } satisfies an LDP if there exists another family {QN

λ } which satisfies
an LDP for each λ > 0 and approximate QN in some exponentially good way (as λ → 0). Liu and Wu [49] make use of
techniques involving exponential approximations and prove LDPs for Gibbs measures with singular potential. However,
in our setting, we cannot rely on their result since, for general drift as in (1.4), the associated E is not actually in the form
of a Gibbs energy. Hence, we have developed the following extension (see Theorem 2.8 for the precise statement):

Theorem 1.3 (Extended Varadhan Integral Lemma). Let P N = Law(zN) be a family satisfying an LDP with rate func-
tion I , and E,EN : X → [−∞,∞] measurable functions. Moreover, let Eλ, EN

λ : X → [−∞,∞], λ > 0 be measurable
functions such that, for each λ > 0, the family of measures {QN

λ }N defined by

dQN
λ

dP N
:= 1

Zλ
N

e−NEN
λ (μ) for P N -almost every μ ∈X

with normalizing constants Zλ
N , satisfy an LDP with rate function

Fλ(μ) := (I + Eλ)(μ) − inf
ν∈X

(I + Eλ)(ν).



496 J. Hoeksema et al.

Suppose that for some γ > 1,

lim sup
N→∞

1

N
logE

[
e−γNEN

λ (zN )
]
< +∞,

inf
μ∈D(I)

(I + γ Eλ)(μ) > −∞,

for every λ > 0, and that a constant K ∈R exists, such that for every β ∈R,

lim sup
λ→0

lim sup
N→∞

1

N
logE

[
eβN(EN−EN

λ )(zN )
] ≤ K,

lim sup
λ→0

sup
μ∈D(I)

(
β(Eλ − E) − I

)
(μ) ≤ K.

Then the family {QN } defined by

dQN

dP N
:= 1

ZN

e−NEN(μ) for P N -almost every μ ∈X

satisfies an LDP with rate function

F(μ) := (I + E)(μ) − inf
ν∈X

(I + E)(ν).

We provide a self-contained proof which only relies on basic large deviation theory and elementary convexity esti-
mates. The two main points of this extension are that we do not require E to be continuous and that we also do not require
the approximating energies EN

λ to be continuous, but merely to induce an LDP in the sense described above. The latter
point is an essential tool in proving Theorem 1.1. Namely, even for regular drifts b, the change of measure (1.5) provided
via Girsanov’s theorem is not necessarily continuous, while there are classical results on LDPs for interacting particle
systems with regular drifts. Hence we can prove Theorem 1.1 by approximating the singular drift b in (1.6) with regular
drifts bλ and applying then the extended Varadhan’s Lemma Theorem 1.3.

Other extensions and applications of Varadhan’s Lemma have also been developed to deal with this, for example to
prove LDPs for weakly interacting diffusions with regular drifts [12,15,55]. Moreover, in [15], one of the authors of this
manuscript developed an enhanced version of Sanov’s theorem in the rough path setting, which allows for Varadhan’s
Integral Lemma to be applied. However, to our knowledge, none of them have been used to prove LDPs for weakly
interacting diffusions with singular interaction.

It should be noted that one cannot expect to establish an LDP via a change of measure for every singular drift. This is
indeed the case when the law of the interacting particle system is not absolutely continuous with respect to the law of the
non-interacting system. A particular example in which this occurs is the Keller–Segel model with ϕ(t, z) = −∇ log z, for
which a notion of propagation of chaos was established in [6] but an LDP result remains open.

However, even in the large class of drifts for which the system can be described via a change of measure there is still
a gap between those for which there is a known LDP and propagation of chaos, and those for which others have merely
shown propagation of chaos. We believe that not only are our results such as Theorem 1.1 a sizable step in closing this
gap, but that the general tools we provide will help close it even further.

Organization and highlights of the paper. In Section 2 we recall basic definitions and results in large deviation theory,
and provide an extension of Varadhan’s Lemma in Theorem 2.8. Next, in Section 3, we use this to prove LDPs for
empirical measures of mean-field Gibbs systems, where the log-densities EN

V : P(S) → [−∞,∞] are parameterized by
a family of Borel functions V N : Sk → [−∞,∞], k ∈ N (see (3.1) for a precise definition). In Theorem 3.4, we provide
sufficient conditions, in terms of suitable approximations of {V N,V }, under which {EN

V ,EV } induces an LDP – this result
is in the same spirit as [49]. We further prove a result (Theorem 3.10) that generalizes Theorem 3.4 to include ‘Gibbs-like’
measures – which are not of Gibbs form but such that the error EN

V −EN
Vλ

can be essentially bounded by Gibbs measures –
that simplifies our task in proving LDPs for weakly interacting diffusions in Section 4.

In the latter, with the results of Sections 2 and 3 at hand, establishing an LDP for a system of weakly interacting
diffusions amounts to (1) proving a (change-of-measure) representation formula (Girsanov’s formula) for the laws {QN }
of the empirical measures zN

X associated to the solution X = (XN,1, . . . ,XN,N) of (1.1); and (2) proving the existence of
a family {bN

λ } of “exponentially good” approximations for b (cf. Theorem 4.5 and the concrete examples in Section 4.3),
which implies Theorem 1.1 considered above with a drift b specified by (1.2). For drifts b satisfying the assumption of
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Theorem 1.1, and for all the examples in Sections 4.3, we further show that the rate function F associated to {QN } attains
a unique minimizer (see Section 4.4 for the general case), which implies almost sure convergence.

Finally, for the sake of completeness and consistency, we have included a relatively large appendix containing technical
results and proofs utilized throughout the article, which we believe to be either new, or helpful to the reader.

2. An extension of the Varadhan integral lemma

In this chapter we extend the classical Varadhan’s Integral Lemma (cf. [14,62]), to allow for establishing LDPs via a
change of measure with possibly discontinuous density.

2.1. Notations and preliminary results

We introduce some notation that we will use throughout the manuscript. The space X is a Polish space endowed with its
Borel σ -algebra B(X ). The symbol P(X ) denotes the set of all probability measures on X and we use the letters P , Q,
and P N,QN, . . . for probability measures on X . With a little abuse of notation, we use μ both for a generic element of X
and for the canonical random variable on X (μ(x) = x for all x in X ); this notation is unusual, but it will be convenient
in the next sections, where X will be itself a space of probability measures. We often consider (without loss of generality)
P N as the law of an X -valued random variable zN , defined on a probability space (	,A,P) (independent of N ); E
denotes the expectation with respect to P.

We recall a definition of a large deviation principle (LDP).

Definition 2.1. A family of measures {QN } ⊂ P(X ) satisfies an LDP with rate function F : X → [0,∞] if (1) F is
lower semi-continuous, if (2) for every Borel set A,

− inf
μ∈Ao

F(μ) ≤ lim inf
N→∞

1

N
logQN(A) ≤ lim sup

N→∞
1

N
logQN(A) ≤ − inf

μ∈Ā
F(μ),

and if (3) the family {QN } is exponentially tight, i.e. there is a sequence of compact sets KM ⊂X such that

lim sup
M→∞

lim sup
N→∞

1

N
logQN(X \ KM) = −∞.

We denote the domain of F by D(F) := {μ ∈ X |F(μ) < ∞}.

Remark 2.2. As shown in [14, p. 8, 120], Definition 2.1 in Polish spaces is equivalent to stating that (2) holds with a
good rate function F , i.e. F having compact sub-level sets.

Remark 2.3. Let {zN } be a family of X -valued random variables such that QN = Law(zN) ∈ P(X ) satisfies an LDP
with rate function F . If the minimizer μ∗ ∈X of F is unique, then the LDP implies the convergence QN → δμ∗ weakly.
In fact, by a standard argument we obtain a stronger result: almost sure convergence of the random variables zN to μ∗, as
stated below. For a proof, see for example [54, Theorem A.2].

Lemma 2.4. Suppose P N satisfies an LDP with rate function F , and that F has a unique minimizer μ∗. Then zN

converges P-almost surely to μ∗.

Now, let P N = Law(zN) be probability measures on X satisfying a large deviation principle with rate function I :
X → [0,∞]. We consider pairs ({EN },E) (denoted (EN,E) for short) of a sequence of Borel functions EN :X → R and
a Borel function E : X →R, and study whether an LDP may be established for the induced measures QN ,

(2.1)
dQN

dP N
(μ) := 1

ZN

e−NEN (μ) for P N -almost every μ ∈X ,

where the normalization constants ZN are assumed to be finite for all N ∈ N.
Precisely, we define J and F as follows:

J (μ) :=
{

I (μ) + E(μ), μ ∈ D(I),

+∞, μ /∈ D(I),



498 J. Hoeksema et al.

and, if infμ∈X J (μ) is finite, we define

F(μ) := J (μ) − inf
μ∈X

J (μ).

Finally, note that by construction for any Borel set A

inf
μ∈A∩D(I)

(E + I )(μ) = inf
μ∈A

J (μ).

Then the property we investigate is given in the following definition.

Definition 2.5. We say that (EN,E) induces an LDP if infμ∈X J (μ) is finite, {QN } (defined as in (2.1)) satisfies an LDP
with rate function F and satisfies the so-called Laplace principle,

(2.2) lim
N→∞

1

N
logE

[
e−NEN (zN )

] = − inf
μ∈X

J (μ).

The following lemma provides a characterization in terms of an unnormalized LDP.

Lemma 2.6. The following statements are equivalent:

(i) The pair (EN,E) induces an LDP (according to Definition 2.5);
(ii) infμ∈X J (μ) ∈R, J is lower semi-continuous, the family {QN } is exponentially tight, and for every Borel set A,

(2.3)

− inf
μ∈Ao

J (μ) ≤ lim inf
N→∞

1

N
logE

[
e−NEN (zN )1A

]

≤ lim sup
N→∞

1

N
logE

[
e−NEN(zN )1A

]≤ − inf
μ∈Ā

J (μ).

Proof. Suppose (EN,E) induces an LDP. Exponential tightness of QN follows from the definition of an LDP, and since
F is lower semi-continuous J is as well. By the Laplace principle (2.2),

lim
N→∞

1

N
logE

[
e−NEN (zN )

] = − inf
μ∈X

J (μ),

where the right-hand side is assumed to be finite. For for any A ∈ B(X ), we have that

1

N
logE

[
e−NEN (zN )1A

] = 1

N
logE

[
1

ZN
e−NEN (zN )1A

]
+ 1

N
logZN

= 1

N
logQN(A) + 1

N
logZN.

Therefore, by (2.2) and the LDP of QN , we then obtain

lim sup
N→∞

1

N
logE

[
e−NEN (zN )1A

] = lim sup
N→∞

1

N
logQN(A) − inf

μ∈X
J (μ)

≤ − inf
μ∈Ā

F(μ) − inf
μ∈X

J (μ) = − inf
μ∈Ā

J (μ).

The lower bound follows similarly, and hence (2.3) is satisfied.
Conversely, assume that J is lower semi-continuous, infμ∈X J (μ) is finite and that (2.3) holds. Then F is lower

semi-continuous as well, and by (2.3) applied to A =X ,

lim
N→∞

1

N
logE

[
e−NEN (zN )

] = − inf
μ∈X

J (μ),

where the right-hand side is assumed to be finite. Now normalizing by ZN and proceeding as above it follows that for any
A ∈ B(X ),

− inf
μ∈Ao

F(μ) ≤ lim inf
N→∞

1

N
logQN(A) ≤ lim sup

N→∞
1

N
logQN(A) ≤ − inf

μ∈Ā
F(μ).

Along with the exponential tightness of QN , this implies that (EN,E) induces an LDP. �
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Remark 2.7. Notice that the classical Varadhan’s Integral Lemma is recovered when E is continuous and bounded, and
EN = E for all N ∈N.

2.2. An extended Varadhan integral lemma

Now we present the main result of this section.

Theorem 2.8 (Extended Varadhan Integral Lemma). Let P N = Law(zN) be a family satisfying an LDP with rate
function I . Moreover, let (EN

λ ,Eλ) be pairs inducing an LDP for all λ > 0. Suppose that the pair (EN,E) is such that for
some γ > 1,

lim sup
N→∞

1

N
logE

[
e−γNEN

λ (zN )
]
< +∞,(2.4a)

inf
μ∈D(I)

(I + γ Eλ)(μ) > −∞,(2.4b)

for every λ > 0, and that a constant K ∈ R exists, such that for every β ∈R,

lim sup
λ→0

lim sup
N→∞

1

N
logE

[
eβN(EN−EN

λ )(zN )
] ≤ K,(2.5a)

lim sup
λ→0

sup
μ∈D(I)

(
β(Eλ − E) − I

)
(μ) ≤ K.(2.5b)

Then the family {QN } defined by (2.1) satisfies an LDP with rate function F . In particular, the pair (EN,E) also induces
an LDP.

Remark 2.9. We give some comments on the assumptions:

(i) It was shown in [40] that under (2.4b), condition (2.5b) is equivalent to the uniform convergence of Eλ to E on the
sub-level sets {μ | I (μ) ≤ M} of I for any M ∈R, and that (2.5a) implies:

(2.6) For any δ > 0: lim
λ→0

lim sup
N→∞

1

N
logP N

(|E − Eλ|
(
zN

)
> δ

) = −∞.

(ii) Condition (2.5b) could appear redundant for those who are familiar with LDPs: if (EN − EN
λ ,E − Eλ) is a priori

known to induce an LDP, (2.5b) and (2.5a) are equivalent. But in the proof we need to approximate EN and E
separately, which requires us to have both conditions. Nevertheless, we do expect from this reasoning that bounds
for (2.5a) are also bounds for (2.5b). We will see that this is indeed the case for the interacting particle systems in
Section 3.

(iii) Note that condition (2.5a) implies (cf. Lemma A.4)

lim
λ→0

lim sup
N→∞

1

N
logE

[
e−NβEN

λ (zN )1A

] = lim sup
N→∞

1

N
logE

[
e−NβEN (zN )1A

]
,

and

lim
λ→0

lim inf
N→∞

1

N
logE

[
e−NβEN

λ (zN )1A

] = lim inf
N→∞

1

N
logE

[
e−NβEN (zN )1A

]
,

for any Borel set A ∈ B(X ) and β ∈ R, which is considerably stronger than simply inequalities for open and closed
sets. An open question is whether this is stronger than, equivalent to or weaker than (or none of the former) the
statement that the induced measures QN

λ exponentially approximates QN as λ → 0 (cf. [14, p. 130]).
(iv) An alternative approach to prove the type of results in Theorem 2.8 could be to get an LDP for zN in a larger space

with a stronger topology, where EN is a continuous function, and then apply the classical Varadhan Lemma; the
LDP in the stronger topology could be obtained by exponential approximation, as in [14]. This strategy is used, for
example in [21,49], in the context of certain singular Gibbs measures.

Remark 2.10 (Toward interacting diffusions). We outline briefly how Theorem 2.8 will be applied in our context of
singularly interacting diffusions. Recall that we are interested in an LDP on the space X =P(S), with S = C([0, T ];Rd)),
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for the law QN of the interacting particle system X = (XN,1, . . . ,XN,N) satisfying (1.1), as N → ∞; the drift b is
possibly singular. As we have written in the Introduction, in this context we take P N as the law of the empirical measures
zN
W of N independent d-dimensional Brownian motions W 1, . . . ,WN : by Sanov’s theorem, the family {P N } satisfies an

LDP with rate function I = R(·‖W) (the relative entropy with respect to the Wiener measure W). As a consequence of
Girsanov’s theorem, the energy is given formally by

E(μ) =
∫

S

V (x,μ)dμ(x),

V (x,μ) = −
∫ T

0
bt (xt ,μt ) · dxt + 1

2

∫ T

0

∣∣bt (xt ,μt )
∣∣2

dt.

The approximating energies Eλ and potentials Vλ are defined as for E and V but replacing b with a smooth bounded
approximation bλ. The fact that, for each λ > 0, Eλ induces an LDP follows from classical results for interacting diffusions
with smooth drift. The assumption (2.5a) reads in this context, for every β ∈ R,

lim sup
λ→0

lim sup
N→∞

1

N
logE

[
eβ

∑N
i=1[V (Wi,zN

W )−Vλ(Wi,zN
W )]] ≤ K,

with K independent of β . Note that this condition involves deterministic and stochastic integrals of N independent
Brownian motions only. In order to check this condition, we need to control the dependence on N , which we do in
Section 3 by making use of Gibbs-like structures.

Note finally that, even when the drift b is smooth and bounded, V and so E are not continuous in general (in the
topology of weak convergence on P(S) at least), because V involves a stochastic integral. As a technical detail, the
precise definitions of V and E in the particle system differ from the definitions in the McKean–Vlasov SDE, due to both
the precise definition of the stochastic integral as Borel map and the issue of self-interaction, see Section D.2.

We now briefly explain the strategy to prove Theorem 2.8. For a Borel set A ∈ B(X ), we define the following func-
tionals on the space of Borel functions E on X ,

⎧⎪⎨
⎪⎩

φA(E) := − inf
μ∈A∩D(I)

(I + E)(μ),

φN
A (E) := 1

N
logE

[
e−NE(zN )1A

]
, n ∈ N.

(2.7)

We will show in Lemma 2.11 that φN
A and φA are convex and from above (in A) by φN

X and φX respectively. Moreover,
the fact that (EN,E) induces an LDP can be read as a set of variational inequalities for φN

A and φA for each A ∈ B(X ),
i.e.

φAo(E) ≤ lim inf
N→∞ φN

A

(
EN

) ≤ lim sup
N→∞

φN
A

(
EN

) ≤ φĀ(E).

Finally, the convergence of (2.5) over X will be seen to imply corresponding statements over every set A ∈ B(X ), which
implies bounds on φN

A (EN − EN
λ ) and φA(E − Eλ). Hence the extended Varadhan Integral Lemma is morally equivalent

to a type of stability of variational inequalities for convex functionals, for which we can use Theorem A.1 in Appendix A.
Here are the convexity properties and bounds for φA and φN

A :

Lemma 2.11. For any Borel set A ∈ B(X ) and any N ∈ N, the functionals φA and φN
A defined in (2.7) are convex and

bounded from above by φX and φN
X respectively (that is, φA ≤ φX and φN

A ≤ φN
X for every A ∈ B(X ) and any N ∈N).

Proof. For any N ∈ N and any α ∈ (0,1), for any Borel functions E1, E2, it holds by Hölder’s inequality (with exponents
1/α and 1/(1 − α))

logE
[
e−N(αE1+(1−α)E2)(z

N )1A

] = logE
[
e−αNE1(z

N )1Ae−(1−α)NE2(z
N )1A

]
≤ α logE

[
e−NE1(z

N )1A

] + (1 − α) logE
[
e−NE2(z

N )1A

]
.

(2.8)
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Convexity of φN
A follows by dividing (2.8) by N . The bound φN

A ≤ φN
X follows from the positivity of the exponential and

the monotonicity of the logarithm. Finally, for any α ∈ (0,1),

inf
μ∈A∩D(I)

I + (
αE1 + (1 − α)E2

) = inf
μ∈A∩D(I)

[
α(I + E1) + (1 − α)(I + E2)

]
≥ α inf

μ∈A∩D(I)
(I + E1) + (1 − α) inf

μ∈A∩D(I)
(I + E2),

which gives convexity of φA. The bound φA ≤ φX is easily verified. �

We can now prove Theorem 2.8.

Proof of Theorem 2.8. Recall, for any Borel set A ∈ B(X ) and Borel function G, we have by definition

φAo(G) = − inf
μ∈Ao∩D(I)

(I + G)(μ), φĀ(G) = − inf
μ∈Ā∩D(I)

(I + G)(μ),

and

φN
A (G) = 1

N
logE

[
e−NG(zN )1A

]
.

Lemma 2.11 gives that φAo , φĀ and φN
A are convex for every N ∈ N. Moreover, by the bounds φN

A ≤ φN
X and φĀ ≤ φX ,

assumptions (2.4) imply, for some γ > 1 (independent of λ),

lim sup
N→∞

φN
A

(
γ EN

λ

)
< +∞

φĀ(γ Eλ) < +∞

⎫⎬
⎭ for every λ > 0,

while assumptions (2.5) imply

lim sup
λ→0

lim sup
N→∞

φN
A

(
β

(
EN − EN

λ

)) ≤ K

lim sup
λ→0

φĀ

(
β(E − Eλ)

) ≤ K

⎫⎪⎬
⎪⎭ for every β ∈R.

By Lemma 2.6, the assumption that (EN
λ ,Eλ) induces an LDP is characterized by

(2.9) φAo(Eλ) ≤ lim inf
N→∞ φN

A

(
EN

λ

) ≤ lim sup
N→∞

φN
A

(
EN

λ

) ≤ φĀ(Eλ).

We are now in a position to apply Theorem A.1, which implies that (2.9) also holds for (EN,E) (cf. (A.5)), i.e.

φAo(E) ≤ lim inf
N→∞ φN

A

(
EN

) ≤ lim sup
N→∞

φN
A

(
EN

) ≤ φĀ(E).

Moreover, for every γ ′ ∈ (0, γ ), both lim supN→∞ φN
A (γ ′EN) < +∞ and φĀ(γ ′E) < +∞ (cf. (A.4a) and (A.4b)). In

particular, for A =X , we have that −φX (E) is finite, and

(2.10) lim sup
N→∞

1

N
logE

[
e−γNEN (zN )

]
< ∞.

By Lemma 2.6, we can conclude that (EN,E) induces an LDP provided we show lower semi-continuity of J and expo-
nential tightness of QN .

First, from (2.5b) we can conclude that for every K ′ > K and β ≥ 0 there exists a large enough λ∗(K ′, β) such that

|Eλ − E |(μ) ≤ K ′ + I (μ)

β
, ∀μ ∈ X ,∀λ ≥ λ∗(

K ′, β
)
.

In particular we derive that Eλ converges pointwise to E on D(I) (in fact, the convergence is uniform on sub-level sets of
I ). Next, note that a Borel function J is lower semi-continuous if and only if for every μ ∈X

lim inf
ε→0

inf
ν∈Bε(μ)

J (ν) ≥ J (μ),
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which in the case of

JG(μ) :=
{

I (μ) + G(μ), μ ∈ D(I),

+∞, μ /∈ D(I),

for a Borel function G can be rewritten as

(2.11) lim sup
ε→0

φBε(μ)(G) ≤ −JG(μ).

To show this for G = E , fix μ, and note that by convexity for any α ∈ [0,1), λ, ε,

φBε(μ)(αE) ≤ αφBε(μ)(Eλ) + (1 − α)φBε(μ)

(
α(1 − α)−1(E − Eλ)

)
≤ αφBε(μ)(Eλ) + (1 − α)φX

(
α(1 − α)−1(E − Eλ)

)
.

Since the left-hand side is independent of λ, taking subsequently limits in ε and λ and using the lower semi-continuity of
I + Eλ we derive

lim sup
ε→0

φBε(μ)(αE) ≤ α lim inf
λ→0

lim sup
ε→0

φBε(μ)(Eλ) + (1 − α) lim sup
λ→0

φX
(
α(1 − α)−1(E − Eλ)

)
≤ −α lim sup

λ→0
JEλ

(μ) + (1 − α)K.

Since g(α) := lim supε→0 φBε(μ)(αE) is convex and bounded from above around α = 1 we conclude by Lemma A.3 after
letting α → 1,

lim sup
ε→0

φBε(μ)(E) ≤ − lim sup
λ→0

JEλ
(μ).

Now, to establish (2.11) for G = E , note that either I (μ) = +∞ in which case the inequality trivially holds, or we have
μ ∈ D(I) and thus we employ the pointwise convergence of Eλ to E .

Finally, to prove exponential tightness, fix an arbitrary M ≥ 1 and let KM be a compact set in X such that

lim sup
N→∞

1

N
logP N(X \ KM) < −M.

By Hölder inequality we derive, for every α in (0,1),

1

N
logE

[
e−NEN (zN )1X \KM

] ≤ α

N
logE

[
eα−1NEN (zN )

] + 1 − α

N
logP N(X \ KM).

After taking the limit supremum in N , the first term on the right-hand side is independent of M and finite by (2.10),
provided α−1 < γ . Therefore,

lim sup
M→∞

lim sup
N→∞

1

N
logE

[
e−NEN (zN )1X \KM

] = −∞,

which proves the exponential tightness of QN and concludes the proof. �

Background. We are only aware of one paper extending Varadhan lemma for discontinuous log-densities in a general
framework, namely [12], which however uses different assumptions. Instead, extensions of Varadhan’s lemma for partic-
ular contexts have been proven, often involving conditions like (2.6). For example, [20] proves an extended contraction
principle which is closely related to exponential approximations (cf. [14]); a localized version of (2.6) is used in [4] for
their concept of quasi-continuity to prove LDPs for vortex systems; the papers [21,49] use an alternative strategy to get
an extension of the classical Varadhan Lemma in the context of singular Gibbs measures, see Remark 2.9(iv).

3. Gibbs measures

3.1. Notations and preliminary results

In this section we consider the setting for Gibbs measures over weakly interacting particle systems.
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Let S be a Polish space, endowed with its Borel σ -algebra B(S). Let μ0 ∈ P(S) be a given reference measure. For
simplicity, we will suppose in the following that μ0 is non-atomic, i.e. it has no atoms (cf. Remark 3.1). We are given
i.i.d. random variables ωi , i ∈ N, defined on some probability space (	,A,P), with values in S and common law μ0; we
can think of ωi as non-interacting particles. We denote by E the expectation with respect to P.

To describe our interacting particle system, we fix k in N, k ≥ 2, and take a k-particle interaction potential V N on S,
i.e. a Borel function V N : Sk → R. We define the energy EN

V : SN → R of an N -particle configuration (N � k) by

EN
V (x1, . . . , xN) := 1

Nk

∑
i1,...,ik distinct

V N(xi1, . . . , xik )

(when the N -dependence is made explicit in the superscript, with a little abuse of notation we use EN
V instead of EN

V N ).

Then the interacting particle system is described by the probability measure QN
V on (	,A) defined by

QN
V = 1

ZN
V

e−NEN
V (ω1,...,ωN )P,

where ZN
V is the normalizing constant, assumed to be finite. Under QN

V , the particles ωi are subject to interaction via the
potential V N . Note that the energy EN

V is invariant under permutation, or, in other words, depends only on the positions
of the particle ωi and not on their label i, via a fixed interaction potential V N – this is a mean-field interaction. Note
also that particle configurations (x1, . . . , xN) are more likely, according to QN

V , if V N assumes lower values in these
configurations.

Our main interest is in large deviations for the empirical measures associated with ωi under the probability measure
QN

V . For this reason, we consider the state space X = P(S), equipped with the weak topology (w.r.t. continuous and
bounded functions on S), which turns P(S) into a Polish space [14, Theorem D.8]. For each N ∈ N, we denote by
zN• : SN → P(S) the continuous map

SN � (x1, . . . , xN) =: x �→ zN
x := 1

N

N∑
i=1

δxi
∈ P(S).

We denote by P N ∈ P(P(S)), resp. QN
V ∈ P(P(S)) the law of the empirical measure zN

ω for ω = (ω1, . . . ,ωN) under P
(where ωi i = 1, . . . ,N are i.i.d. with common law μ0), resp. under QN

V . We aim at giving an LDP for QN
V .

We further define the function EN
V : P(S) → R by

(3.1) EN
V (μ) :=

⎧⎨
⎩

∫
(Sk)′

V N dμ⊗k if V N ∈ L1(μ⊗k),

+∞ otherwise,

where (Sk)′ is Sk but with the diagonals removed, i.e.(
Sk

)′ := {
(x1, . . . , xk) ∈ Sk | xi �= xj ,∀i, j ∈ {1, . . . , k} with i �= j

}
.

Notice that when ωi , i = 1, . . . ,N are i.i.d. random variables with common law μ0, then

EN
V (ω1, . . . ,ωN) =

∫
(Sk)′

V Nd
(
zN
ω

)⊗k = EN
V

(
zN
ω

)
P⊗N -a.e.

due to the non-atomic property of the reference measure μ0. Hence, by construction and the mean-field interaction
property, the interacting particle system may then be recast as a change of measure in P(P(S)), namely

(3.2) QN
V := 1

ZN
V

e−NEN
V (μ)P N .

Given a Borel function V : Sk →R, we define similarly the function EV :P(S) →R by

(3.3) EV (μ) :=
⎧⎨
⎩

∫
Sk

V dμ⊗k if V ∈ L1(μ⊗k),

+∞ otherwise,
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The functions EN
V and EV are Borel maps on P(S) (cf. Appendix C, in particular Lemma C.2 and Corollary C.4) and are

defined identically except for the N dependence in V and the domain of integration, i.e., (Sk)′ instead of Sk .

Remark 3.1. A few comments on the assumption that μ0 is non-atomic:

(i) The energy EN
V as defined above does not rule out self-interaction, i.e., two particles occupying the same position

(xi = xj for i �= j ). While EN
V is meaningful for bounded potentials V N , this may cause an issue when V N is singular

on the diagonal. The non-atomicity of μ0 resolves this issue: indeed, if ωi are i.i.d. random variables on (	,A,P)

with common law μ0, then P(ωi = ωj , i �= j) = 0, which then allows EN
V (ω1, . . . ,ωN) to be defined P-a.s.

(ii) However, if the reference measure μ0 is atomic but the energy for the N -particle system is still given by EN
V there is

also an alternative method. Namely, fix N and note that EN
V (x) = EN

V (y) for any x,y ∈ SN with zN
x = zN

y . Hence the

function EN
V : P(S) → R

EN
V (μ) :=

{
EN

((
zN•

)−1
(μ)

)
, μ ∈ zN•

(
SN

)
,

+∞, otherwise,

is well defined. Moreover, it is easy to verify that zN• (SN) is closed and for V N ∈ Cb(S
N) the map EN((zN• )−1(μ))

is continuous on zN• (SN), hence EN
V (μ) is Borel. By a monotone class argument similar as in Appendix C one can

extend this to all Borel V N , and we can then proceed as in the rest of this section. However, note that EN
V might no

longer be of integral form as in (3.1).

Now we give the classical results concerning LDP. We start with the non-interacting case, namely Sanov’s theorem:

Theorem 3.2 (Sanov’s theorem). The family {P N } of laws of the non-interacting particle system satisfies an LDP with
rate function I : X → R, where

I (μ) := R(μ‖μ0)

is the relative entropy of μ ∈ X with respect to μ0.

We recall that the relative entropy is defined as

R(ν‖μ) :=
⎧⎨
⎩

∫
S

log

(
dν

dμ

)
dν if ν � μ,

+∞ otherwise.

For the LDP for the interacting particle systems, we introduce the following notation:

JV (μ) :=
{
EV (μ) + I (μ) for μ ∈ D(I),

+∞ otherwise,

with D(I) := {μ | R(μ‖μ0) < ∞}, and, if infX JV > −∞,

(3.4) FV (μ) := JV (μ) − inf
ν∈X

JV (ν).

We now give an LDP in the case when V N = V is in Cb(S
k). In this case, EV is also continuous and bounded, and

so the LDP for QN
V is essentially a consequence of the classical Varadhan Lemma. The only (and technical) difference

with the classical Varadhan Lemma comes from the missing diagonal in (Sk)′, which in general causes EN
V to not be

continuous.

Lemma 3.3. Suppose V : Sk → R is continuous and bounded. Then (EN
V ,EV ) induces an LDP (in the sense of Defini-

tion 2.5). In particular, the family {QN
V } given by (3.2) satisfies an LDP with rate function FV .

Proof. By applying Lemma C.2 k-times, we get that, for any continuous and bounded V , the function EV is continuous
and bounded on P(S). Hence, by the classical Varadhan Lemma (cf. Proposition 1.2), the couple (EV ,EV ) induces an
LDP in the sense of Definition 2.1.
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Then, approximating (EN
V ,EV ) with (EV ,EV ), we have that (EN

V ,EV ) induces an LDP by Theorem 2.8, provided we
show that, for some γ > 1 and K ∈R,

(3.5)

lim sup
N→∞

1

N
logE

[
e−γNEN

V (zN
ω )

]
< +∞,

lim sup
N→∞

1

N
logE

[
eβN |EN

V −EV |(zN
ω )

] ≤ K for every β ≥ 0.

The first limit follows easily from the boundedness of V . For the second limit, we can bound away all the self-interactions
to obtain

∣∣EN
V

(
zN
ω

) − EV

(
zN
ω

)∣∣ = 1

Nk

∣∣∣∣ ∑
i1,...,ik all distinct

V (ωi1, . . . ,ωik ) −
∑

i1,...,ik

V (ωi1, . . . ,ωik )

∣∣∣∣
≤ 1

Nk

k(k − 1)

2
Nk−1‖V ‖∞ = k(k − 1)

2N
‖V ‖∞.

(3.6)

In the inequality above, we used that the number of k-tuples (i1, . . . , ik) with at least two equal indices is bounded by
Nk−1k(k − 1)/2. The second limit in (3.5) follows easily. �

Thus, we are in the same setting as in the previous section, i.e., we have created a large class of family of functions
(V N,V ) such that their induced interacting particle systems satisfy a certain LDP. Hence, next we will show how to
extend this class by approximation.

3.2. Main results

We give our main result for this section, which serves as a tool for LDPs for Gibbs measures with a possibly discontinuous
interaction potential. The result brings the general LDP result of Theorem 2.8 into the Gibbs measure context. In the
following, (f )− denotes the negative part of the function f .

Theorem 3.4. Let (V N
λ ,Vλ) be a family of Borel functions on Sk such that (EN

Vλ
,EVλ) induces an LDP. Let (V N,V ) be a

family of Borel functions on Sk and assume that, for some γ > 1,

(3.7)

lim sup
N→∞

log
∫

Sk

eγ k|(V N
λ )−| dμ⊗k

0 < +∞

log
∫

Sk

eγ k|(Vλ)−| dμ⊗k
0 < +∞

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

for every λ > 0,

and that, for some K ∈ R,

(3.8)

lim sup
λ→0

lim sup
N→∞

log
∫

Sk

eβ|V N−V N
λ | dμ⊗k

0 ≤ K

lim sup
λ→0

log
∫

Sk

eβ|V −Vλ| dμ⊗k
0 ≤ K

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

for every β ≥ 0.

Then (EN
V ,EV ) induces an LDP. In particular, the family of induced interacting particle systems QN

V satisfies an LDP
with normalized rate function FV given in (3.4).

Similarly to Theorem 2.8 for general LDPs, informally this results states that QN
V satisfy an LDP if there exists

interacting potentials V N
λ and Vλ which approximate V N and V in an exponentially good way and whose corresponding

interacting systems QN
Vλ

satisfy an LDP, for each λ. Again, this allows the following generalization:

1. It allows V to be discontinuous.
2. The only requirement on LDPs for approximants is that (EN

Vλ
,EVλ) induces an LDP, not that Vλ are continuous.

3. We can allow for the potential V N in the interacting particle system to depend on N ∈ N (cf. Remark 3.7 below).

In the case where the sequence of functions V N is constant and equal to V , an LDP follows whenever V satisfies the
appropriate exponential moment condition.
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Corollary 3.5. Suppose that V N = V for all N ∈N, and such that

(3.9)
∫

Sk

eβ|V | dμ⊗k
0 < ∞ for all β ≥ 0.

Then (EN
V ,EV ) induces an LDP.

Proof. The result follows from Lemma 3.3 and Theorem C.5. Indeed, by Theorem C.5, with the choice μ = μ⊗k
0 , X = Sk ,

there exists a sequence (Vλ) ⊂ Cb(S
k) such that

lim
λ→0

log
∫

Sk

eβ|V −Vλ| dμ⊗k
0 = 0 for any β ≥ 0.

Since the family Vλ induces an LDP by Lemma 3.3, both (3.7) and (3.8) are satisfied. �

Remark 3.6. Recall that in the definition of the energy EN
V for the N -particle configuration we have excluded self-

interaction, due to possible singularities in V . However, if V is bounded (but not necessarily continuous), Corollary 3.5
remains valid when the energy does include self-interactions, i.e.,

EN
V (x1, . . . , xN) := 1

Nk

∑
i1,...,ik

V (xi1, . . . , xik ).

In this case, (EN
V ,EV ) induces an LDP with

EN
V (μ) := EV (μ) =

∫
Sk

V dμ⊗k for all μ ∈P(Sk).

Indeed, this holds simply due to the estimate (3.6).

Remark 3.7. The setting of Theorem 3.4 includes also the case of interactions among different number of particles.
For example, let (N -independent) interaction potentials Uk : S� → R, k = 1,2,3, be given and assume that the energy
function EN

U is the sum of these three interactions, i.e.

EN
U (x1, . . . , xN) = 1

N3

∑
i1,i2,i3 distinct

U3(xi1, xi2, xi3) + 1

N2

∑
i1 �=i2

U2(xi1, xi2) + 1

N

∑
i1

U1(xi1).

Therefore, by taking

V N(x1, x2, x3) = U3(x1, x2, x3) + N

N − 2
U2(x1, x2) + N2

(N − 1)(N − 2)
U1(x1),

we see that EN
U = EN

V (for x1, . . . , xN all distinct) and we are in the previous setting.

Remark 3.8 (Toward interacting diffusions). As for Theorem 2.8, we outline briefly how Theorem 3.4 will be applied
in our context of singularly interacting diffusions, in the case of two-point interaction drift (1.2). Recall that we are
interested in an LDP on the space X = P(S), with S = C([0, T ];Rd)), for the law QN of the interacting particle system
X = (XN,1, . . . ,XN,N) satisfying (1.1), as N → ∞; the drift b is of the form (1.2), the interaction kernel ϕ being possibly
singular. As we have written in the Introduction and in Remark 2.10, here we take P N as the law of the empirical measures
zN
W of N independent d-dimensional Brownian motions W 1, . . . ,WN . In the case of two-point interaction, the energy

given formally by Girsanov’s theorem takes the form (3.1) of a Gibbs potential:

E(μ) =
∫

S3
V (x, y, z) dμ(x)dμ(y)dμ(z),

V (x, y, z) = −
∫ T

0
ϕ(t, xt − yt ) · dxt + 1

2

∫ T

0
ϕ(t, xt − yt ) · ϕ(t, xt − zt ) dt.
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The approximating potentials Vλ are defined as above for V but replacing ϕ with a smooth bounded approximation ϕλ;
for each λ > 0, the corresponding energy EVλ induces an LDP by classical results for interacting diffusions with smooth
drift. The first assumption in (3.8) reads in this context simply as

lim sup
λ→0

logE
[
eβ|V −Vλ|(W 1,W 2,W 3)

] ≤ K,

for some K independent of β . This condition involves deterministic and stochastic integrals of three independent Brow-
nian motions W 1, W 2, W 3 only, and, as we will see in Section 4 and Appendix D, can be checked using tools like Itô
calculus for exponential martingales (Lemma D.2) and Khasminskii’s Lemma D.5.

We come now to the proof of Theorem 3.4, which relies heavily on Theorem 2.8 and the following bounds. These
bounds convert the approximation properties for V into those for EV , needed to apply Theorem 2.8.

Lemma 3.9. For any k,N ∈ N with N > 1, and nonnegative Borel functions V,V N : Sk → R, the following inequalities
hold true:

1

N
logE

[
eNEN

V (zN
ω )

] ≤ 1

k
log

∫
Sk

ek N
N−1 V N

dμ⊗k
0 ,(3.10a)

sup
μ∈D

(
EV (μ) − R(μ‖μ0)

) ≤ 1

k
log

∫
Sk

ekV dμ⊗k
0 ,(3.10b)

where D = {ν ∈ P(S) | R(ν‖μ0) < +∞}.

Proof. For the proof of (3.10a), we use the Hoeffding decomposition [39] for EN
V , which reads

EN
V

(
zN
ω

) = N !
Nk(N − k)!

1

N !
∑

σ∈SN

1

[N/k]
[N/k]∑
j=1

V N(ωσ(jk−k+1), . . . ,ωσ(jk)),

where SN is the group of permutations of {1, . . . ,N} and [N/k] denotes the integer part of N/k. The point of this
decomposition is to group the elements V N(ωi1, . . . ,ωik ) into an average (over possible permutations σ ) of averages
(over j ) of O(N) independent elements (that is, for fixed σ , the elements within the nested average are independent).

By Jensen’s inequality, applied to the exponential function and the average over σ ,

E
[
eNEN

V (zN
ω )

] = E

[
exp

[
1

N !
∑

σ∈SN

N !
Nk(N − k)!

N

[N/k]
[N/k]∑
j=1

V N(ω(σ(jk−k+1)), . . . ,ωσ(jk))

]]

≤ 1

N !
∑

σ∈SN

E

[
exp

[
N !

Nk(N − k)!
N

[N/k]
[N/k]∑
j=1

V N(ω(σ(jk−k+1)), . . . ,ωσ(jk))

]]

= E

[
exp

[
N !

Nk(N − k)!
N

[N/k]
[N/k]∑
j=1

V N(ωjk−k+1, . . . ,ωjk)

]]
,

where we used the fact that that ωi are exchangeable (as i.i.d.) in the last line. Since the random variables
(ωjk−k+1, . . . ,ωjk) are independent in j , we have therefore

E
[
eNEN

V (zN
ω )

] ≤ E

[[N/k]∏
j=1

exp

[
N !

Nk(N − k)!
N

[N/k]V
N(ωjk−k+1, . . . ,ωjk)

]]

=
[N/k]∏
j=1

E

[
exp

[
N !

Nk(N − k)!
N

[N/k]V
N(ωjk−k+1, . . . ,ωjk)

]]

= E

[
exp

[
N !

Nk(N − k)!
N

[N/k]V
N(ω1, . . . ,ωk)

]][N/k]
,



508 J. Hoeksema et al.

where we used again that ωi are exchangeable in the second equality. Since N ! ≤ Nk(N − k)! and N/[N/k] ≤ Nk/(N −
1) for every k,N ∈ N, N > 1, we then obtain

E
[
eNEN

V (zN
ω )

] ≤ E

[
exp

[
N

N − 1
kV N(ω1, . . . ,ωk)

]][N/k]
.

Taking the logarithm and noting that [N/k] ≤ N/k for every k,N ∈N yields

1

N
logE

[
eNEN

V (zN
ω )

] ≤ 1

k
logE

[
exp

[
N

N − 1
kV N(ω1, . . . ,ωk)

]]
,

which concludes the proof of (3.10a).
To prove (3.10b), we first recall the additivity property of the relative entropy, i.e.

R
(
μ⊗k‖μ⊗k

0

) = kR(μ‖μ0).

Hence, for any μ ∈ D, we have that

k
(
EV (μ) − R(μ‖μ0)

) =
∫

Sk

kV dμ⊗k − R
(
μ⊗k‖μ⊗k

0

) ≤ sup
ν∈Dk

{∫
Sk

kV dν − R
(
ν‖μ⊗k

0

)}
,

where Dk = {ν ∈P(Sk) | R(ν‖μ⊗k
0 ) < +∞}. By Lemma B.1 we have that

sup
ν∈Dk

{∫
Sk

kV dν − R
(
ν‖μ⊗k

0

)}
= log

∫
Sk

ekV dμ⊗k
0 .

Therefore, if the right-hand side is finite, the desired estimate (3.10b) follows. �

Proof of Theorem 3.4. In order to apply Theorem 2.8, we have to show that there exists some γ > 1, such that for every
λ > 0,

lim sup
N→∞

1

N
logE

[
e
−γNEN

Vλ
(zN

ω )]
< +∞,(3.11a)

inf
μ∈D

(
R(μ‖μ0) + γ EVλ(μ)

)
> −∞.(3.11b)

and that, for some K ∈R, the following holds true for all β ≥ 0:

lim sup
λ→0

lim sup
N→∞

1

N
logE

[
e
βN |EN

V −EN
Vλ

|(zN
ω )] ≤ K,(3.12a)

lim sup
λ→0

sup
μ∈D

(
β|EV − EVλ |(μ) − R(μ‖μ0)

) ≤ K.(3.12b)

Due to linearity and (3.10a) of Lemma 3.9, we have for some γ ′ ∈ (1, γ ):

1

N
logE

[
e
−γ ′NEN

Vλ
(zN

ω )] ≤ 1

N
logE

[
e
γ ′NEN

γ ′|(Vλ)−|(z
N
ω )] ≤ 1

k
log

∫
Sk

ek N
N−1 γ ′|(V N

λ )−| dμ⊗k
0 .

Since γ ′N/(N − 1) ≤ γ for all N ≥ Nγ := γ /(γ − γ ′), we obtain from assumption (3.7) the finiteness of the right-hand
side uniformly in N for N ≥ Nγ . Hence, taking the lim sup yields (3.11a).

As for (3.11b), we apply (3.10b) of Lemma 3.9 to any μ ∈P(S) with R(μ‖μ0) < +∞, to obtain

R(μ‖μ0) + γ ′EVλ(μ) ≥ R(μ‖μ0) − Eγ ′|(Vλ)−|(μ) ≥ −1

k
log

∫
Sk

eγ ′k|(Vλ)−| dμ⊗k
0 > −∞.

Similarly, we apply Lemma 3.9 to obtain

1

N
logE

[
e
βN |EN

V −EN
Vλ

|(zN
ω )] ≤ 1

k
log

∫
Sk

ek N
N−1 β|V N−V N

λ | dμ⊗k
0 ,

sup
μ∈D

(
β|EV − EVλ | − I

)
(μ) ≤ 1

k
log

∫
Sk

ekβ|V −Vλ| dμ⊗k
0 ,

which by assumption (3.8) yields (3.12a) and (3.12b). The conclusion follows applying Theorem 2.8. �
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Background. As mentioned in Section 2, various extension principles to singular functionals or contractions have arisen.
See for example [20] on various generalizations of Sanov’s theorem, in which a stronger topology is used – defined by the
property that all functions EV for which k = 1 and V satisfies (3.9) are continuous with respect to this topology. This was
subsequently generalized in [21] to the case k ≥ 2. Note that an application of the classical Varadhan Lemma to the result
in [21] should yield a very similar result to our Corollary 3.5; this type of argument has been used in [22, Lemma 2.4] in
the proof of a moderate deviation principle for a bounded interaction kernel.

More recently, in [49], a similar setting as this section was studied, i.e., large deviations for mean field Gibbs measures
on Polish spaces, involving singular potentials. In this work they assume so-called strong exponential integrability of
the negative part V − of the interaction potential V , and require a entropic inequality involving the positive part V +
of the interaction potential. It is straightforward to verify that strong exponential integrability of |V | is in fact a stronger
assumption and is equivalent to (3.9), and in particular their results include the case of Corollary 3.5. In a sense this allows
them to treat stronger repulsive singularities than the ones considered here. It should be noted that while both their work
and Corollary 3.5 are not sufficient for the general setting of interacting diffusions as in Section 4, a similar assymetric
generalization involving variational or weak convergence techniques for Theorem 4.5 might be possible, which we leave
for future work.

Other LDP results for Gibbs measures with singular potentials have been proven, see e.g. [2,8,18,56], with locally
compact base space S, [32] with potentials satisfying a bound from below and a lower semi-continuity assumption. In
particular in [2] the case where (3.10) only holds for some β instead of all – which, in Rd , allows for potentials V with a
logarithmic singularity – is considered, on compact Polish spaces and assuming V lower semi-continuous.

It should be noted that inequalities related to (3.10a), which in our case is derived from the Hoeffding decomposition
has also arisen in different context and different names. For example, in [21] a similar inequality stems from the existence
of regular partitions of complete hypergraphs due to Baranyai, and in [49] modifications of decoupling inequalities of de
la Peña were used. Hoeffding decomposition has been used directly in some generalizations to [21], for example [19].

3.3. Extension to Gibbs-like potentials

The previous results use the Gibbs structure of the potential EV to reduce the LDP problem to the context of Section 2.
However, for this reduction to hold, only some Gibbs-like bounds are needed. This allows to prove LDPs for empirical
measures not coming from Gibbs laws, as soon as Gibbs-type bounds are possible. As we will see in the example of
Section 4.3.3, this is the case of interacting diffusions where the drift depends non-linearly on the empirical measure
and/or on its k-times tensor product.

As before, let S be a Polish space with its Borel σ -algebra B(S), μ0 ∈ P(S) be a given reference measure. The state
space for the LDP is X = P(S), equipped with the weak topology. As before, P N denotes the law of the empirical
measure zN

ω , where ωi , i = 1, . . . ,N are i.i.d. random variables defined on some probability space (	,A,P), with values
in S and common law μ0; E denotes the expectation with respect to P. Now let EN : P(S) →R, N ∈ N and E :P(S) →R

be Borel functions, let QN � P N be the probability measure on P(S) given by

QN = 1

ZN
e−NEN (μ)P N,

where ZN is the renormalization constant, assumed to be finite. We further recall the notations EN
V (μ) and EN

V (μ) given
in (3.1) and (3.3) for any Borel function V : Sk →R. As before, we denote D = {ν ∈P(S) | R(ν‖μ0) < ∞}.

Our main result is the following:

Theorem 3.10. Let (EN
λ ,Eλ) be a family of LDP inducing pairs for all λ > 0 such that (2.4) holds for some γ > 1

(independent of λ). Assume that, for every λ > 0 and every β ∈ R, for every μ in D, there holds

lim sup
N→∞

1

N
logE

[
eβN(EN−EN

λ )(zN
ω )

] ≤ C + C lim sup
N→∞

1

N
logE

[
e
cβNEN

GN
λ

(zN
ω )]

,(3.13a)

∣∣β(E − Eλ)(μ)
∣∣ − R(μ‖μ0) ≤ C + C log

∫
S

exp

(
cβ

∫
Sk−1

Gλ(x, y) dμ⊗(k−1)(y)

)
dμ0(x),(3.13b)

for some constant C > 0 independent of β , λ and μ, some cβ ≥ 0 independent of λ and μ, and some nonnegative Borel
functions GN

λ ,Gλ : Sk →R (independent of β and μ). Assume also that GN
λ and Gλ satisfy, for some K ∈R independent
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of β , for every β ≥ 0,

lim sup
λ→0

lim sup
N→∞

∫
Sk

eβGN
λ dμ⊗k

0 ≤ K,(3.14a)

lim sup
λ→0

∫
Sk

eβGλ dμ⊗k
0 ≤ K.(3.14b)

Then the pair (EN,E) induces an LDP with the normalized rate function FV in (3.4).

Remark 3.11. A simple condition for the inequalities (3.13a) and (3.13b) to hold is if∣∣EN − EN
λ

∣∣(μ) ≤ EN

GN
λ

(μ), |E − Eλ|(μ) ≤ EGλ(μ) for all μ ∈ P(X ).

Remark 3.12 (Toward interacting diffusions). As for Theorem 2.8, we outline briefly how Theorem 3.10 will be
applied in our context of singularly interacting diffusions, here in the case of a quite generic interaction drift, as in (1.4)
with ϕ possibly singular. Recall that we are interested in an LDP on the space X = P(S), with S = C([0, T ];Rd)), for
the law QN of the interacting particle system X = (XN,1, . . . ,XN,N) satisfying (1.1), as N → ∞. As we have written
in the Introduction and in Remark 2.10, here we take P N as the law of the empirical measures zN

W of N independent
d-dimensional Brownian motions W 1, . . . ,WN ; the energy given formally by Girsanov’s theorem is

E(μ) =
∫

S

V (x,μ)dμ(x),

V (x,μ) = −
∫ T

0
bt (xt ,μt ) · dxt + 1

2

∫ T

0

∣∣bt (xt ,μt )
∣∣2

dt.

The approximating energies Eλ and potentials Vλ are defined as above but replacing b with a smooth bounded approx-
imation bλ; for each λ > 0, the corresponding energy Eλ induces an LDP by classical results for interacting diffusions
with smooth drift. The Gibbs-like assumption (3.13a) reads in this context: for every β ∈ R,

lim sup
N→∞

1

N
logE

[
eβ

∑N
i=1[V (Wi,zN

W )−Vλ(Wi,zN
W )]]

≤ C + C lim sup
N→∞

1

N
logE

[
e
cβN−k+1 ∑

1≤j1,...,jk≤N GN
λ (Wj1 ,...,Wjk )]

,

with C independent of β and λ and cβ independent of λ. The assumptions (3.14a) and (3.14b) read in this context, taking
GN

λ = Gλ for simplicity: for every β ≥ 0,

lim sup
λ→0

logE
[
eβGλ(W 1,...,Wk)

] ≤ K,

with K independent of β .
As we will see in Section 4 and Appendix D, by using Itô calculus for exponential martingales (Lemma D.2), Theo-

rem 4.5 shows the Gibbs-like assumption (3.13a) for a convenient function Gλ; for such Gλ, the conditions (3.14a) and
(3.14b) can be checked by tools like Khasminskii’s Lemma D.5.

Proof of Theorem 3.10. The proof is similar to that of Theorem 3.4. The result follows from Theorem 2.8 provided we
verify condition (2.5). For condition (2.5a), by assumption (3.13a) and Lemma 3.9, we have

lim sup
λ→0

lim sup
N→∞

1

N
logE

[
eβN(EN−Eλ)(zN

ω )
] ≤ C + C lim sup

λ→0
lim sup
N→∞

1

N
logE

[
e
cβNEN

Gλ
(zN

ω )]

≤ C + C lim sup
λ→0

lim sup
N→∞

1

k
log

∫
Sk

ek N
N−1 cβGN

λ dμ⊗k
0 ,

for all β ∈ R. Hence, by assumption (3.14a), we get

lim sup
λ→0

lim sup
N→∞

1

N
logE

[
eβN(EN−EN

λ )(zN
ω )

] ≤ C + C
logK

k
.
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For condition (2.5b), by assumption (3.13b) and Lemma B.4, we have, for every μ in D, for every λ > 0 and every β ∈ R,∣∣β(E − Eλ)(μ)
∣∣ − (

1 + C(k − 1)
)
R(μ‖μ0)

≤ −C(k − 1)R(μ‖μ0) + C + C log
∫

S

exp

(
cβ

∫
Sk−1

Gλ(x, y) dμ⊗(k−1)(y)

)
dμ0(x)

≤ −C(k − 1)R(μ‖μ0) + C + C(k − 1)R(μ‖μ0) + C log
∫

Sk

ecβGλ dμ⊗k
0 .

Hence, taking the sup over μ in D and then the lim sup over λ, by assumption (3.14b) we get

lim sup
λ→0

sup
μ∈D

∣∣β(E − Eλ)(μ)
∣∣ − (

1 + C(k − 1)
)
R(μ‖μ0) ≤ C + C logK.

Condition (2.5b) follows by simply dividing by 1 + C(k − 1). The proof is complete. �

Remark 3.13. As the above proof shows (and as consequence of Lemmas 3.9 and B.4), the assumptions (3.14a) and
(3.14b) imply, respectively, the following two bounds:

lim sup
λ→0

lim sup
N→∞

1

N
logE

[
e
cβNEN

Gλ
(zN

ω )] ≤ logK

k
< ∞,

lim sup
λ→0

log
∫

S

exp

(
cβ

∫
Sk−1

Gλ(x, y) dμ⊗(k−1)(y)

)
dμ0(x) ≤ (k − 1)R(μ‖μ0) + logK < ∞.

4. Singularly interacting diffusions

4.1. Notations and preliminary results

In this section we study LDPs for a system of mean field interacting diffusions, defined by a singular drift. We will put
this problem in the framework of Gibbs-like structure of the previous section (cf. Section 3.3).

For N ∈ N, we consider the following system of interacting SDEs⎧⎪⎪⎨
⎪⎪⎩

dX
N,i
t = bN

t

(
X

N,i
t ,

1

N

N∑
j=1

δ
X

N,j
t

)
dt + dWi

t , i = 1, . . . ,N,

X
N,i
0 i.i.d. with law ρ0.

(4.1)

Here the drift bN : [0, T ] × Rd × P(Rd) → Rd is a Borel map, where P(Rd) is endowed with the (metrizable, com-
plete and separable) topology of weak convergence. The processes Wi , i ∈ N, are independent d-dimensional Brownian
motions on a standard filtered probability space (	,A, (Ft )t ,P), ρ0 ∈P(Rd) is the law of the i.i.d. initial data X

N,i
0 .

We now set S := C([0, T ];Rd), the space of continuous paths in Rd , and note that XN,i ∈ S for each i = 1, . . . ,N .
Moreover, we set Q̃N

bN ∈P(SN) to be the law of XN := (XN,1, . . . ,XN,N) defined by the system (4.1). We set W ∈P(S)

to be the Wiener measure with ρ0 as marginal at time 0 and P̃ N ∈ P(SN) the law of N ∈ N independent Brownian
motions, i.e. P̃ N := W⊗N . With a little abuse of notation, we will consider Wi to be d-dimensional independent Brownian
motions with initial law ρ0, unless differently specified; similarly, we will use W for a d-dimensional Brownian motion
with initial law ρ0, unless differently specified.

Consider the empirical process zN
X ∈P(S),

zN
X := 1

N

N∑
i=1

δXN,i ,

and let QN
bN ∈ P(P(S)) be the laws of the random variable zN

X induced by Q̃N
bN . Similarly, let P N be the law for the

empirical process zN
W of the non-interacting system induced by P̃ N . We will use zN

x , for x ∈ SN , to denote the empirical
measure associated with x, and zN for the canonical process (that is, the identity process) on P(S). We will often use the
notation 〈f,μ〉 to denote

∫
f dμ.



512 J. Hoeksema et al.

Recall that, as in Section 3, the sequence P N satisfies an LDP with rate function

I :P(S) → R; I (μ) := R(μ‖W),

where R(μ‖W) is the relative entropy of μ with respect to the Wiener measure W.
For the particle system, a Gibbs-like representation holds. Indeed, for a Borel map b : [0, T ]×Rd ×P(Rd) →Rd , we

introduce the potentials

V N
b (x,μ) := −V

N,2
b (x,μ) + 1

2
V 1

b (x,μ) with

⎧⎪⎪⎨
⎪⎪⎩

V 1
b (x,μ) :=

∫ T

0

∣∣bt (xt ,μt )
∣∣2

dt,

V
N,2
b (x,μ) :=

∫ T

0
bt (xt ,μt ) · dxt ,

(4.2)

where V
N,2
b : S ×P(S) → R is defined as stochastic integral under the law of (Wi, zN

W ) on (x,μ). We define the corre-
sponding log-density as

EN
b (μ) :=

⎧⎨
⎩

∫
S

V N
b (x,μ)dμ(x) if V 1

b (·,μ),V
N,2
b (·,μ) ∈ L1(μ),

0 otherwise,
μ ∈ P(S).

See Section D.2 for the precise definition and measurability properties of EN
b . Similarly we define Vb and Eb by replacing

V
N,2
b with

V 2
b (x,μ) :=

∫ T

0
bt (xt ,μt ) · dxt ,

now as stochastic integral at a deterministic μ. See again Section D.2 for the precise definition of Eb and its measurability
properties. The Gibbs-like representation of the particle system is given by the following lemma, which is essentially a
consequence of Girsanov’s theorem and the mean field form of the interaction (bN depending on zN

X ), the details of the
proof are postponed to Section D.3.

Lemma 4.1. Fix N ∈ N. Assume that

E

[
exp

(
N

2

∫
S

∫ T

0

∣∣bN
t

(
xt , z

N
W ,t

)∣∣2
dt dzN

W ,t (x)

)]
< ∞.

Then there exists a weak solution to the system (4.1), which is unique under the constraint∫ T

0

∣∣bN
t

(
xt , z

N
t

)∣∣2
dt ∈ L1(

S, zN
)

for QN
bN -a.e. zN .(4.3)

For this law, we have the following representations:

dQ̃N
bN

dP̃ N

(
x1, . . . , xN

) = e
−NEN

bN (zN
x )

,
dQN

bN

dP N
(μ) = e

−NEN

bN (μ)
.(4.4)

Now we provide a class of drifts (bN , b) which induce an LDP for the law QN
bN . Morally, this is the class of Lipschitz

drifts (with respect to the 1-Wasserstein distance). The class of FLip-inducing pairs in the definition below allows for
some margin to include the case of drifts without self-interactions, similarly to Lemma 3.3. In the following, P1(R

d)

denotes the subset of P(Rd) of all probability measures on Rd with finite first moment; W1 denotes the 1-Wasserstein
distance on P1(R

d).

Definition 4.2. The class FLip consists bounded Borel functions b : [0, T ] × Rd × P(Rd) → Rd such that the map
(x,μ) �→ b(t, x,μ) is globally Lipschitz continuous on P1(R

d) with respect to the 1-Wasserstein distance, uniformly in
t ∈ [0, T ], i.e., for some Mb ≥ 0, ∣∣b(t, x,μ) − b(t, y, ν)

∣∣ ≤ Mb

(|x − y| + W1(μ, ν)
)
,

for all t ∈ [0, T ], (x, y) ∈Rd and μ,ν ∈ P1(R
d).
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Moreover, the pair ({bN }, b) (in short (bN, b)) is called FLip-inducing (subjected to {P N }) if it satisfies the following
conditions:

1. b ∈FLip;
2. The sequence bN is uniformly bounded, i.e. supN∈N ‖bN‖∞ < ∞;
3. There exists a sequence cN with cN → 0 as N → ∞ such that

(4.5)
∫ T

0

〈∣∣bt − bN
t

∣∣2(·, zN
t

)
, zN

t

〉
dt ≤ cN , for P N -almost every zN .

Lemma 4.3. Assume that the initial law ρ0 satisfies∫
Rd

eβ|x| dρ0(x) < ∞, ∀β > 0.(4.6)

Assume that (bN , b) is FLip-inducing. Then (EN
bN ,Eb) induces an LDP.

Remark 4.4. The exponential condition (4.6) is required only to apply [10, Theorem 34]: that result needs (4.6) because
it works with the 1-Wasserstein topology instead of the weak topology (the LDP in weak topology follows then by
contraction principle). For this reason we suspect that, in the space P(S) with the weak topology, the condition (4.6) is
not necessary.

Proof of Lemma 4.3. The LDP induced by (EN
b ,Eb) follows from [10, Theorem 34] (see also [27]). There an LDP is

proved for QN
b with rate function R(μ‖Wμ), where Wμ is defined as in Theorem 4.5 (as the law of the solution to (4.12)).

By Lemma D.4, we have

R
(
μ‖Wμ

) = R(μ‖W) − Eb(μ).

In particular, the infimum of the R(·‖W) − Eb is the infimum of the left-hand side above, that is 0. The Laplace principle
is then trivially satisfied as e−NEb (μ) is the density of the Girsanov’s transform.

Hence, note that by Theorem 2.8 it is enough to show (2.4) and (2.5a) for EN
λ := EN

bN and Eλ = EN = E := Eb . To
derive (2.4a), we have for any γ ∈R,

(4.7)
E

[
e
γN〈V N,2

bN (·,zN
W ),zN

W 〉] = E
[
e
γ

∑N
i=1

∫ T
0 bN

t (Wi
t ,zN

W ,t )·dWi
t
]

≤ E
[
e

2γ 2 ∑N
i=1

∫ T
0 |bN

t (Wi
t ,zN

W ,t )|2 dt
] 1

2 ≤ eγ 2NT ‖bN‖2∞ ,

where Lemma D.2 was applied in the first inequality. Since V 1
bN is trivially bounded by T ‖bN‖2∞, we then obtain

E
[
e−γNEN (zN

W )
] ≤ e(γ 2+γ /2)NT ‖bN‖2∞ .

Since supN∈N ‖bN‖∞ := M < ∞, (2.4a) is satisfied.
Moreover, using Lemma B.1 we have for any γ > 1 and any μ ∈ P(S) with R(μ‖W) < ∞, that

γ Eb(μ) ≤ R(μ‖W) + logE
[
eγ |Vb|(W,μ)

]
.

In a similar fashion as before, we can estimate the second term on the right-hand side uniformly in μ to obtain

R(μ‖W) + γ Eb(μ) ≥ −a,

for some constant a0 > 0 independent of μ ∈P(S), which gives (2.4b).
For (2.5a), we will consider the part of EN

bN −EN
b determined by V 1 and V N,2 separately. First, note that V

N,2
bN −V

N,2
b =

V
N,2
bN−b

and similar to the argument of (4.7) we have for all β ∈ R

E
[
e
βN〈V N,2

bN −b
(·,zN

W ),zN
W 〉] ≤ E

[
e

2β2 ∑N
i=1

∫ T
0 |bN

t −bt |2(Wi
t ,zN

W ,t ) dt
]1/2 ≤ ecNNβ2

.
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Secondly, since

β
∣∣∣∣bN

∣∣2 − |b|2∣∣ ≤ β
(∣∣bN

∣∣ + |b|)∣∣bN − b
∣∣ ≤ 1

2

(
M + ‖b‖∞

)2 + β2

2

∣∣bN − b
∣∣2

,

we derive

E
[
e
βN(〈V 1

bN (·,zN
W ),zN

W 〉−〈V 1
b (·,zN

W ),zN
W 〉)] = E

[
e
β

∑N
i=1

∫ T
0 (|bN

t |2−|bt |2)(Wi
t ,zN

W ,t ) dt
]

≤ E
[
e

T N
2 (M+‖b‖∞)+ β2

2

∑N
i=1

∫ T
0 (|bN

t −bt |2)(Wi
t ,z

N
W ,t ) dt

]
≤ e

T N
2 (M+‖b‖∞)+ cN Nβ2

2 .

Finally, via Cauchy–Schwarz, we conclude that for all β ∈R

lim sup
N→∞

1

N
logE

[
e
β(EN

bN (zN
W )−EN

b (zN
W ))] ≤ T

2

(
M + ‖b‖∞

)
. �

4.2. The main result

Now we give the main result of this section, which states the LDP for the system (4.1). The assumptions may seem
involved at first glance, but their meaning is not difficult: we have an LDP for the system (4.1) as soon as we can
approximate in a suitable way the drift b by regular drifts bλ, along the Brownian empirical measure zN

W and the couple
of Brownian path W and measure μ with finite relative entropy.

Theorem 4.5. Assume the condition (4.6) on the initial law ρ0. Suppose there exists a sequence of FLip-inducing drifts
(bN

λ , bλ)λ>0 and a sequence (gλ)λ>0 of Borel functions gλ : [0, T ] × (Rd)k → [0,+∞), k ∈ N, such that the following
conditions hold:

(i) for every λ > 0, for P N -almost every zN ∈ P(S),

(4.8)
∫ T

0

〈∣∣bN
t − bN

λ,t

∣∣2(·, zN
t

)
, zN

t

〉
dt ≤

∫ T

0

∫
((Rd )k)′

gλ(t, x1, . . . , xk) d
(
zN
t

)⊗k
dt;

(ii) for every λ > 0 and every μ ∈P(S) with R(μ‖W) < ∞ and W-almost every W ,

(4.9)
∫ T

0
|bt − bλ,t |2(Wt ,μt ) dt ≤

∫ T

0

∫
(Rd )k

gλ(t,Wt , y) dμ⊗k−1
t (y) dt.

Suppose also that (gλ)λ>0 satisfies for some K > 0,

(4.10) lim sup
λ→0

E
[
eβ

∫ T
0 gλ(t,W 1

t ,...,Wk
t ) dt

] ≤ K, ∀β ∈ R,

where W 1, . . . ,Wk are independent Brownian motions with common initial law ρ0.
Then the family {QN

bN } of laws of zN
X (for X = (XN,1, . . . ,XN,N) satisfying (4.1)) has an LDP with rate function

(4.11) F(μ) =
{

R
(
μ‖Wμ

)
if R(μ‖W) < ∞,

+∞ otherwise,

where Wμ is the law of the process X
μ
t satisfying the SDE

(4.12) dX
μ
t = bt

(
X

μ
t ,μ

)
dt + dWt .

Remark 4.6. Note that the zeros of the rate function F are exactly the solution to the McKean–Vlasov SDE{
dXt = bt

(
Xt,Law(Xt )

)
dt + dWt,

X0 with law ρ0,

with R(Law(Xt )‖W) < ∞. In particular, since F has at least one zero, there exists at least one solution to the McKean–
Vlasov SDE with finite relative entropy (with respect to W).
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We will see in the proof of Theorem 4.5 that, under the assumptions of the above theorem, QN
bN is well-defined by

Lemma 4.1.
Moreover, since (4.10) is quite general, an application of Khasminskii’s lemma provides us with the following suffi-

cient condition:

Lemma 4.7. Let (gλ)λ>0 be a sequence of Borel functions gλ : [0, T ] × (Rd)k → [0,+∞), k ∈ N, that satisfies

(4.13) lim sup
λ→0

sup
x1,...,xk∈Rd

Ex1,...,xk

[∫ T

0
gλ

(
t,W

1,x1
t , . . . ,W

k,xk
t

)
dt

]
= 0,

where the expectation is over k independent Brownian motions W 1,x1 , . . . ,Wk,xk starting at points x1, . . . , xk ∈ Rd re-
spectively. Then (4.10) is satisfied.

Proof. By Khasminskii’s lemma (cf. Lemma D.5), (4.13) implies that, for every β ≥ 0 and every 0 < α < 1,

sup
(x1,...,xk)∈Rkd

E
[
eβ

∫ T
0 gλ(t,W

1,x1
t ,...,W

k,xk
t ) dt

] ≤ 1

1 − α
, for all λ > 0 sufficiently small,

and so, averaging (x1, . . . , xk) over ρ⊗k
0 and using Jensen inequality yields

E
[
eβ

∫ T
0 gλ(t,W 1

t ,...,Wk
t ) dt

] ≤ 1

1 − α
for all λ > 0 sufficiently small.

Therefore we have, for every β ≥ 0,

lim sup
λ→0

E
[
eβ

∫ T
0 gλ(t,W 1

t ,...,Wk
t ) dt

] = 1,

which gives (4.10) with K = 1. �

Proof of Theorem 4.5. We would like to apply Theorem 3.10 to EN
bN , Eb , EN

bN
λ

, Ebλ , with

GN
λ

(
x1, . . . , xk

) = Gλ

(
x1, . . . , xk

) =
∫ T

0
gλ

(
t, x1

t , . . . , xk
t

)
dt, xi ∈ S, i = 1, . . . ,N.

We claim that the conditions (2.4), (3.13a), (3.13b) and (3.14a), (3.14b) hold. Then Theorem 3.10 and Lemma 4.3 give
an LDP for QN

bN with rate function R(μ‖W) + Eb(μ).
We now prove the claims on the above conditions and the form (4.11) for the rate function. In particular, we prove that

(4.8) and (4.9) imply (3.13a) and (3.13b) respectively. Finally, note that (4.10) directly implies (3.14a) and (3.14b), and
(2.4) follows as in the proof of Lemma 4.3.

Preliminary uniform bounds. We call, for μ ∈P(S),

Kλ,β := lim sup
N→∞

1

N
logE

[
e
βN〈∫ T

0 |bN
t −bN

λ,t (·,zN
W ,t )|2 dt,zN 〉]

,

Hλ,β(μ) := logE
[
eβ

∫ T
0 |b−bλ(W,μ)|2 dt

]
.

We will show that there exists λ0 > 0 and β0 � 1 arbitrarily large (more precisely, for every β0 > 0 large, there exists
λ0 > 0), such that for all β ≤ β0:

Kλ0,β ≤ Kλ0,β0 < ∞,

sup
μ,R(μ‖W)<∞

Hλ0,β(μ) − (k − 1)R(μ‖W) ≤ sup
μ,R(μ‖W)<∞

Hλ0,β0(μ) − (k − 1)R(μ‖W) < ∞.
(4.14)
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We start with the proof for Kλ0,β0 . Applying assumption (4.8), we get

Kλ0,β0 := lim sup
N→∞

1

N
logE

[
e
β0N〈∫ T

0 |bN
t −bN

λ0,t (·,zN
W ,t )|2 dt,zN

W 〉]

≤ lim sup
N→∞

1

N
logE

[
e
β0N

∫
(Sk)′ Gλ0 (x1,...,xk)d(zN

W )⊗k(x1,...,xk)]
.

Since (3.14a) holds, we can apply Remark 3.13: for any β0, the above right-hand side is finite for λ0 > 0 sufficiently
small. For Hλ0,β0(μ), we have

Hλ0,β0(μ) − (k − 1)R(μ‖W) := logE
[
eβ0

∫ T
0 |b−bλ0 (W,μ)|2 dt

] − (k − 1)R(μ‖W)

≤ logE
[
eβ0

∫
Sk−1 Gλ0 (W,y)dμ⊗(k−1)(y)

] − (k − 1)R(μ‖W).

Since (3.14b) holds, we can apply Remark 3.13: for any β0, the above right-hand side is finite and bounded uniformly
over μ for λ0 > 0 sufficiently small.

As a consequence of (4.14), we have (for N large at least)

E
[
e

1
2

∫
S V 1

bN (x,zN
W ) dzN

W (x)]
< ∞,(4.15a)

E
[
e

1
2

∫
S V 1

b (W,μ)
]
< ∞ ∀μ with R(μ‖W) < ∞.(4.15b)

In particular, V 1
bN (·, zN ) and V

2,N

bN (·, zN ) are in L1(zN) for PN-a.e. zN and also, for every μ with R(μ‖W) < ∞, V 1
b (·,μ)

and V 2
b (·,μ) are in L1(μ), see Section D.2 for details. Moreover, by Lemma 4.1, at least for N large, the system (4.1)

admits a weak solution, with unique (under the additional constraint) law has density given by (4.4). Finally, the inequality
(4.15b) holds replacing 1/2 with any β > 0 in the exponential, in particular Eb is Borel by Lemma D.3.

Verification of (3.13a) and (3.13b). We fix λ0 and β0 such that (4.14). In view of (3.13a), we show some easy uniform
bounds. Using the inequality |bN |2 ≤ 2|bN − bN

λ0
|2 + 2|bN

λ0
|2 and applying Hölder inequality, we get, for every � ≥ 0,

lim sup
N→∞

1

N
logE

[
e
�N〈∫ T

0 〈|bN
t (·,zN

W ,t )|2 dt,zN
W 〉] ≤ lim sup

N→∞
1

2N
logE

[
e

4�N〈∫ T
0 |bN

t −bN
λ0,t (·,zN

W ,t )|2 dt,zN
W 〉]

+ lim sup
N→∞

1

2N
logE

[
e

4�N〈∫ T
0 |bN

λ0,t (·,zN
W ,t )|2 dt,zN

W 〉]

=: 1

2
Kλ0,4� + 1

2
K

′
λ0,4� < ∞,

(4.16)

where K
′
λ0,4� is finite because supN∈N ‖bN

λ0
‖∞ < ∞. Using now the inequality |bN

λ |2 ≤ 2|bN − bN
λ |2 + 2|bN |2 and pro-

ceeding similarly, we also get, for every � ≥ 0,

lim sup
N→∞

1

N
logE

[
e
�N〈∫ T

0 |bN
λ,t (·,zN

W ,t )|2 dt,zN
W 〉] ≤ 1

2

(
Kλ,4� + Kλ0,4� + K

′
λ0,4�

)
.(4.17)

To show (3.13a), we write, for β ∈ R,

E
[
e
−βN(EN

bN −EN

bN
λ

)(zN
W )] ≤ E

[
e
−βN〈(V 1

bN −V 1
bN
λ

)(·,zN
W ),zN

W 〉]1/2
E

[
e

2βN〈(V 2
bN −V 2

bN
λ

)(·,zN
W ),zN

W 〉]1/2(4.18)

and we control the differences V 1
bN − V 1

bN
λ

and V 2
bN − V 2

bN
λ

separately. Using the inequality

β
(∣∣bN

∣∣2 − ∣∣bN
λ

∣∣2) ≤ ∣∣bN
∣∣2 + ∣∣bN

λ

∣∣2 + β2

2

∣∣bN − bN
λ

∣∣2
,
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and applying Hölder’s inequality and the bounds (4.16) and (4.17) (with � = 4), we get

lim sup
N→∞

1

N
logE

[
e
βN〈(V 1

bN −V 1
bN
λ

)(·,zN
W ),zN

W 〉]

≤ 1

4
Kλ,16 + 1

2

(
Kλ0,16 + K

′
λ0,16

) + lim sup
N→∞

1

2N
logE

[
e
β2N〈∫ T

0 |(bN
t −bN

λ,t )(·,zN
W ,t )|2 dt,zN

W 〉]

= 1

4
Kλ,16 + 1

2

(
Kλ0,16 + K

′
λ0,16

) + 1

2
Kλ,β2 .

(4.19)

For V 2
bN − V 2

bN
λ

, we use Lemma D.2 to obtain

E
[
e

2βN〈V 2
bN (·,zN

W )−V 2
bN
λ

(·,zN
W ),zN

W 〉] ≤ E
[
e

4β2 ∑N
i=1

∫ T
0 |bN

t −bN
λ,t |2(Wi

t ,z
N
W ,t ) dt

] 1
2 ,

and therefore

lim sup
N→∞

1

N
logEN

[
e

4βN〈V 2
bN (·,zN

W )−V 2
bN
λ

(·,zN
W ),zN

W 〉] ≤ 1

2
Kλ,4β.(4.20)

Putting together the inequalities (4.18), (4.19) and (4.20), we get, for some constant c > 0 (independent of β) and some
cβ > 0,

lim sup
N→∞

1

N
logE

[
e
−βN(EN

bN −EN

bN
λ

)(zN
W )] ≤ c̄ + cKλ,cβ ,(4.21)

with c̄ = (Kλ0,16 + K
′
λ0,16)/2 ≥ 0. The assumption (4.8) gives, for some new cβ > 0,

lim sup
N→∞

1

N
logE

[
e
−βN(EN

bN −EN

bN
λ

)(zN
W )]

≤ c̄ + c lim sup
N→∞

1

N
logE

[
exp

(
cβN

∫ T

0

∫
((Rd )k)′

gλ(t, x1, . . . xk) d
(
zN
W ,t

)⊗k
dt

)]

≤ c̄ + c lim sup
N→∞

1

N
logE

[
exp

(
cβN

∫
(Sk)′

∫ T

0
gλ

(
t, x1

t , . . . , xk
t

)
dtd

(
zN
W

)⊗k
)]

and (3.13a) follows.
As for (3.13b), we use Lemma B.1 to obtain, for every μ with R(μ‖W) < ∞,

β
∣∣Eb(μ) − Ebλ(μ)

∣∣ ≤ R(μ‖W) + logE
[
eβ|Vb(W,μ)−Vbλ

(W,μ)|].
Using the same arguments as before, we get, for some c′ > 0 (independent of β) and some cβ > 0,

β
∣∣Eb(μ) − Ebλ(μ)

∣∣ ≤ k + 1

2
R(μ‖μ0) + c̄ + c′Hλ,cβ ,(4.22)

where c̄ > 0 is such that c̄ ≥ (Hλ0,16(μ) − (k − 1)R(μ‖μ0) + H
′
λ0,16)/2 for every μ with R(μ‖W) < ∞, and H

′
λ0,β

=
logE[eβ

∫ T
0 |bλ0 (W,μ)|2 dt ]. The assumption (4.9) gives, for some new cβ ,

β
∣∣EbN (μ) − EbN

λ
(μ)

∣∣ ≤ k + 1

2
R(μ‖μ0) + c̄ + c′ logE

[
ecβ

∫
Sk

∫ T
0 gλ(t,Wt ,x

2
t ...,xk

t ) dt dμ⊗(k−1)]
and (3.13b) follows.

Proof of (4.11). By (4.15b), b satisfies the assumption of Lemma D.4, which then implies the representation formula
(4.11) for the rate function. The proof is complete. �

The above proof shows that we can relax some of the assumptions, as we show below.
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Proposition 4.8. The results of Theorem 4.5 (namely the LDP for QN
bN with rate function F ) remain valid if any of the

following statements hold:

(a) Instead of FLip-inducing drifts (bN
λ , bλ)λ>0, we assume that for every λ > 0 the family QN

bN
λ

has an LDP with rate

function Fbλ (defined similarly to F via (4.11), (4.12)), and for every β ∈R,

(4.23)

lim sup
N→∞

1

N
logE

[
exp

(
Nβ

∫ T

0

〈∣∣bN
λ,t

∣∣2(·, zN
W ,t

)
, zN

W ,t

〉)
dt

]
< ∞,

sup
μ,R(μ‖W)<∞

logE

[
exp

(
β

∫ T

0
|bλ,t |2(Wt ,μt ) dt

)]
− R(μ‖W) < ∞.

(b) Instead of the existence of gλ and (4.8), (4.9), we assume there exists a constant K ∈R such that for every β ∈R,

(4.24)

lim sup
λ→0

lim sup
N→∞

1

N
logE

[
exp

(
Nβ

∫ T

0

〈∣∣bN
t − bN

λ,t

∣∣2(·, zN
W ,t

)
, zN

W ,t

〉)
dt

]
≤ K,

lim sup
λ→0

sup
μ,R(μ‖W)<∞

logE

[
exp

(
β

∫ T

0
|bt − bλ,t |2(Wt ,μt ) dt

)]
− R(μ‖W) ≤ K.

Proof. The inequalities (4.23) imply via Lemmas 4.1, D.2 and D.4 both the representations of QN

bN
λ

and Fbλ in terms

of EN

bN
λ

, Ebλ , and the estimates (2.4). Moreover, (4.24) combined with (4.21) and (4.22) imply conditions (2.5a) and

(2.5b). Hence we can use directly Theorem 2.8 to deduce the LDP (the representation formula (4.11) follows again from
Lemma D.4). �

4.3. Applications to concrete examples

In this subsection, we consider common form of drifts bN that appear in applications.

4.3.1. Example: 2-point interaction
We start with the example of 2-point, translation-invariant interaction; while this is a particular case of the k-point inter-
action, we discuss this case separately, to highlight the essential ingredients of the result. In this example, we consider a
simple class of drifts, that commonly appear in various fields of application, namely

(4.25) bN
t

(
xi, z

N
x

) = 1

N

∑
j �=i

ϕt (xi − xj ), zN
x = 1

N

N∑
j=1

δxj

for some Borel map ϕ : [0, T ] ×Rd → Rd .

Remark 4.9. Strictly speaking, (4.25) is not a good definition, because the right-hand side depends on i and not just on
xi and zN

x . However we can give a rigorous definition with a harmless change of (4.25). Precisely, we can define

bN
t (x,μ) =

∫
Rd\{x}

ϕt (x − y)dμt (y).(4.26)

Indeed, note that (recall W = (W 1, . . . ,WN) is a N -tuple of d-dimensional independent Brownian motions with law
P̃ N =W⊗N )

1

N

∑
j �=i

ϕt

(
Wi

t − W
j
t

) =
∫
Rd\{x}

ϕt (x − y)dzN
W ,t (y), for a.e. t ∈ [0, T ] and P̃ N -a.e. W ,(4.27)

because the set {t ∈ [0, T ] : Wi
t = W

j
t , j �= i} has Lebesgue measure zero for P̃ N -a.e. W = (W 1, . . . ,WN). Therefore,

if Girsanov’s theorem can be applied to the particle system (4.1), as it is the case in the next result, then (4.27) holds
also replacing W and P̃ N respectively with XN = (XN,1, . . . ,XN,N), the solution to the particle system (4.1) with drift
(4.26), and its law Q̃N . Hence such solution XN solves also the original particle system with drift (4.25).
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We introduce also the drift of the associated McKean–Vlasov SDE, namely

bt (x,μ) =
∫
Rd

ϕt (x − y)dμt (y).

Proposition 4.10. Assume the condition (4.6) on the initial law ρ0. Suppose that

(4.28) E
[
eβ

∫ T
0 |ϕt |2(W 1

t −W 2
t ) dt

]
< ∞, ∀β ∈R,

where W 1, W 2 are independent Brownian motions with common initial law ρ0.
Then the family {QN

b } of laws of the empirical processes associated to the interacting system (4.1) with drifts of the
form (4.25) satisfies an LDP with rate function F given in (4.11).

In particular, (4.28) holds whenever ϕ is in L
q
t (L

p
x−y), for p, q satisfying

2 ≤ p,q ≤ ∞,
d

p
+ 2

q
< 1.(4.29)

Proposition 4.10 is a special case of Proposition 4.13 with k = 2, p1 = p, p2 = +∞, and hence we will postpone the
proof.

Remark 4.11. The condition ϕ ∈ L
q
t (L

p
x−y) with p, q satisfying (4.29) is well-known in the literature on the so-called

regularization by noise phenomenon (where an ill-posed ODE or PDE gains well-posedness by addition of a suitable
noise). Indeed, a d-dimensional SDE, with additive noise and drift in L

q
t (L

p
x ), with p, q satisfying (4.29), has the strong

existence and uniqueness property, see for example [26,45] among many others; on the contrary, if p, q do not satisfy
(4.29) not even with equality, there exist counterexamples to well-posedness for SDEs, even in the weak sense, see e.g.
[1, Section 7].

For this reason the exponents of (4.29) are likely optimal for irregular drifts ϕ in our example: we expect that, for
L

q
t (L

p
x−y) drifts without condition (4.29), even the 2-particle system is not well-posed. However, there are likely drifts

that satisfies (4.28) but are not in a L
q
t (L

p
x ) class with (4.29).

Remark 4.12. A relevant example of function ϕ verifying condition (4.29) is

ϕ(t, z) = |z|αg

(
z

|z|
)

1|z|≤R + h(z)1|z|>R,

with g : Sd−1 → Sd−1 and h : Rd →Rd both Borel bounded, R > 0, and exponent α satisfying

α > −1 for d ≥ 2, and α > −1/2 for d = 1.

It is unclear whether the restriction α > −1/2 in d = 1, which is due to the assumption p ≥ 2, is really optimal or is a
drawback of the method, nonetheless the assumption p,q ≥ 2 appears in several works dealing with singular drifts, like
[26,45].

When d ≥ 2, the above condition includes the case

ϕ(x) = −∇�(x), �(t, x) = |x|α, α > 0,

in some neighborhood around x = 0, and with ϕ bounded outside of this neighborhood. However, �(x) = log |x| does
not fall in this class. Moreover, as shown in [37], the exponential moment estimate of (4.28) actually blows up when β is
large enough.

The latter is also related to the fact that for d ≥ 2 and a logarithmic potential �(x) = log |x|, the law of SDE (4.1)
might no longer be absolutely continuous with respect to the law of non-interacting Brownian motions – it is possible in
the case of a sufficiently strong attractive force that the particles hit each other (see [31]). Interestingly enough, as is done
in [31], it can still be shown that the particle system converges to the corresponding McKean–Vlasov equation. However,
whether in this case a large deviation principle still exists is not known.
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4.3.2. Example: k-point interaction
We can also treat the case of a k-interaction drift, namely

(4.30) bN
t

(
xi, z

N
x

) = 1

Nk−1

∑
j1,...,jk−1 �=i all distinct

ϕt (xi, xj1, . . . , xjk−1)

for some Borel function ϕ : [0, T ] × Rkd → Rd . As in the previous example, the rigorous definition of bN can be given
as in Remark 4.9. Similarly we take the drift of the associated McKean–Vlasov SDE

(4.31) bt (x,μ) =
∫
R(k−1)d

ϕt (x, y1, . . . , yk−1) dμ
⊗(k−1)
t (y1, . . . , yk−1).

Proposition 4.13. Assume the condition (4.6) on the initial law ρ0. Suppose that

(4.32) E
[
eβ

∫ T
0 |ϕt |2(W 1

t ,...,Wk
t ) dt

]
< ∞, ∀β ∈R

where W 1, . . . ,Wk are independent Brownian motions with common initial law ρ0.
Then the family {QN

b } of laws of the empirical processes associated to the interacting system (4.1) with drifts of the
form (4.30) satisfies an LDP with rate function F given in (4.11).

In particular, (4.32) holds whenever

(4.33) ϕ ∈ L
q
t

(
L

p1
x1

(· · · (
L

pk
xk

) · · · ))
,

with p1, . . . , pk, q satisfying

(4.34) p1, . . . , pk, q ∈ [2,∞], d

p1
+ · · · + d

pk

+ 2

q
< 1.

Remark 4.14. Similarly to Lemma D.7, (4.33) can be replaced by

ϕ ∈ L
q
t

(
L

p1
xσ(1)

(· · · (
L

pk
xσ(k)

) · · · ))
for some permutation σ of {1, . . . , k}.

Remark 4.15. The space of ϕ satisfying condition (4.32) is a vector space (as easily checked). Hence, condition (4.32)
also holds in the more general case of ϕ = ∑m

j=1 ϕj for some m, where, for any j = 1, . . . ,m,

ϕj ∈ L
q(j)

t

(
L

p
(j)
1

x1

(· · · (
L

p
(j)
k

xk

) · · · ))
with p

(j)

1 , . . . , p
(j)
k , q(j) satisfying (4.34). In particular, we can allow ϕ to be a sum of a bounded function and a function

satisfying (4.33) and (4.34) as in Theorem 1.1.

Proof of Proposition 4.13. We will use three different approximations:

1. First, we consider b with ϕ Lipschitz bounded and show that (bN , b) are FLip-inducing, by bounding away the self-
interactions.

2. Then we consider the case b with ϕ Borel bounded. We apply Theorem 4.5 to get the desired LDP.
3. Finally, we extend this to ϕ satisfying (4.32) using truncation of ϕ and the approximation given in step (2).

The fact that (4.32) holds under conditions (4.33) and (4.34) follows from Lemma D.8.
(1) Assume that ϕ : [0, T ]×Rkd →Rd is Borel bounded and that the map x �→ ϕ(t, x) is globally Lipschitz continuous

for every t ∈ [0, T ], with Lipschitz constant Lip(ϕ) independent of t . We will show that (bN , b) is FLip-inducing.
It is well known that b ∈FLip: indeed, for any x1, x2 ∈ Rd and μ1,μ2 ∈P(Rd), we have∣∣bN

t (x1,μ1) − bN
t (x2,μ2)

∣∣
≤

∫
R(k−1)d

∣∣ϕt (x1, y1, . . . , yk−1) − ϕt

(
x2, y

′
1, . . . , y

′
k−1

)∣∣dγ
(
y1, y

′
1

) · . . . · dγ
(
yk−1, y

′
k−1

)
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≤ Lip(ϕ)

(
|x1 − x2| +

∫
R(k−1)d

(
k−1∑
i=1

∣∣yi − y′
i

∣∣)dγ
(
y1, y

′
1

) · . . . · dγ
(
yk−1, y

′
k−1

))

= Lip(ϕ)

(
|x1 − x2| + (k − 1)

∫
R(k−1)d

∣∣y − y′∣∣dγ
(
y, y′))

,

for any coupling γ between μ and ν; optimizing over all couplings then yields the required Lipschitz estimate. Moreover,
clearly |bN | ≤ |b| and hence supN ‖bN‖∞ < ∞. Finally, to show (4.5), note that, similarly to Lemma 3.3, we have for
every N and P N -almost every zN

∫ T

0

〈∣∣bt − bN
t

∣∣2(·, zN
t

)
, zN

t

〉
dt

≤ 2

N

∫ T

0

N∑
i=1

(
1

Nk−1

∣∣∣∣
( ∑

j1,...,jk−1 �=i all distinct

−
∑

j1,...,jk−1 �=i

)
ϕt

(
Wi

t ,W
j1
t , . . . ,W

jk−1
t

)∣∣∣∣
)2

dt

+ 2

N

∫ T

0

N∑
i=1

(
1

Nk−1

∣∣∣∣
( ∑

j1,...,jk−1 �=i

−
∑

j1,...,jk−1

)
ϕt

(
Wi

t ,W
j1
t , . . . ,W

jk−1
t

)∣∣∣∣
)2

dt

≤ 2T ‖ϕ‖2∞
1

N2(k−1)

(∣∣∣∣ (k − 1)(k − 2)

2
Nk−2

∣∣∣∣
2

+ ∣∣(k − 1)Nk−2
∣∣2

)
≤ C

N2
,

for some generic constant C. Hence (bN , b) is FLip-inducing.
(2) Next, suppose that ϕ : [0, T ] ×Rkd → Rd is Borel bounded. We can find a sequence of Lipschitz approximations

(ϕλ)λ>0, with ϕλ as in (1) for each λ > 0, such that ϕλ → ϕ Lebesgue-a.e. as λ → 0 and ‖ϕλ‖∞ ≤ ‖ϕ‖∞ (for example,
we can take ϕλ as convolutions of ϕ with approximations of identity). We take bN

λ , bλ the corresponding drifts for the
particle system and the McKean–Vlasov SDE (as respectively in (4.30), (4.31) with ϕλ in place of ϕ). In order to apply
Theorem 4.5, with (bN

λ , bλ) as sequence of FLip-inducing drifts, we verify now the assumptions (4.8), (4.9) and (4.10).
The estimates (4.8) and (4.9) are easily obtained with

gλ(t, x1, . . . , xk) = ∣∣ϕ(t, x1, . . . , xk) − ϕλ(t, x1, . . . , xk)
∣∣2

.

Concerning (4.10), we start noting that

gλ

(
t,W 1, . . . ,Wk

t

) → 0 and gλ

(
t,W 1, . . . ,Wk

t

) ≤ 4‖ϕ‖2∞, for P⊗ dt-a.e. (ω, t).

Hence, for each β > 0, we apply dominated convergence theorem twice, i.e. to the time integral and then to the expecta-
tion, thereby obtaining

E
[
eβ

∫ T
0 gλ(t,W 1

t ,...,Wk
t ) dt

] → 1 as λ → 0,(4.35)

that is (4.10). Hence we can apply Theorem 4.5 and obtain the desired LDP.
(3) Finally, assume that ϕ satisfies (4.32). We take

ϕ̃λ = (ϕ ∧ 1/λ) ∨ (−1/λ).

We take also an increasing sequence (βλ)λ with βλ → ∞. For each λ > 0 fixed, applying (4.35) to ϕ̃λ in place of ϕ, we
get the existence of a Lipschitz function ϕλ as in (1), such that

E
[
eβλ

∫ T
0 |ϕ̃λ−ϕλ|2(t,W 1

t ,...,Wk
t ) dt

]
< 1 + λ.(4.36)

Now we take bN
λ , bλ the drifts for the particle system and the McKean–Vlasov SDE, as respectively in (4.30), (4.31) with

ϕλ in place of ϕ. As before, in order to apply Theorem 4.5, with (bN
λ , bλ) as sequence of FLip-inducing drifts, we verify

the assumptions (4.8), (4.9) and (4.10). As before, the estimates (4.8) and (4.9) are easily obtained with

gλ(t, x1, . . . , xk) = ∣∣ϕ(t, x1, . . . , xk) − ϕλ(t, x1, . . . , xk)
∣∣2

.
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Concerning (4.10), we split gλ ≤ 2|ϕ − ϕ̃λ|2 +2|ϕ̃λ −ϕλ|2 and study the two terms separately. For the first term, for every
β > 0, we have by dominated convergence theorem

lim sup
λ→0

E
[
eβ

∫ T
0 |ϕ−ϕ̃λ|2(t,W 1

t ,...,Wk
t ) dt

] = 1.

For the second term, the bound (4.36) implies, for every β > 0,

lim sup
λ→0

E
[
eβ

∫ T
0 |ϕ̃λ−ϕλ|2(t,W 1

t ,...,Wk
t ) dt

] ≤ lim sup
λ→0

E
[
eβλ

∫ T
0 |ϕ̃λ−ϕλ|2(t,W 1

t ,...,Wk
t ) dt

] = 1.

The two bounds above give (4.10). Hence we can apply Theorem 4.5 and obtain the desired LDP. The proof is complete. �

4.3.3. Example: Measure dependent drift
As an example of a more general interaction, we consider drifts of the form (cf. [53])

(4.37) bN
t

(
xi, z

N
x

) = 1

N

∑
j �=i

�

(
xi, xj ,

1

N

∑
��=i

ϕt (xi, x�),
1

N

∑
��=j

ϕt (xj , x�),
(
zN
x

)
t

)
,

where � : R4d × P(Rd) → Rd and ϕ : [0, T ] × R2d → Rd are Borel maps. As in the previous examples, the rigorous
definition of bN can be given as in Remark 4.9. Similarly we take the drift of the associated McKean–Vlasov SDE

bt (x,μ) =
∫
Rd

�

(
x, y,

∫
Rd

ϕt (x, z) dμt (z),

∫
Rd

ϕt (y, z) dμt (z),μt

)
dμt(y).

Throughout we will use both the 1-Wasserstein metric, W1 and the bounded Lipschitz metric, dBL on P(Rd), with the
latter given by

dBL(μ, ν) := sup
φ:‖φ‖∞≤1,Lip(φ)≤1

{∫
Rd

φ(x) dμ(x) −
∫
Rd

φ(x) dν(x)

}
.

Note that dBL ≤ W1.

Proposition 4.16. Assume that the initial law ρ0 satisfies condition (4.6). Furthermore, let � ∈ Lip(R4d ×(P(Rd), dBL)),
and suppose that there exists a constant L such that

(4.38) �(x,y, a, b,μ) ≤ L
(
1 + |a| + |b|), x, y, a, b ∈Rd,μ ∈ P

(
Rd

)
and

(4.39) E
[
eβ

∫ T
0 |ϕt |2(W 1

t ,W 2
t ) dt

]
< ∞, for all β ∈R,

where W 1, W 2 are independent Brownian motions with common initial law ρ0.
Then the family QN

b of laws of the empirical processes associated to the interacting system (4.1) induced by drifts of
the form (4.37) satisfies an LDP with rate function F given in (4.11).

In particular, (4.39) holds whenever ϕ is translation invariant with ϕ ∈ L
q
t (L

p
x−y) for p,q ∈ [2,∞] satisfying

(4.40)
d

p
+ 2

q
< 1.

Remark 4.17. A couple of comments:

1. Similar to Remark 4.15, Proposition 4.16 holds for any ϕ = ∑m
j=1 ϕj with each ϕj satisfying (4.40) for suitable

exponents p(j), q(j).
2. As in Remark 3.6, when ϕ is bounded, we can include self-interactions in the summations in (4.25), (4.30) and (4.37)

without changing the results above.

Remark 4.18. The example of Theorem 1.1 is a particular case of (4.37), which can be seen by setting

�(x,x2, y, x3,μ) := ψ(x,μ,y).
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The LDP for QN
b follows from Proposition 4.16. Moreover, the convergence to the McKean–Vlasov SDE will be shown

in the next section, and follows directly from Proposition 4.24.

Proof of Proposition 4.16. The proof is an adaptation of the proof for Proposition 4.13. As in step (1) of the proof of
Lemma 4.13, we first consider suitable bounded Lipschitz functions ϕ with corresponding drifts b. Also in this case, it
is not difficult to see that in this case (bN , b) is FLip-inducing. First, to show that b ∈ FLip, note that b is bounded by
(4.38) and the boundedness of ϕ yields

∣∣bt (x1,μ1) − bt (x2,μ2)
∣∣ ≤ Lip(�)

∫∫
Rd×Rd

(|x1 − x2| + |y1 − y2| + (I) + (II)
)
dγ (y1, y2) + (III),

where (III) = Lip(�)dBL(μ, ν) and

(I) ≤ Lip(ϕ)

∫∫
R×Rd

(|x1 − x2| + |w1 − w2|
)
dγ (w1,w2),

(II) ≤ Lip(ϕ)

∫∫
R×Rd

(|y1 − y2| + |w1 − w2|
)
dγ (w1,w2).

Noting dBL ≤ W1, inserting estimates (I) and (II) into the previous inequality and optimizing over all couplings γ between
μ1 and μ2 yields ∣∣bt (x1,μ1) − bt (x2,μ2)

∣∣ ≤ Lip(�)
(
2 + 3 Lip(ϕ)

)(|x1 − x2| + W1(μ1,μ2)
)
,

i.e., the Lipschitz estimates holds. Next, note that we have for P N -almost every zN

∫ T

0

〈∣∣bt − bN
t

∣∣2(·, zN
t

)
, zN

t

〉
dt ≤

(
Lip(�)‖ϕ‖∞

2

N
+ 1

N
L

(
1 + 2‖ϕ‖∞

))2

,

which vanishes as N → ∞.
Finally, since � is Lipschitz, we find that for any ϕ, b and approximating sequence ϕλ, bλ the estimates (4.8) and (4.9)

may be obtained with gλ(t, x, y) = Lip(�)2|ϕt − ϕλ
t |2, and the rest of the proof follows similar to Proposition 4.13. �

Background. There are several papers dealing with large deviations for McKean–Vlasov SDEs. One of the first papers is
[11], which proves an LDP for the paths of empirical measure, assuming continuity on the drift b among other hypotheses.
The papers [12] and [7] prove an LDP (for the empirical measures on the path space, as here), again assuming also
continuity of the drift. The work [46] proves propagation of chaos and a large deviation upper bound, assuming b bounded
and continuous in the measure argument, but with respect to a stronger topology (the τ topology). Outside the context
of bounded (or linear growth) drift, we are aware only of the result in [29], which shows an LDP for a system of one-
dimensional particles with a repulsive two-body interaction of order 1/x, that is the framework of Section 4.3.1 but with
ϕ(x) = 1/x, which is outside the class we can deal with here.

We also recall the recent papers [52] and [16] on large deviations for interacting diffusions/McKean–Vlasov SDEs
when also the noise intensity tends to 0, and [53] for the large deviations of the Brownian one-dimensional hard-rod
system.

4.4. Uniqueness for the McKean–Vlasov SDE

In this subsection we consider the McKean–Vlasov SDE associated with the particle system (4.1), namely{
dXt = bt

(
Xt,Law(Xt )

)
dt + dWt,

X0 with law ρ0,
(4.41)

for a given Borel drift b : [0, T ] ×Rd ×P(Rd) → Rd and a given initial law ρ0.
We assume conditions on b which include the examples in the previous subsection. We show, under these conditions,

uniqueness in law for the McKean–Vlasov SDE (4.41). As a consequence, in all examples in the previous section, the
empirical measures associated with the particle system (4.1) converge, as N → ∞, to the law of the solution of the
McKean–Vlasov SDE (4.41).
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We keep the notation of the previous section, with S = C([0, T ];Rd), W the d-dimensional Wiener measure with
initial law ρ0 and W the Brownian motion with initial law ρ0 (similarly Wi are independent Brownian motion starting
from ρ0). We fix m > 2 and, for η > 0, we set

Mη :=
{
μ ∈P(S)

∣∣∣ ∥∥∥∥ dμ

dW

∥∥∥∥
Lm(S,W)

≤ η

}
.

We introduce some notation and give some remarks on the restriction from paths on [0, T ] to path on a subinterval [0, T2].
We call π[0,T2] : S = C([0, T ];Rd) → S[0,T2] := C([0, T2];Rd) the restriction map; for γ ∈ S, we call γ[0,T2] = π[0,T2](γ )

its restriction to [0, T2]. For ρ ∈P(S), we call ρ[0,T2] the restriction of ρ to the interval [0, T2], that is ρ[0,T2] = (π[0,T2])#ρ,
which is a probability measure on S[0,T2]; similarly we use dρ[0,T2]/dW for the density of ρ[0,T2] with respect to W[0,T2].
Note that dρ[0,T2]/dW is a version of the conditional expectation of dρ/dW given π[0,T2]; in particular, if dρ/dW ∈
Lγ (S,W) for some γ ≥ 1, then dρ[0,T2]/dW is in Lγ (S[0,T2],W[0,T2]) and we have (by Jensen’s inequality for conditional
expectation)

‖dρ[0,T2]/dW‖Lγ ≤ ‖dρ/dW‖Lγ .

We keep a similar notation for ρ⊗k
[0,T2]; note that dρ⊗k

[0,T2]/dW
⊗k (the density of ρ⊗k

[0,T2] with respect to W⊗k
[0,T2]) coincides

with (dρ[0,T2]/dW)⊗k (the density tensorised k times). Finally, we call Vb,[0,T2] for the map Vb (as defined in Section 4.1)
with final time T2 instead of T .

Theorem 4.19. Fix the initial law ρ0 ∈P(Rd). Fix m > 2. Assume that, for every η > 0, for every β > 0,

sup
μ∈P(S),R(μ‖W)≤η

E

[
exp

(
β

∫ T

0

∣∣bt (Wt ,μt )
∣∣2

dt

)]
< ∞.(4.42)

Assume also that there exist a non-negative Borel function g : [0, T ]×(Rd)k → R and, for every η > 0, a constant Cη ≥ 0,
such that, for every 0 ≤ T1 < T2 ≤ T ,

∫ T2

T1

∣∣bt (xt ,μt ) − bt (xt , νt )
∣∣2

dt

≤ Cη

∫
Sk−1

[0,T2]

(∫ T2

T1

gt (xt , yt ) dt

)∣∣u⊗(k−1)
[0,T2] (y) − v

⊗(k−1)
[0,T2] (y)

∣∣2
dW

⊗(k−1)
[0,T2] (y)

for W-a.e. x and every μ,ν ∈ Mη,

(4.43)

where u[0,T2] = dμ[0,T2]/dW and v[0,T2] = dν[0,T2]/dW, and that, for some m̃ > m with m̃ ≥ (m/2)′ = m/(m − 2),

E

[(∫ T

0
gt

(
W 1

t , . . . ,Wk
t

)
dt

)m̃]
< ∞.(4.44)

Then uniqueness in law holds for the McKean–Vlasov equation (4.41) among laws with finite relative entropy with respect
to W, that is: if X and Y are two solutions with laws μ̄ and ν̄ respectively, and if R(μ̄‖W) < ∞ and R(ν̄‖W) < ∞, then
μ̄ = ν̄.

Proof. For any μ ∈ P(S) with R(μ‖W) < ∞, assumption (4.42) gives via Girsanov’s theorem D.1 the existence of a
weak solution Xμ to the SDE

dX
μ
t = bt

(
X

μ
t ,μt

)
dt + dWt,(4.45)

with law F(μ) := Wμ = Law(Xμ) given by

dF(μ)

dW
(W) = exp

(
Vb(W,μ)

)
,
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with Vb as defined in Section 4.1. Note that F(μ) is the unique law solving (4.45) and having finite entropy with respect
to W. Indeed, if ν is the law of another solution Yμ to (4.45) with R(ν‖W) < ∞, then, by Lemma B.1,

∫
S

∫ T

0

∣∣bt (xt ,μt )
∣∣2

dt dν(x) ≤ R(ν‖W) + logE
[
e

∫ T
0 |bt (Wt ,μt )|2 dt

]
< ∞.

Therefore the uniqueness condition (D.1.3) is met under ν and so ν = F(μ).
Moreover, the density of F(μ) with respect to W is in Lγ (S,W) for every finite γ > 1: Indeed, following standard

computations (similarly to the proof of Theorem 4.5) and using assumption (4.42), we have for some cγ ,

E

[∣∣∣∣dF(μ)

dW
(W)

∣∣∣∣
γ ]

≤ E

[
exp

(
cγ

∫ T

0

∣∣bt (Wt ,μt )
∣∣2

dt

)]
< ∞.(4.46)

Finally, note that a process X, with R(Law(X)‖W) < ∞, is a solution to the McKean–Vlasov SDE if and only if its law
is a fixed point for F . In particular, if μ̄ is the law of a solution to the McKean–Vlasov SDE, with R(μ̄‖W) < ∞, then
μ̄ ∈ Lγ (S,W) for every finite γ and satisfies (4.46) (with μ̄ in place of μ and F(μ)).

Let μ̄ and ν̄ be the laws of two solutions to the McKean–Vlasov SDE and T be the subset of [0, T ] consisting of
all times T1 such that μ̄ and ν̄ coincide when restricted to [0, T1] (that is, μ̄[0,T1] = ν̄[0,T1]). Clearly T is an interval
containing 0. We will show that T is both open and closed in [0, T ], thus implying that T must coincide with [0, T ], and
hence μ̄ = ν̄.

The fact that T is closed follows easily from the fact that μ̄ and ν̄ are measures on continuous paths: indeed, if (Tn)n
is an increasing sequence in [0, T ] converging to T ′ and μ̄ and ν̄ coincide up to Tn for every n, then μ̄ and ν̄ coincide up
to T ′ as well.

We will now show that T is open, that is, if μ̄ and ν̄ coincide up to T1, then there exists T2 > T1 such that μ̄ and ν̄

coincide up to T2. Fix η > 0 such that μ̄ and ν̄ belong to Mη (such η exists due to (4.46)). Fix also T2 > T1 to be specified
later. Unless differently specified, all constants in the proof are independent of T2.

Using the elementary inequality |ea − eb| ≤ 1
2 (ea + eb)|a − b|, we get

∣∣∣∣dμ̄[0,T2]
dW

− dν̄[0,T2]
dW

∣∣∣∣ =
∣∣∣∣dF(μ̄)[0,T2]

dW
− dF(ν̄)[0,T2]

dW

∣∣∣∣
≤ 1

2

(
dF(μ̄)[0,T2]

dW
+ dF(ν̄)[0,T2]

dW

)∣∣Vb,[0,T2](·, μ̄) − Vb,[0,T2](·, ν̄)
∣∣.

So by Hölder’s inequality with 1/γ + 1/m̃ = 1/m (with shorthand Lγ = Lγ (S[0,T2],W[0,T2]), γ > 1),∥∥∥∥dF(μ̄)[0,T2]
dW

− dF(ν̄)[0,T2]
dW

∥∥∥∥
Lm

≤ 1

2

(∥∥∥∥dF(μ̄)

dW

∥∥∥∥
Lγ

+
∥∥∥∥dF(ν̄)

dW

∥∥∥∥
Lγ

)∥∥Vb(·, μ̄) − Vb(·, ν̄)
∥∥

Lm̃ .

By (4.46), (4.42) and the fact that R(ρ‖W) ≤ ‖dρ/dW‖m
Lm(S,W)

for any ρ ∈P(S), we have, for some Cη > 0,

∥∥∥∥dF(μ̄)

dW

∥∥∥∥
Lγ

+
∥∥∥∥dF(ν̄)

dW

∥∥∥∥
Lγ

≤
∥∥∥∥dF(μ̄)

dW

∥∥∥∥
Lγ (S,W)

+
∥∥∥∥dF(ν̄)

dW

∥∥∥∥
Lγ (S,W)

≤ 2 sup
ρ∈Mη

E

[
exp

(
cγ

∫ T

0

∣∣bt (Wt , ρt )
∣∣2

dt

)]

≤ 2 sup
ρ∈P(S),R(ρ‖W)≤ηm

E

[
exp

(
cγ

∫ T

0

∣∣bt (Wt , ρt )
∣∣2

dt

)]
≤ Cη.

By definition of Vb,[0,T2] (in Section 4.1 with final time T2), we obtain

∥∥Vb,[0,T2](·, μ̄) − Vb,[0,T2](·, ν̄)
∥∥

Lm̃ ≤
∥∥∥∥

∫ T2

0

(
bt (Wt , μ̄t ) − bt (Wt , ν̄t )

) · dWt

∥∥∥∥
Lm̃

+ 1

2

∥∥∥∥
∫ T2

0

∣∣∣∣bt (Wt , μ̄t )
∣∣2 − ∣∣bt (Wt , ν̄t )

∣∣2∣∣dt

∥∥∥∥
Lm̃

= (I) + (II).
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For the first term, we obtain by the Burkholder–Davis–Gundy inequality

(I) ≤ c̃1

∥∥∥∥
∫ T2

0

∣∣bt (Wt , μ̄t ) − bt (Wt , ν̄t )
∣∣2

dt

∥∥∥∥
1
2

Lm̃/2
≤ c1

∥∥∥∥
∫ T2

0

∣∣bt (Wt , μ̄t ) − bt (Wt , ν̄t )
∣∣2

dt

∥∥∥∥
1
2

Lm̃

for some constants c̃1, c1 > 0. As for the second term, we estimate as follows

(II) ≤ c̃2

∥∥∥∥
(∫ T2

0

(∣∣bt (Wt , μ̄t )
∣∣2 + ∣∣bt (Wt , ν̄t )

∣∣2)
dt

) 1
2 ·

(∫ T2

0

∣∣bt (Wt , μ̄t ) − bt (Wt , ν̄t )
∣∣2

dt

) 1
2
∥∥∥∥

Lm̃

≤ c2

(∥∥∥∥
∫ T2

0

∣∣bt (Wt , μ̄t )
∣∣2

dt

∥∥∥∥
1
2

Lm̃

+
∥∥∥∥

∫ T2

0

∣∣bt (Wt , ν̄t )
∣∣2

dt

∥∥∥∥
1
2

Lm̃

)∥∥∥∥
∫ T2

0

∣∣bt (Wt , μ̄t ) − bt (Wt , ν̄t )
∣∣2

dt

∥∥∥∥
1
2

Lm̃

for some constants c̃2, c2 > 0. Using the inequality am̃ ≤ em̃a , we obtain the estimate

∥∥∥∥
∫ T2

0

∣∣bt (Wt , μ̄t )
∣∣2

dt

∥∥∥∥
1
2

Lm̃

≤ E

[
exp

(
m̃

∫ T2

0

∣∣bt (Wt , μ̄t )
∣∣2

dt

)] 1
2m̃

≤ sup
ρ∈Mη

E

[
exp

(
m̃

∫ T

0

∣∣bt (Wt , ρt )
∣∣2

dt

)] 1
2m̃ ≤ Cη,

where we have used again (4.42) and the fact that R(ρ‖W) ≤ ‖dρ/dW‖m
Lm(S,W)

. The same argument holds for the term

with
∫ T2

0 |bt (Wt , ν̄t )|2 dt .
Putting the terms (I) and (II) together, and using that μ̄[0,T1] = ν̄[0,T1], we then obtain

∥∥Vb,[0,T2](·, μ̄) − Vb,[0,T2](·, ν̄)
∥∥

Lm̃ ≤ c3

∥∥∥∥
∫ T2

0

∣∣bt (Wt , μ̄t ) − bt (Wt , ν̄t )
∣∣2

dt

∥∥∥∥
1
2

Lm̃

= c3

∥∥∥∥
∫ T2

T1

∣∣bt (Wt , μ̄t ) − bt (Wt , ν̄t )
∣∣2

dt

∥∥∥∥
1
2

Lm̃

for some constant c3 > 0. Using assumption (4.43) (with the notation W = (W 1, . . . ,Wk) and W ,1 = (W 2, . . . ,Wk),
where Wi are independent d-dimensional Brownian motions with initial law ρ0), we further estimate the right-hand side
to obtain

∥∥∥∥
∫ T2

T1

∣∣bt (Wt , μ̄t ) − bt (Wt , ν̄t )
∣∣2

dt

∥∥∥∥
1/2

Lm̃

≤ c4E
W 1

[(
EW,1

[∫ T2

T1

gt (W t ) dt

∣∣∣∣dμ̄[0,T2]
dW

⊗(k−1)(
W,1[0,T2]

) − dν̄[0,T2]
dW

⊗(k−1)(
W,1[0,T2]

)∣∣∣∣
2])m̃]1/(2m̃)

≤ c5E
W 1

[(
EW,1

[∫ T2

T1

gt (W t ) dt

·
k∑

j=2

∣∣∣∣dμ̄[0,T2]
dW

(
Wj

) − dν̄[0,T2]
dW

(
W

j

[0,T2]
)∣∣∣∣

2 ∏
2≤�≤k,��=j

(
dμ̄[0,T2]

dW
∨ dν̄[0,T2]

dW

(
W�

[0,T2]
))2

])m̃]1/(2m̃)

≤ c6

k∑
j=2

EW 1
[(

EW,1
[(∫ T2

T1

gt (W t ) dt

)(m/2)′])m̃/(m/2)′

·
(
EW,1

[∣∣∣∣dμ̄[0,T2]
dW

(
W

j

[0,T2]
) − dν̄[0,T2]

dW

(
W

j

[0,T2]
)∣∣∣∣

m ∏
2≤�≤k,��=j

(
dμ̄[0,T2]

dW
∨ dν̄[0,T2]

dW

(
W�

[0,T2]
))m])2m̃/m]1/(2m̃)
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≤ c7

(
E

[∫ T2

T1

gt (W t ) dt

]m̃)1/(2m̃)∥∥∥∥dμ̄[0,T2]
dW

∨ dν̄[0,T2]
dW

∥∥∥∥
k−2

Lm

∥∥∥∥dμ̄[0,T2]
dW

− dν̄[0,T2]
dW

∥∥∥∥
Lm

≤ c8

(
E

[∫ T2

T1

gt (W t ) dt

]m̃)1/(2m̃)

ηk−2
∥∥∥∥dμ̄[0,T2]

dW
− dν̄[0,T2]

dW

∥∥∥∥
Lm

for appropriate constants ci > 0, i = 1, . . . ,8. We conclude that, for some C̃η > 0 (independent of T1 and T2),∥∥∥∥dμ̄[0,T2]
dW

− dν̄[0,T2]
dW

∥∥∥∥
Lm

=
∥∥∥∥dF(μ̄)[0,T2]

dW
− dF(ν̄)[0,T2]

dW

∥∥∥∥
Lm

≤ C̃η

(
E

(∫ T2

T1

gt (W t ) dt

)m̃)1/(2m̃)∥∥∥∥dμ̄[0,T2]
dW

− dν̄[0,T2]
dW

∥∥∥∥
Lm

.

By assumption (4.44), we can find T2 > T1 close enough to T1 such that

C̃η

(
E

[∫ T2

T1

gt (W t ) dt

]m̃)1/(2m̃)

< 1.

Hence, for such T2, we get that dμ̄[0,T2]/dW = dν̄[0,T2]/dW, that is μ̄ and ν̄ coincide up to T2. The proof is complete. �

Remark 4.20. As the proof shows, assumption (4.43) may be replaced by the weaker one∫ T2

T1

∣∣bt (xt ,μt ) − bt (xt , νt )
∣∣2

dt

≤ Cη

∫
Sk−1

(∫ T2

T1

g(t, xt , yt ) dt

) k∑
j=2

∣∣u[0,T2]
(
yj

) − v[0,T2]
(
yj

)∣∣2 ∏
2≤�≤k

��=j

(u[0,T2] ∨ v[0,T2])
(
y�

)2
dW⊗(k−1)(y)

for W-a.e. x and every μ,ν ∈ Mη,

(4.47)

where u[0,T2] = dμ[0,T2]/dW and v[0,T2] = dν[0,T2]/dW.

Remark 4.21. The proof of Theorem 4.19 shows, morally, a contraction bound for F in Mη, provided that T2 is suffi-
ciently close to T1. From this bound it should be possible to get local existence for the McKean–Vlasov SDE. Unfortu-
nately, the iteration in time scheme does not work easily, because the constant η bounding the Lm norm of the solution
and the time step T2 − T1 can change from one time step to the next. Nonetheless, in all the examples where our LPD
result Theorem 4.5 applies, existence for the McKean–Vlasov SDE holds due to existence of a minimizer of the rate
function F .

Corollary 4.22. Under the assumptions of Theorems 4.5 and 4.19 (possibly modified as in Remark 4.20), as N → ∞,
the family of empirical measures zN

X associated with the particle system (4.1) converges almost surely to the (unique) law
μ̄ of the McKean–Vlasov SDE (4.41) (with finite relative entropy with respect to W).

Proof. The zeros of the rate function F in Theorem 4.5 are exactly the laws of the solutions to the McKean–Vlasov SDE
(4.41) with finite relative entropy with respect to W. In particular, since F is a good rate function, there exists at least
one law solution to the McKean–Vlasov SDE. By Theorem 4.19, such a law is unique (among the probability measures
with finite entropy with respect to W), and it is then the unique zero of the rate function F of the LDP for (zN

X)N in
Theorem 4.5. Hence Lemma 2.4 applies. �

Remark 4.23. As noted by Sznitman in [58,59], convergence in law of the empirical measures zN to the constant variable
μ̄ implies that the sequence Q̃N

bN ∈ P(SN) is μ̄-chaotic, in the sense that for every k ∈N,

Law
(
XN,1, . . . ,XN,k

) → μ̄⊗k,

weakly as N → ∞ on S = C([0, T ];Rd). In particular, we have a form of propagation of chaos, namely that for all k ∈ N,

Law
(
X

N,1
t , . . . ,X

N,k
t

) → μ̄⊗k
t , ∀t ∈ [0, T ].
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Now we come back to the examples in Sections 4.3.1, 4.3.2, 4.3.3, recalling the drift for the corresponding McKean–
Vlasov SDEs, namely:

• for the example in Section 4.3.1,

bt (x,μ) =
∫
Rd

ϕt (x, y) dμt (y);

• for the example in Section 4.3.2,

bt (x,μ) =
∫
R(k−1)d

ϕt (x, y2, . . . , yk) dμt (y2, . . . yk);

• for the example in Section 4.3.3,

bt (x,μ) =
∫
Rd

�

(
x, y,

∫
Rd

ϕt (x, z) dμt (z),

∫
Rd

ϕt (y, z) dμt (z),μ

)
dμt (y).

Proposition 4.24. For the examples in Sections 4.3.1, 4.3.2, 4.3.3, under the assumptions of Propositions 4.10, 4.13 and
4.16 respectively, the corresponding McKean–Vlasov SDEs admit a unique solution X with R(Law(X)‖W) < ∞, and
the family of empirical measures zN

X converges almost surely to the law of X.

Proof. We have seen in the previous section that the examples above satisfy the assumptions of Theorem 4.5, so it
is enough to verify the assumptions of Theorem 4.19, possibly modified as in Remark 4.20. Assumption (4.42) is a
consequence of (4.14) in the proof of Theorem 4.5. Assumptions (4.43) and (4.44) are satisfied, with any given m and m̃

as in Theorem 4.19:

• for the example in Section 4.3.1, taking g(t, x, y) = |ϕ(t, x, y)|2;
• for the example in Section 4.3.2, taking g(t, x1, . . . , xk) = |ϕ(t, x1, . . . , xk)|2.

We will not show the proof of this fact, which is similar to, and easier than, the next proof in the example in Section 4.3.3.
For the example in Section 4.3.3, we will show that assumptions (4.47) and (4.44) are satisfied, taking

g(t, x, y, z) = (
Lip(�)2 + L2)(

1 + ∣∣ϕt (x, z)
∣∣2 + ∣∣ϕt (y, z)

∣∣2)
,

where L is the linear growth constant for � as in (4.38). We start showing (4.47). We denote, for 0 ≤ t ≤ T2,

�t

(
x, y,μ1[0,T2],μ

2[0,T2],μ
3
[0,T2]

) = �

(
xt , yt ,

∫
S[0,T2]

ϕt (xt , zt ) dμ1[0,T2](z),
∫

S[0,T2]
ϕt (yt , zt ) dμ2[0,T2](z),μ

3
t

)
,

and also u[0,T2] = dμ[0,T2]/dW and v[0,T2] = dν[0,T2]/dW. For simplicity of notation, in the following proof of (4.47), we
often omit the subscript [0, T2] from μ, ν, u, v, W, S (up to the end of the proof of (4.47), every time we write μ,ν, . . .

we mean μ[0,T2], ν[0,T2]). We have the following estimates, with a generic constant C > 0 (independent of T1 and T2): for
any T1, T2 with 0 ≤ T1 < T2 ≤ T ,

∫ T2

T1

∣∣bt (xt ,μt ) − bt (xt , νt )
∣∣2

dt =
∫ T2

T1

∣∣∣∣
∫

S

�t (x, y,μ,μ,μ)dμ(y) −
∫

S

�t (x, y, ν, ν, ν) dν(y)

∣∣∣∣
2

dt

≤ C

∫ T2

T1

∣∣∣∣
∫

S

�t (x, y,μ,μ,μ)d(μ − ν)(y)

∣∣∣∣
2

dt

+ C

∫ T2

T1

∣∣∣∣
∫

S

[
�t(x, y,μ,μ,μ) − �t(x, y, ν,μ,μ)

]
dν(y)

∣∣∣∣
2

dt

+ C

∫ T2

T1

∣∣∣∣
∫

S

[
�t(x, y, ν,μ,μ) − �t(x, y, ν, ν,μ)

]
dν(y)

∣∣∣∣
2

dt

+ C

∫ T2

T1

∣∣∣∣
∫

S

[
�t(x, y, ν, ν,μ) − �t(x, y, ν, ν, ν)

]
dν(y)

∣∣∣∣
2

dt

=: (I) + (II) + (III) + (IV).
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For the term (I), we have

(I) = C

∫ T2

T1

∣∣∣∣
∫

S

�t (x, y,μ,μ,μ)d(μ − ν)(y)

∣∣∣∣
2

dt

≤ CL2
∫ T2

T1

∣∣∣∣
∫

S

(
1 +

∣∣∣∣
∫

S

ϕt (xt , zt ) dμ(z)

∣∣∣∣ +
∣∣∣∣
∫

S

ϕt (yt , zt ) dμ(z)

∣∣∣∣
)∣∣∣∣u(y) − v(y)

∣∣dW(y)
∣∣2

dt

≤ CL2
∫ T2

T1

∣∣∣∣
∫

S

∫
S

(
1 + ∣∣ϕt (xt , zt )

∣∣ + ∣∣ϕt (yt , zt )
∣∣)∣∣∣∣u(y) − v(y)

∣∣dW(y) dμ(z)
∣∣2

dt

= CL2
∫ T2

T1

∣∣∣∣
∫

S2

(
1 + ∣∣ϕt (xt , zt )

∣∣ + ∣∣ϕt (yt , zt )
∣∣)∣∣∣∣u(y) − v(y)

∣∣u(z) dW⊗2(y, z)
∣∣2

dt

≤ 3C

∫
S2

(∫ T2

T1

L2(
1 + ∣∣ϕ(t, xt , zt )

∣∣2 + ∣∣ϕ(t, yt , zt )
∣∣2)

dt

)∣∣u(y) − v(y)
∣∣2

u(z)2 dW⊗2(y, z).

For the term (II), we have

(II) ≤ C

∫ T2

T1

∫
S

Lip(�)2
∣∣∣∣
∫

S

ϕ(t, xt , zt ) d(μ − ν)(z)

∣∣∣∣
2

dν(y) dt

= C

∫ T2

T1

Lip(�)2
∣∣∣∣
∫

S2
ϕ(t, xt , zt )

(
u(z) − v(z)

)
u(y)dW⊗2(y, z)

∣∣∣∣
2

dt

≤ C

∫
S2

(∫ T2

T1

Lip(�)2
∣∣ϕ(t, xt , zt )

∣∣2
dt

)∣∣u(z) − v(z)
∣∣2

u(y)2 dW⊗2(y, z),

where u(y) has been added artificially to satisfy (4.47) with k = 3. As for (III),

(III) ≤ C

∫ T2

T1

∫
S

Lip(�)2
∣∣∣∣
∫

S

ϕ(t, yt , zt ) d(μ − ν)(z)

∣∣∣∣
2

dν(y) dt

= C

∫ T2

T1

∫
S

Lip(�)2
∣∣∣∣
∫

S

ϕ(t, yt , zt )
(
u(z) − v(z)

)
dW(z)

∣∣∣∣
2

v(y) dW(y) dt

≤ C

∫
S2

(∫ T2

T1

Lip(�)2
∣∣ϕ(t, yt , zt )

∣∣2
dt

)∣∣u(z) − v(z)
∣∣2

v(y)2 dW⊗2(y, z).

In view of the term (IV), we recall that, for any t ∈ [0, T2],
dBL(μt , νt ) ≤ dBL(μ[0,T2], ν[0,T2]),

which follows from the fact that the map et : S[0,T2] → Rd , et (x) := xt , is 1-Lipschitz. Hence,

(IV) = C

∫ T2

T1

∣∣∣∣
∫

S

[
�t(x, y, ν, ν,μ) − �t(x, y, ν, ν, ν)

]
dν(y)

∣∣∣∣
2

dt

≤ C

∫ T2

T1

Lip(�)2dBL(μt , νt )
2 dt

≤ C(T2 − T1)Lip(�)2dBL(μ, ν)2.

We also recall that the bounded Lipschitz metric dBL is bounded by the total variation distance dT V . Therefore we derive,
adding again an artificial term u(z),

(IV) ≤ C(T2 − T1)Lip(�)2dT V (μ, ν)2 = C(T2 − T1)Lip(�)2‖u − v‖2
L1

= C

(∫ T2

T1

Lip(�)2 dt

)(∫
S2

∣∣u(y) − v(y)
∣∣u(z) dW⊗2(y, z)

)2
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≤ C

∫
S2

(∫ T2

T1

Lip(�)2 dt

)∣∣u(y) − v(y)
∣∣2

u(z)2 dW⊗2(y, z).

Putting together (I), (II), (III), (IV), we get (4.47).
Finally, to complete the proof, we verify assumption (4.44) for g (with any fixed m and m̃ as in Theorem 4.19). Note

that it is enough to prove

E

[(∫ T

0

∣∣ϕt

(
W 1

t ,W 2
t

)∣∣2
dt

)m̃]
< ∞.

But this easily follows from the assumption (4.39) on ϕ,

E
[
eβ

∫ T
0 |ϕt |2(W 1

t ,W 2
t ) dt

]
< ∞, ∀β ∈ R,

which implies the finiteness of all moments of the variable
∫ T

0 |ϕt (W
1
t ,W 2

t )|2 dt . �

Background. The convergence of the particle system to the McKean–Vlasov SDE, in the sense of Corollary 4.22, is
classical in the case of Lipschitz bounded drift, see e.g. [58]. The case of non-Lipschitz drift has also been treated
in various works and we mention only some of them. In the context of the example in Section 4.3.1, the paper [41]
proves the convergence, with quantitative bounds, for ϕ in W−1,∞ (which includes our example) such that div(ϕ) is in
W−1,∞. The work [33] covers the case ϕ = −∇� with �(x) = |x|α with α in (0,1), which is a relevant example of
Section 4.3.1 for d ≥ 2 (see Remark 4.12). Both in [41] and [33] the initial conditions are assumed to be diffuse in a
suitable sense. The paper [61] (which has appeared after our paper came on arXiv), exploiting the technique in [43],
shows well-posedness and convergence of the particle system for ϕ as in our example in Section 4.3.1 (namely ϕ in
L

q
t (L

p
x ) with p, q satisfying (4.29)), also possibly non-translation invariant, with a condition of continuity of ϕ outside

a set of singular points. As examples of convergence in critical cases, that are not covered by our results, we recall
[31], for ϕ = −∇� with �(x) = log |x|, and [30], for the 2D Navier–Stokes equations and the associated vortex system,
that is ϕ(x) = x⊥/|x|2. Outside the context of Section 4.3.1, we already mentioned [46], proving convergence in the τ

topology when b is bounded and satisfies a suitable continuity assumption in the measure argument. The paper [42] proves
convergence for a general measure-dependent drift, assuming a quite weak condition but depending on the solution to the
McKean–Vlasov itself; the result is then applied to the case of bounded drifts. However we are not aware of a convergence
result that covers our Corollary 4.22 and Proposition 4.24, although the recent work [35] (which has also appeared after
our paper came on arXiv) proves convergence for a class of singular drifts similar to that in Proposition 4.24.

Concerning (weak or strong) uniqueness for McKean–Vlasov SDEs with irregular drifts, we mention [9,28,34,50,51,
57]. It is also worth mentioning [13] on a regularization by noise phenomenon, via an infinite-dimensional noise, for a
related mean field game problem.

Appendix A: Limits of convex functions

Let V be a vector space. We consider a sequence of convex functions φn : V → R (with domains Dn), and two convex
functions φL and φU with φL ≤ φU on V (with respective domains DL, DU ), which will act as asymptotic lower and
upper bounds for φn in a sense specified below.

Moreover, we consider pairs of sequences and points ({yn}, y) ∈ V N × V , which for simplicity will be referred to as
the pairs (yn, y), and denote (yn, y) ∈ D for the statement y ∈ DU and yn ∈ Dn for every n. We then have the following
approximation result.

Theorem A.1. Let γ > 1, and let the sequence of pairs (yλ,n, yλ) be such that for every λ > 0,

lim sup
n→∞

φn(γyλ,n) < ∞,(A.1a)

φU(γyλ) < ∞,(A.1b)

(A.2) φL(yλ) ≤ lim inf
n→∞ φn(yλ,n) ≤ lim sup

n→∞
φn(yλ,n) ≤ φU(yλ).
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Moreover, let the couple (xn, x) be such that there exists a K ∈ R such that for all β ∈ R,

lim sup
λ→0

lim sup
n→∞

φn

(
β(yλ,n − xn)

) ≤ K,(A.3a)

lim sup
λ→0

φU

(
β(yλ − x)

) ≤ K.(A.3b)

Then for any 0 < γ ′ < γ ,

lim sup
n→∞

φn

(
γ ′xn

)
< ∞,(A.4a)

φU

(
γ ′x

)
< ∞,(A.4b)

and that

φL(x) ≤ lim inf
n→∞ φn(xn) ≤ lim sup

n→∞
φn(xn) ≤ φU(x).(A.5)

Remark A.2. Some comments on these assumptions:

(i) Note that the convex functions φL, φN , φ are all allowed to be improper, i.e. allowed to be equal to −∞ on their
domain, or to have empty domain.

(ii) The constant K in (A.3) is independent of β , which is crucial in proving the convergence. As an example, note that
when φU is even with φU(0) = 0 the assumptions imply that (A.4b) holds for K = 0 as well.

First, we will establish some technical properties for limits of convex functions: a generalization of the classical
statement on continuity of convex function on the interior of their domains to certain pointwise limits of convex functions,
and a result that shows how under (A.3a) the limits in n, λ of φn(x), φn(yλ,n) in effect ‘commute’.

Lemma A.3. Let gn : R→ R be a sequence of convex functions such that for some a, b ∈R

lim sup
n→∞

gn(a) < ∞, lim sup
n→∞

gn(b) < ∞.

Then the functions

ḡ(z) := lim sup
n→∞

gn(z), g(z) := lim inf
n→∞ gn(z)

are both either equal to −∞ on (a, b), or finite and continuous on (a, b).

Proof. First, note that there exists a large enough N such that for all n ≥ N both gn(a) and gn(b) are bounded from above,
and in particular [a, b] ⊂ D(gn). Moreover, it is easy to verify that ḡ = lim supn→∞ gn(z) is convex as well, [a, b] ⊂
D(ḡ), and with ḡ bounded from above on [a, b]. We will show that either g ≡ −∞ on (a, b) or that lim supn→∞ ‖gn‖∞
is finite – in which case we will derive that g is Lipschitz continuous at any proper sub-interval [c, d] � [a, b] with
a < c < d < b. The case for ḡ follows from a similar argument and the fact that ḡ is convex itself.

Now, suppose that lim supn→∞ ‖gn‖∞ = ∞. Since ḡ(z) is bounded from above on [a, b], it follows that there exists a
subsequence n′ ∈N and a sequence zn′ ∈ [a, b] such that

lim
n′→∞

gn′(zn′) = −∞.

By compactness in [a, b] we can choose a converging sequence zn′ → z∗. We will treat the case z∗ ∈ (a, b) and z∗ = a, b

separately. First, assume the former and fix s ∈ (a, b). Then for any small enough ε > 0 and large enough n′ such that
gn′(zn′) < ∞ and |zn′ − z∗| < ε with a + ε < z∗ < b − ε, we have by convexity of gn′

gn′(s) ≤ zn′ − s

zn′ − a
gn′(a) + s − a

zn′ − a
gn′(zn′)

≤ gn′(a)+ + s − a

z∗ − a − ε
gn′(zn′),
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whenever s ∈ (a, zn′ ], and where gn′(a)+ = min(0, gn′(a)). Repeating the argument for s ∈ [zn′ , b) we derive

lim sup
n′→∞

gn′(s) ≤ lim sup
n′→∞

max
(
g+

n′(a), g+
n′(b)

) + max

(
s − a

z∗ − a − ε
,

b − s

b − z∗ − ε

)
lim sup
n′→∞

gn′(zn′)

= −∞.

In particular we conclude that g(s) := lim infn→∞ gn(s) = −∞. The case for z∗ = b (or z∗ = a) is similar, using the fact
that s ∈ (a, z′

n) for large enough n′.
Next, suppose otherwise, i.e. lim supn→∞ ‖gn‖∞ < ∞. Recall from classical convex analysis on Rd (e.g. similar to

[24, Theorem 6.7]) that bounded convex functions on convex sets O are uniformly Lipschitz on certain subsets A � O

with d(A,Oc) > 0. In particular, when f : [a, b] → R is convex and bounded, a + δ ≤ c < d ≤ b − δ, for some δ > 0,
the Lipschitz constant of f on the interval [c, d] is bounded by

K := 2δ−1‖f ‖∞.

Since pointwise limits or pointwise minima of K-Lipschitz functions are also K-Lipschitz, and

g(z) = lim
n→∞

(
lim

m→∞ min
n≤l≤m

gl(z)
)
,

it follows that g is K-Lipschitz as well. Since c, d are arbitrary, we conclude that g is continuous on (a, b). �

Lemma A.4. Let (φn)n∈N be a sequence of convex functions on V and (yλ,n) a family of sequences and (xn) a sequence
in V . Suppose there exists a γ > 1 such that

(A.6) lim sup
n→∞

φn(γyλ,n) < ∞, for all λ > 0,

and suppose there exists some constant K ∈ R such that

(A.7) lim sup
λ→0

lim sup
n→∞

φn

(
β(yλ,n − xn)

) ≤ K for all β ∈R.

Then for any 0 ≤ γ ′ < γ ,

(A.8) lim sup
n→∞

φn

(
γ ′xn

)
< ∞,

and

lim
λ→0

lim sup
n→∞

φn(yλ,n) = lim sup
n→∞

φn(xn),(A.9a)

lim
λ→0

lim inf
n→∞ φn(yλ,n) = lim inf

n→∞ φn(xn).(A.9b)

Proof. First, note that if φ is convex, we have for any x, y ∈ V and α ∈ (0,1) for which both α−1(y − x), (1 − α)−1x ∈
D(φ) that x + y ∈ D(φ)

φ(x + y) ≤ αφ
(
α−1x

) + (1 − α)φ
(
(1 − α)−1y

)
,

and therefore,

(A.10)
φ(y) = φ(y − x + x)

≤ αφ
(
α−1(y − x)

) + (1 − α)φ
(
(1 − α)−1x

)
.

Now, we begin by establishing (A.8). By (A.6) and (A.7) there exists a large enough N such that for all n ≥ N∗, λ, β ∈ R,
and all β ∈ R both γyλ,n ∈ Dn and β(x − yλ) ∈ Dn. Therefore, for any γ ′ ∈ [0, γ ), by (A.10) we have

φn

(
γ ′xn

) ≤ (1 − α)φn

(
(1 − α)−1γ ′(xn − yλ,n)

) + αφn(γyλ,n),
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with α = γ ′/γ . Passing to the limes superior in n, we obtain

lim sup
n→∞

φn

(
γ ′xn

) ≤ (1 − α) lim sup
n→∞

φn

(
(1 − α)−1γ ′(xn − yλ,n)

) + α lim sup
n→∞

φn(γyλ,n).

Note that the left-hand side is independent of λ > 0, while the second term on the right-hand side is finite for every λ > 0
by (A.6). Moreover, by (A.7) it follows that the first term on the right-hand side is finite for sufficiently small λ > 0.
Hence, the left-hand side is finite as well and in particular, we have shown (A.8).

Next, from (A.10) we find for any α ∈ (0,1)

φn(αxn) ≤ (1 − α)φn

(
α

1 − α
(xn − yλ,n)

)
+ αφn(yλ,n),

φn(yλ,n) ≤ (1 − α)φn

(
(1 − α)−1(yλ,n − xn)

) + αφn

(
α−1xn

)
.

Taking limits in λ and n, we obtain

lim sup
n→∞

φn(αxn) ≤ (1 − α)K + α lim inf
λ→0

lim sup
n→∞

φn(yλ,n),(A.11a)

lim sup
λ→0

lim sup
n→∞

φn(yλ,n) ≤ (1 − α)K + α lim sup
n→∞

φn

(
α−1xn

)
,(A.11b)

where we made use of (A.7). Note that ḡ(z) := lim supn→∞ φn(zxn) is bounded from above around z = 1, and by
Lemma A.3 is either continuous in (0, γ ′) or ḡ(z) ≡ −∞ in a neighborhood around z = 1. In both cases, passing to
the limit α → 1 in (A.11a) and (A.11a), we recover (A.9a).

Similarly, to establish (A.9b), we first note that after repeating the argument of (A.11), we find

lim inf
n→∞ φn(αxn) ≤ (1 − α)K + α lim inf

λ→0
lim inf
n→∞ φn(yλ,n),

lim sup
λ→0

lim inf
n→∞ φn(yλ,n) ≤ (1 − α)K + α lim inf

n→∞ φn

(
α−1xn

)
.

Set gn(z) := φn(zxn), g(z) := lim infn→∞ gn(z), and recall that ḡ(z) is bounded from above on [0, γ ′]. Hence, again
applying Lemma A.4 and passing to the limit z → 1 in g(z), and α → 1 above, we conclude the proof. �

Now, as a special case, for when φn = φ, xn = x and yλ,n = yλ, we have the following statement.

Corollary A.5. Let φ be a convex function on V . Suppose there is a γ > 1 such that φ(γyλ) < ∞ for all λ > 0, and that
there exists a constant K ∈ R such that

lim sup
λ→0

φ
(
β(x − yλ)

) ≤ K for all β ∈ R.

Then for any 0 < γ ′ < γ , φ(γ ′x) < ∞, and φ(x) = limλ→0 φ(yλ).

Together, these results show how to connect φL(x) to φL(yλ), φn(xn) to φn(yλ,n), and φU(x) to φU(yλ). Since by
assumption φn(yλ,n) is connected to φL(yλ) and φU(yλ), we derive corresponding statements for (xn, x). Indeed, we now
show how the above results imply Theorem A.1.

Proof of Theorem A.1. Applying Corollary A.5 to both φL and φU separately, we obtain from (A.1b) and (A.3b) the
convergences

φL(x) = lim
λ→0

φ(yλ), φU (x) = lim
λ→0

φ(yλ).

Similarly, from (A.1a) and (A.3a) it follows from Lemma A.4 that

lim
λ→0

lim sup
n→∞

φn(yλ,n) = lim sup
n→∞

φn(xn),

lim
λ→0

lim inf
n→∞ φn(yλ,n) = lim inf

n→∞ φn(xn).
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Finally, we use the above and the relationship between yλ,n and yλ assumed in (A.2), to obtain

3φL(x) = lim
λ→0

φL(yλ) ≤ lim
λ→0

lim inf
n→∞ φn(yλ,n)

= lim inf
n→∞ φn(xn) ≤ lim sup

n→∞
φn(xn)

= lim
λ→0

lim sup
n→∞

φn(yλ,n) ≤ lim
λ→0

φU(yλ) = φU(x).

The boundedness conditions follow similarly. �

Appendix B: Variational representation of exponential integrals

Below we will give an extension of the classic variational formulation of exponential integrals. This is exploited in various
arguments of the paper.

Lemma B.1. Let (X,A) be a measurable space and V : X → [0,∞] be a non-negative A-measurable function. Then

(B.1) log
∫

X

eV dμ = sup
ν∈D

{∫
X

V dν − R(ν‖μ)

}
,

where

D = {
ν ∈ P(X) | R(ν‖μ) < ∞}

.

In the case of Polish spaces X, the result also follows directly from [17, Proposition 4.5.1], which deals with potentials
V that are either bounded from below or from above. Nevertheless, for completeness, we give here a direct and elementary
proof.

Proof. We will first prove that for every ν ∈ D,

(B.2)
∫

X

V dν − R(ν‖μ) ≤ log
∫

X

eV dμ,

and then we will show by approximation of bounded functions that

(B.3) log
∫

X

eV dμ ≤ sup
ν∈D

{∫
X

V dν − R(ν‖μ)

}
,

which together will imply (B.1).
For the first inequality, we take any ν ∈ D and assume, without loss of generality, that eV is integrable with respect

to μ. In this case, Young’s inequality (in the form ab ≤ ea − b + b logb) and the finiteness of R(ν‖μ) < +∞ imply the
finiteness of

∫
X

V dν. Let μV ∈ P(S) be defined by

μV = 1

ZV

eV μ with ZV =
∫

X

eV dμ.

Now let us rewrite the expression on the left-hand side of (B.2) as follows,

(B.4)

∫
X

V dν − R(ν‖μ) =
∫

X

V dν −
∫

X

log
dν

dμ
dν

= log
∫

X

eV dμ +
∫

X

log eV dν − log
∫

X

eV dμ −
∫

X

log
dν

dμ
dν

= log
∫

X

eV dμ −
∫

X

log

(
dν

dμ

(
dμV

dμ

)−1)
dν

= log
∫

X

eV dμ − R(ν‖μV )

By non-negativity of the entropy R(·‖μV ), (B.2) holds for any ν ∈ D.



Large deviations for singularly interacting diffusions 535

To show (B.3), consider the sequence Vn = min{V,n} for n ∈ N. Note that Vn is a non-decreasing sequence of non-
negative bounded functions converging pointwise to V . Since Vn is bounded, we have that R(μVn‖μ) < +∞ and that∫
X

eVn dμ < ∞, and we define again μVn as above. Hence, repeating the argument of (B.4) for Vn it follows that

∫
X

Vn dν − R(ν‖μ) = log
∫

X

eVn dμ − R(ν‖μVn).

In particular, taking ν = μVn , we get

log
∫

X

eVn dμ =
∫

X

Vn dμVn − R(μVn‖μ) ≤
∫

X

V dμVn − R(μVn‖μ).

Maximizing over n, we conclude (B.3). �

Remark B.2. In the proof for bounded V the equality in (B.1) follows by checking that ν = μV is the unique maximizer
(B.1). However, this is not possible for a general unbounded V , even when eV is integrable with respect to μ. A simple
example over X = [0,1/2] follows from taking V (x) = − logx +α log logx−1 + 1 with any 1 < α < 2: for this example,
μV is well defined and clearly R(μV ‖μV ) = 0, but both R(μV ‖μ) and

∫
V dμV are infinite. In particular, μV does not

belong to D and is not a maximizer of (B.1), even though μVn is a maximizing sequence.
In contrast, if V satisfies a slightly stronger exponential integrability condition, then R(ν‖μV ) < ∞ does imply

R(ν‖μ) < ∞ and
∫

V dν < ∞, as we show below.

Corollary B.3. Let V : X → R be a measurable function and μV = Z−1
V eV μ with normalization constant ZV . Further,

suppose there exists γ > 1 such that ∫
X

eγ |V | dμ < ∞.

Then

R(ν‖μV ) < ∞ ⇐⇒ R(ν‖μ) < ∞.

Moreover, the following equality holds:

(B.5) R(ν‖μV ) = R(ν‖μ) −
∫

X

V dν + log
∫

X

eV dμ.

Proof. Repeating carefully the proof of (B.4), one gets formula (B.5) if V is in L1(ν) and one of the two condi-
tions R(ν‖μ) < ∞ and R(ν‖μV ) < ∞ holds. Hence it remains to show that each of the conditions R(ν‖μ) < ∞ and
R(ν‖μV ) < ∞ implies that V is in L1(ν).

In the case R(ν‖μ) < ∞, by (B.2) we have∫
X

|V |dν ≤ R(ν‖μ) + log
∫

X

e|V | dμ,

which is finite by assumption.
In the case R(ν‖μV ) < ∞, we apply again (B.2) but with base measure μV instead of μ and (γ − 1)V instead of V ,

getting ∫
X

(γ − 1)|V |dν ≤ R(ν‖μV ) + log
∫

X

e(γ−1)|V | dμV

≤ R(ν‖μV ) + log
∫

X

eγ |V | dμ − log
∫

X

eV dμ,

which is finite by assumption. The proof is complete. �

Lemma B.4. Let F : Xk → [0,∞), k ∈N be a nonnegative measurable function satisfying∫
Xk

exp
(
F(x1, . . . , xk)

)
dμ⊗k < ∞,
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and ν ∈P(S) is such that R(ν‖μ) < ∞. Then

log
∫

X

exp

(∫
Xk−1

F(x, y) dν⊗k−1(y)

)
dμ(x) ≤ (k − 1)R(ν‖μ) + log

∫
Xk

eF dμ⊗k.

Proof. A simple application of Lemma B.1 yields

log
∫

X

exp

(∫
Xk−1

F(x, y) dν⊗k−1(y)

)
dμ(x)

= sup
ρ

{〈
ρ,

∫
Xk−1

F(x, y) dν⊗k−1(y)

〉
− R(ρ‖μ)

}

= sup
ρ

{〈
ρ ⊗ ν⊗k−1,F

〉 − R
(
ρ ⊗ ν⊗k−1‖μ ⊗ μ⊗k−1)} + (k − 1)R(ν‖μ)

≤ sup
σ

{〈σ,F 〉 − R
(
σ‖μ⊗k

)} + (k − 1)R(ν‖μ) = log
∫

Xk

eF dμ⊗k + (k − 1)R(ν‖μ),

which is the desired estimate. �

Appendix C: On measurability and exponential approximations

C.1. Measurability of integral maps

In this subsection we give a measurability result for integral maps. This in particular implies measurability of EV and EN
V

in Section 3. In the following, X and Y are Polish spaces, we recall that P(Y ) endowed with the weak topology is also
Polish; X, Y and P(Y ) are endowed with their Borel σ -algebras.

Theorem C.1. Given any Borel function

X × Y ×P(Y ) � (x, y,μ) �→ f (x, y,μ) ∈ [−∞,+∞],

then the set {μ ∈P(Y ) | f ∈ L1(μ)} is Borel and the mapping

Ff : X ×P(Y ) � (x,μ) �→ 1f ∈L1(μ)

∫
Y

f (x, y,μ)dμ(y)

is also Borel.

The case when f (x, y,μ) = W(y) for some measurable W is a classical question, and treated in great generalization
in for example [5, Chapter 8]. However, for simplicity, in our setting we stick to the case of metric spaces, and adapt an
argument of [44] (Theorem 15.13). First, we provide a generalization of Lemma 7.3.12 of [14].

Lemma C.2. Suppose that f is in Cb(X × Y ×P(Y )). Then Ff is in Cb(X ×P(Y )).

Proof. In the following, we denote Z = X × Y × P(Y ). The idea of the proof is similar to the fact that for Polish
spaces X and Y , the set of functions {f (x)g(y) | f ∈ Cb(X),g ∈ Cb(Y )} is convergence determining for P(X × Y) (see
for example Theorem 3.4.5b of [23]), which is used in Lemma 7.3.12 of [14]. Namely, first note for any g(x, y,μ) :=
g1(x)g2(y)g3(μ), with g1 ∈ Cb(X), g2 ∈ Cb(Y ) and g3 ∈ Cb(P(Y )), the boundedness and continuity of Fg is trivial.

Now, consider a sequence (xn,μn)n converging to (x∗,μ∗). In particular the subsets L := {xn} ∪ {x∗} ⊂ X and M :=
{μn}n≥1 ∪ {μ∗} ⊂ P(Y ) are compact in X and P(Y ) respectively. In particular, the set M ⊂ P(Y ) is tight, i.e., for every
ε > 0 there exists a compact set Kε ⊂ Y such that μ∗(Kc) < ε and μn(K

c
ε ) < ε for all n ≥ 1.

Therefore, fix any ε > 0. By applying Stone–Weierstrass on the compact set Bε = L × Kε × M , we find a sequence
(gε,l)l≥1 ∈ Cb(Bε) with gε,l(x, y,μ) := g

ε,l
1 (x)g

ε,l
2 (y)g

ε,l
3 (μ), where g

ε,l
1 ∈ Cb(L), g

ε,l
2 ∈ Cb(Kε) and g

ε,l
3 ∈ Cb(M),

such that

lim
l→∞

∥∥f − gε,l
∥∥

Cb(Bε)
= 0.
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Now also fix l ∈N. By Tietze’s extension theorem we find a g̃
ε,l
2 ∈ Cb(Y ) such that

g̃
ε,l
2 (y) = g

ε,l
2 (y) on Kε,

∥∥g̃
ε,l
2

∥∥
Cb(Y )

≤ ∥∥g
ε,l
2

∥∥
Cb(Kε)

.

Hence, define on B̃ = L × Y × M the continuous function g̃ε,l(x, y,μ) := g
ε,l
1 (x)g̃

ε,l
2 (y)g

ε,l
3 (μ), and note that by con-

struction ‖g̃ε,l‖
Cb(B̃)

≤ ‖gε,l‖Cb(Bε).
We now compute for any l, n ≥ 1,

∣∣Ff

(
x∗,μ∗) − Ff (xn,μn)

∣∣ =
∣∣∣∣
∫

Y

f
(
x∗, y,μ∗)

dμ∗(y) −
∫

Y

f (xn, y,μn)dμn(y)

∣∣∣∣
≤

∣∣∣∣
∫

Kε

f
(
x∗, y,μ∗)

dμ∗(y) −
∫

Kε

f (xn, y,μn)dμn(y)

∣∣∣∣ + 2ε‖f ‖Cb(Z)

≤
∣∣∣∣
∫

Kε

gε,l
(
x∗, y,μ∗)

dμ∗(y) −
∫

Kε

gε,l(xn, y,μn)dμn(y)

∣∣∣∣
+ 2

∥∥f − gε,l
∥∥

Cb(Bε)
+ 2ε‖f ‖Cb(Z)

≤
∣∣∣∣
∫

Y

g̃ε,l
(
x∗, y,μ∗)

dμ∗(y) −
∫

Y

g̃ε,l(xn, y,μn)dμn(y)

∣∣∣∣
+ 2ε

∥∥gε,l
∥∥

Cb(Bε)
+ 2

∥∥f − gε,l
∥∥

Cb(Bε)
+ 2ε‖f ‖Cb(Z).

Thus, by the continuity of Fg̃ε,l on B̃ ,

lim sup
n→∞

∣∣Ff

(
x∗,μ∗) − Ff (xn,μn)

∣∣ ≤ 2ε
∥∥gε,l

∥∥
Cb(Bε)

+ 2
∥∥f − gε,l

∥∥
Cb(Bε)

+ 2ε‖f ‖Cb(Z).

Taking subsequent limits, first in l → ∞ and then in ε → 0 we conclude the proof. �

Next, we paraphrase Theorem 4.33 of [44].

Theorem C.3 (Monotone class theorem). Let X be a metrizable space, and let F be a vector subspace of Bb(X)

including Cb(X). Then F = Bb(X) if and only if F is closed under monotone sequential pointwise limits in Bb(X).

Proof of theorem C.1. Let F be the set of bounded Borel-measurable functions given by

F = {
f ∈ Bb

(
X × Y ×P(Y )

) | Ff : X ×P(Y ) → R is Borel-measurable
}
.

It is clear that F is a vector subspace of Bb(X × Y ×P(Y )), and by Lemma C.2 it contains Cb(X × Y ×P(Y )). To show
stability under monotone pointwise limit, consider any sequence fn in F with fn ↑ f and f in Bb(X × Y ×P(Y )). For
any measure μ ∈P(Y ), it follows from monotone convergence that

lim
n→∞Ffn(x,μ) = lim

n→∞

∫
Y

fn(x, y,μ)dμ(y) =
∫

Y

fn(x, y,μ)dμ(y) = Ff (x,μ).

Hence by the monotone class theorem, we get that F = Bb(X × Y × P(Y )), that is Ff is Borel for any Borel bounded
function f .

For a Borel non-negative function f , it follows from approximation with bounded function and monotone convergence
that

(x,μ) �→
∫

Y

f (x, y,μ)dμ(y)

is Borel, in particular the set {μ | f ∈ L1(μ)} is Borel. The case of a general Borel function f follows splitting f into f +
and f −. The proof is complete. �

Corollary C.4. Let S be a Polish space and let V : Sk → R be Borel-measurable. Then both EV ,EN
V : P(S) → R are

also Borel-measurable.
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C.2. Exponential approximation theorem in Polish spaces

Theorem C.5. Suppose X is Polish, V : X → R is Borel measurable such that

(C.1)
∫

X

eβ|V | dμ < +∞ for any β ≥ 0.

Then there exists continuous bounded functions Vλ : S → R such that

lim
λ→0

log
∫

X

eβ|V −Vλ| dμ = 0 for any β ≥ 0.

The argument is similar to the denseness of Cb(S) in Lp(S) spaces, and rely on Tietze’s extension theorem and Lusin’s
Theorem, see for example [44, Theorems 2.47 and 12.8] (note that any Polish space S is normal, and so these theorems
apply).

Proof of Theorem C.5. First, suppose that V is bounded. Then by Lusin’s theorem, for any ε > 0, there exists a compact
set Kε such that μ(S \ Kε) < ε.

By Tietze’s extension theorem, we obtain a continuous function Vε such that Vε = V on the compact set Kε , and
satisfying supx∈S |Vε(x)| ≤ supx∈S |V (x)|. Therefore, for any β ≥ 0,∫

X

eβ|V −Vε | dμ =
∫

Kε

eβ|V −Vε | dμ +
∫

S\Kε

eβ|V −Vε | dμ

=
∫

Kε

e0 dμ +
∫

S\Kε

eβ|V −Vε | dμ ≤ 1 + ε · e2β supx∈S |V |(x).

Note that the choices ε, Kε , Vε are independent of β , and thus, by continuity of the logarithm,

lim
ε→0

log
∫

X

eβ|V −Vε | dμ = 0.

Next, for the case of unbounded V , suppose (C.1) holds. Let Vn be the bounded truncation of V to the interval [−n,n],
i.e.

Vn := min
{
n,max{−n,V }}, n ∈N.

It is clear that Vn is bounded and limn→∞ |V − Vn|(x) → 0 pointwise in x ∈ X. Moreover, |V − Vn| ≤ |V | for all n ∈N.
Hence, by the assumption on V and the dominated convergence,

lim
n→∞

∫
X

eβ|V −Vn| dμ = 1 for any β ≥ 0,

which implies that

lim
n→∞ log

∫
X

eβ|V −Vn| dμ = 0 for any β ≥ 0.

From the previous argument on bounded functions, we obtain, for each n ∈N, a sequence of bounded continuous functions
(Vn,ε)ε>0 such that

lim
ε→0

log
∫

X

eβ|Vn−Vn,ε | dμ = 0 for any β ≥ 0.

Finally, since by convexity,

log
∫

X

eβ|V −Vn,ε | dμ ≤ 1

2
log

∫
X

e2β|V −Vn| dμ + 1

2
log

∫
X

e2β|Vn−Vn,ε | dμ,

we can find an appropriate sequence Vλ := Vn(λ),ε(λ) such that

lim
λ→0

log
∫

X

eβ|V −Vλ| dμ = 0 for any β ≥ 0,

thereby concluding the proof. �
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Appendix D: Stochastic estimates and technical parts of Section 4

D.1. Basic facts on the Girsanov theorem and the Novikov condition

Theorem D.1 (Girsanov). Let W be an m-dimensional Brownian motion on a filtered probability space (satisfying the
standard assumption), with general initial law Law(W0), let b : [0, T ] × Rm → Rm be a Borel function. Consider the
SDE

(D.1.1)
dXt = b(t,Xt ) dt + dWt, t ∈ [0, T ],

Law(X0) = Law(W0).

If

(D.1.2) E
[
e

1
2

∫ T
0 |b(t,Wt )|2 dt

]
< ∞,

then there exists a weak solution to (D.1.1). Its law P̃ X is equivalent to the Wiener measure W (starting with the same
initial law of X0) and satisfies,

dP X

dW
(W) := exp

(
−1

2

∫ T

0

∣∣b(t,Wt )
∣∣2

dt +
∫ T

0
b(t,Wt ) · dWt

)
.

Moreover, if Y is another weak solution to (D.1.1) (defined possibly on another probability space satisfying the standard
assumption), with law P̃ Y , such that ∫ T

0

∣∣b(t, Yt )
∣∣2

dt < ∞ P̃ Y -a.s.,(D.1.3)

then P̃ Y coincides with P̃ X .

This result is classical, here we recall uniqueness, in the line of [25], Section 3.

Proof. Existence and the representation formula are a classical consequence of Girsanov’s theorem, which can be applied
thanks to Novikov’s condition (D.1.2). When the initial distribution ρ0 is a Dirac delta, uniqueness follows from [48,
Theorem 7.7]. Uniqueness in the general case follows from conditioning X0 to be a single point. �

Lemma D.2. Let W be an m-dimensional Brownian motion and let b :Rm →R be a Borel function such that

E
[
e2

∫ T
0 |b(t,Wt )|2 dt

]
< ∞.

Then

E
[
e

∫ T
0 b(t,Wt )·dWt

] ≤ E
[
e2

∫ T
0 |b(t,Wt )|2 dt

] 1
2

Proof. The proof is classical, we sketch the idea: By Novikov’s criterion, the exponential local martingale

exp

(
−1

2

∫ T

0

∣∣2b(t,Wt )
∣∣2

dt +
∫ T

0
(2b)(t,Wt ) · dWt

)

is a true martingale, in particular it has expectation 1. Then it is enough to apply Hölder inequality to get the required
estimate. �

D.2. Definition of the log-densities in Section 4.1

Here we give the precise definition of EN
b and Eb in Section 4.1.

We recall that S = C([0, T ];Rd) and W is the Wiener measure on S. For b : [0, T ] × Rd × P(Rd) → Rd Borel
function, we define

V 1
b (x,μ) :=

∫ T

0

∣∣bt (xt ,μt )
∣∣2

dt, x ∈ S,μ ∈P(S).
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Note that V 1
b is a Borel map (by Fubini theorem applied to the map (t, x,μ) �→ |bt (xt ,μt )|2). For μ in P(S), if V 1

b (x,μ)

is finite for W-a.e. x, then we can define the stochastic integral∫ T

0
bt (xt ,μt ) · dxt ,(D.2.1)

on the space (S, (Gt )t ,W), where Gt is the σ -algebra generated on S by the W-negligible sets and by the projection
π[0,t] : S → St = C([0, t];Rd) on [0, t]; in particular GT is the completion of B(S) with respect to W. Hence we can
define a map V 2

b (·,μ) : S → R which is a representative of the stochastic integral (D.2.1) and is measurable with respect
to B(S).

Now we define

Eb(μ) :=
⎧⎨
⎩

∫
S

(
1

2
V 1

b (x,μ) − V 2
b (x,μ)

)
dμ if V 1

b (·,μ),V 2
b (·,μ) ∈ L1(S,μ),

0 otherwise,
μ ∈P(S)

(for μ which is absolutely continuous with respect to W, E(μ) does not depend on the specific choice of V 2
b (·,μ)). Note

that, if R(μ‖W) < ∞ and E[e 1
2 V 1

b (W,μ)] < ∞, then V 1
b (·,μ) and V 2

b (·,μ) are in L1(μ): indeed, by Lemma B.1,

1

2

∫
S

V 1
b (x,μ)dμ ≤ R(μ‖W) + log

∫
S

e
1
2 V 1

b (x,μ) dW< ∞,

and, by Lemmas B.1 and D.2 (using e|a| ≤ ea + e−a),

1

2

∫
S

∣∣V 2
b (x,μ)

∣∣dμ ≤ R(μ‖W) + log

(∫
S

e
1
2 V 2

b (x,μ) dW+
∫

S

e− 1
2 V 2

b (x,μ) dW

)

≤ R(μ‖W) + log

(
2

∫
S

e
1
2 V 1

b (x,μ) dW

)
< ∞.

In Lemma D.3 we show that Eb is Borel (at least on the set {μ | R(μ‖W) < ∞}).
Coming to EN

b , we recall that Wi , 1 ≤ i ≤ N , are independent d-dimensional Brownian motions on some filtered
probability space (	, (Ft )t ,P) (under the standard assumption) and zN

W is the empirical measure associated with Wi . We
assume on b that ∫

S

V 1
b

(
x, zN

W

)
dzN

W (x) < ∞ P-a.s.

Under this assumption, we can define the stochastic integral∫ T

0
bt (xt ,μt ) · dxt(D.2.2)

on the space (	̄, (Ht )t , P̄ ). Here 	̄ = S × P(S) and P̄ is the law of W 1 ⊗ zN
W , or equivalently of Wi ⊗ zN

W for any
1 ≤ i ≤ N , under W. Also Ht is the σ -algebra on 	̄ generated by the P̄ -negligible sets and by π[0,t] ⊗ (π[0,t])#, where
π[0,t] : S → St = C([0, t];Rd) is the projection on time [0, t] and (π[0,t])# : P(S) → P(St ) is the corresponding image
measure map; in particular, HT is the completion under P̄ of B(S) ⊗ B(P(S)). Hence we can define a map V

2,N
b : S ×

P(S) →R which is a representative of the stochastic integral (D.2.2) and is measurable with respect to B(S)⊗B(P(S)).
Note that, for every 1 ≤ i ≤ N ,

V
2,N
b

(
Wi, zN

W

) =
∫ T

0
bt

(
Wi

t , z
N
W ,t

)
dWi

t P-a.s.(D.2.3)

and that, P-a.s., V
2,N
b (·, zN

W ) is in L1(zN
W ).

Now we define

EN
b (μ) :=

⎧⎨
⎩

∫
S

(
1

2
V 1

b (x,μ) − V
2,N
b (x,μ)

)
dμ if V 1

b (·,μ),V 2,N (·,μ) ∈ L1(S,μ),

0 otherwise,
μ ∈P(S).

By Theorem C.1, the function EN
b is Borel.
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Lemma D.3. Assume that E[eβV 1
b (W,μ)] < ∞ for every β > 0. Then the map

P(S) � μ �→ Eb(μ)1R(μ‖W)<∞ is Borel.

Proof. The map

μ �→
∫

S

1

2
V 1

b (x,μ)dμ

is Borel by Theorem C.1, so it is enough to show Borel measurability of

F : μ �→
(∫

S

1

2
V 2

b (x,μ)dμ

)
1R(μ‖W)<∞ = E

[∫ T

0
bt (xt ,μt ) · dWt

dμ

dW
(W)

]
1R(μ‖W)<∞.

We start with the case of b in Cb([0, T ] × Rd × P(Rd)) (P(Rd) being endowed with the weak topology). We take
a sequence �n of partitions 0 = t0 < t1 < · · · < tn = T on [0, T ] with size tending to 0 in n. For each n, we call
bn : [0, T ] × S ×P(S) → R the Borel function

bn(t, x,μ) =
∑

i

b(ti , xti ,μti )1t∈[ti ,ti+1)

and In : S ×P(S) →R the Borel function defined by

In(γ,μ) =
∑

i

b(ti , γti ,μti ) · (γti+1 − γti ).

Again by Theorem C.1, the map

Fn : μ �→ E

[
In(W,μ)

dμ

dW
(W)

]
1R(μ‖W)<∞

is Borel. Now, for each μ with R(μ‖W) < ∞, we have by Lemmas B.1 and D.2, for every β > 0,

β
∣∣F(μ) − Fn(μ)

∣∣ ≤ logE
[
eβ|V 2

b (W,μ)−In(W,μ)|] + R(μ‖W)

= logE
[
eβ|∫ T

0 (bt (Wt ,μt )−bn(t,W,μ))·dWt |] + R(μ‖W)

≤ log
(
2E

[
e2β2

∫ T
0 |bt (Wt ,μt )−bn(t,W,μ)|2·dt

]) + R(μ‖W).

Since b is continuous, bt (Wt ,μt )−bn(t,W,μ) tends to 0 for every t in [0, T ) and every W and μ. Hence, for every fixed

β > 0, by dominated convergence theorem and boundedness of b, E[e2β2
∫ T

0 |bt (Wt ,μt )−f n(t,W,μ)|2·dt ] tends to 1 and so

lim sup
n

∣∣F(μ) − Fn(μ)
∣∣ ≤ 1

β

(
log 2 + R(μ‖W)

)
.

By arbitrariness of β , F is the pointwise limit of the Borel functions Fn, hence F is Borel (for b continuous and bounded).
The case of b Borel bounded follows from the case of b continuous bounded via a monotone class argument (cf. Theo-

rem C.3): the stability assumption needed for the monotone class theorem can be verified as in the proof of convergence of
Fn to F . Finally, the case of general b (satisfying E[eβV 1

b (W,μ)] < ∞ for every β) follows approximating b with bounded
bn and proceeding as in the proof of convergence of Fn to F . The proof is complete. �

D.3. Proof of Lemma 4.1 and relative entropy representation

In this subsection, we assume the setting at the beginning of Section 4.

Proof of Lemma 4.1. The SDE (4.1) is an SDE on RdN for the vector XN , where the i-th component of the drift is
(t,x) �→ bN

t (xi, z
N
x ). Note that, for this SDE, Novikov’s condition is satisfies, indeed

E
[
e

1
2

∑N
i=1

∫ T
0 |bN

t (Wi
t ,zN

W ,t )|2 dt
] = E

[
exp

(
N

2

∫
S

∫ T

0

∣∣bN
t

(
xt , z

N
W ,t

)∣∣2
dt dzN

W (x)

)]
< ∞.
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Girsanov’s theorem gives then the existence of a weak solution X, with law Q̃N
bN . The uniqueness in law condition (D.1.3)

reads here

N∑
i=1

∫ T

0

∣∣bN
t

(
xi
t , z

N
x,t

)∣∣2
dt < ∞ Q̃N

bN -a.s.,

which is equivalent to (4.3). The representation formula of the law Q̃N
bN in Girsanov’s theorem reads here (recall the

definition of V 1
b and V

2,N
b in (4.2))

dQ̃N
bN

dP̃ N
(W ) = exp

(
−1

2

N∑
i=1

∫ T

0

∣∣bN
t

(
Wi

t , z
N
W ,t

)∣∣2
dt +

N∑
i=1

∫ T

0
bN
t

(
Wi

t , z
N
W ,t

) · dWi
t

)

= exp

(
−1

2
N

∫
S

V 1
bN

(
x, zN

W

)
dzN

W (x) + N

∫
S

V
2,N

bN

(
x, zN

W

)
dzN

W (x)

)

= exp
(−NEN

bN

(
zN
W

))
,

where we used (D.2.3) for the stochastic integral. The first formula in (4.4) is proved. The second formula (for the law
QN

bN of the empirical measure) follows from the first one by a standard argument from measure theory. �

Lemma D.4 (Relative entropy representation of E ). Assume that

E
[
e

1
2

∫ T
0 |bt (Wt ,μt )|2 dt

]
< ∞ ∀μ with R(μ‖W) < ∞.(D.3.1)

Then we have the following representation formula:

R(μ‖W) + Eb(μ) =
{

R
(
μ‖Wμ

)
if R(μ‖W) < ∞,

+∞, otherwise,
(D.3.2)

where Wμ is the law of the process Xμ satisfying the SDE

dX
μ
t = bt

(
X

μ
t ,μt

)
dt + dWt

with initial law ρ0 (the law Wμ exists and is uniquely determined by Girsanov’s theorem D.1).
Moreover, when b is in the class FLip, the restriction R(μ‖W) < ∞ in (D.3.2) may be dropped.

Proof. When R(μ‖W) = ∞, the representation formula holds trivially (recall that Eb(μ) is finite for every μ). Now fix
μ with R(μ‖W) < ∞. By the condition (D.3.1), we can apply Girsanov’s theorem, which gives the formula

dWμ

dW
(W) = exp

(
−1

2

∫ T

0

∣∣bt (Wt ,μt )
∣∣2

dt +
∫ T

0
bt (Wt ,μt ) · dWt

)

= exp

(
−1

2
V 1

b (W,μ) + V 2
b (W,μ)

)
.

(D.3.3)

In particular W and Wμ are equivalent and so μ is absolutely continuous also with respect to Wμ. Hence we can compute
the relative entropy

R
(
μ‖Wμ

) =
∫

log
dμ

dWμ,b
dμ =

∫
log

dμ

dW
dμ −

∫
log

dWμ

dW
dμ

= R(μ‖W) −
∫ (

−1

2
V 1

b (W,μ) + V 2
b (W,μ)

)
dμ(W)

= R(μ‖W) + Eb(μ),

which is the desired representation formula.
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For b in FLip we have to prove that for every μ,

(D.3.4) R
(
μ‖Wμ,b

)
< ∞ ⇐⇒ R(μ‖W) < ∞.

Note that Wμ,b is well-defined for every μ when b is in FLip. Now, fix any μ, and note that in particular b is bounded
and hence Girsanov’s formula (D.3.3) still holds. Moreover, for every β > 0 and i = 1,2, by boundedness of b and
Lemma D.2 we have,

E
[
eβV i

b (W,μ)
]
< ∞.

Applying Corollary B.3 to the measures W and Wμ,b we easily deduce (D.3.4). �

D.4. L
q
t (L

p
x )-estimates

Khasminskii’s Lemma is classical, see for example [38], [59, Chapter 1, Lemma 2.1], [26, Lemma 13].

Lemma D.5 (Khasminskii’s Lemma). Let W be a d-dimensional Brownian motion starting from 0, let f : [0, T ] ×
Rd →R be a non-negative Borel function and assume that

αf := sup
x∈Rd

E

∫ T

0
f (t, x + Wt)dt < 1.

Then it holds

sup
x∈Rd

E

[
exp

[∫ T

0
f (t, x + Wt)dt

]]
≤ 1

1 − αf

.

Lemma D.6 (Lq
t (L

p
x ) estimates). Let W be a d-dimensional Brownian motion starting from 0. Take 1 ≤ p,q ≤ ∞

satisfying

d

p
+ 2

q
< 2.(D.4.1)

Then there exists a constant C (depending on p, q , d and T ) such that, for every f : [0, T ]×Rd →R non-negative Borel
function,

sup
x∈Rd

∫ T

0
E

[
f (t, x + Wt)

]
dt ≤ C‖f ‖L

q
t (L

p
x ).(D.4.2)

This bound is classical (see e.g. [26, Lemma 11]), with an elementary proof that we recall here.

Proof. We use Hölder’s inequality applied at t and x fixed for the convolution with the Gaussian density pt :

E
[
f (t, x + Wt)

] = ft � pt (x) ≤ ‖ft‖L
p
x
‖pt‖

L
p′
x

.

We recall that ‖pt‖
L

p′
x

≤ ct−d/2p for some constant c depending on p and d (as one can see via the change of variable

x′ = t−1/2x). Therefore, for every x, we get by Hölder’s inequality,

∫ T

0
f (t, x + Wt)dt ≤ c

∫ T

0
‖ft‖L

p
x
t−d/2p dt ≤ c‖f ‖L

q
t (L

p
x )

(∫ T

0
t−dq ′/2p dt

)1/q ′

for q < ∞

(note that (D.4.1) implies q > 1, so q ′ < ∞). As for q = ∞, we estimate similarly,∫ T

0
f (t, x + Wt)dt ≤ c‖ft‖L∞

t (L
p
x )

∫ T

0
t−d/2p dt.

Now the assumption on p and q is equivalent to dq ′/2p < 1 for q < ∞ and to d < 2p for q = ∞. Hence the time integral
of t−dq ′/2p is finite. Hence the bound (D.4.2) holds with C = c(

∫ T

0 t−dq ′/2p dt)1/q ′
. The proof is complete. �

The previous bound can be easily generalized to the case of k independent Brownian motions, as in the following:



544 J. Hoeksema et al.

Lemma D.7. Let W 1, . . . ,Wk be k independent d-dimensional Brownian motions starting from 0. Take 1 ≤ p1, . . . , pk ,
q ≤ ∞ satisfying

d

p1
+ · · · + d

pk

+ 2

q
< 2.

Then there exists a constant C (depending on p1, . . . , pk, q, d and T ) such that, for every f : [0, T ] × Rkd → R non-
negative Borel function,

sup
x1,...,xk∈Rd

∫ T

0
E

[
f

(
t, x1 + W 1

t , . . . xk + Wk
t

)]
dt ≤ C‖f ‖

L
q
t (L

p1
x1 (···(Lpk

xk
)··· )).(D.4.3)

More generally, one can replace the above right-hand side by ‖f ‖
L

q
t (L

p1
xσ(1)

(···(Lpk
xσ(k)

)··· )) for any permutation σ of

{1, . . . , k}.

Proof. The proof is similar to the previous one. We write

E
[
f

(
t, x1 + W 1

t , . . . , xk + Wk
t

)] = ft � p⊗k
t (x1, . . . , xk)

and use Hölder inequality in the xk variable, to get

E
[
f

(
t, x1 + W 1

t , . . . , xk + Wk
t

)] ≤ c
∥∥ft (x1, . . . , xk−1, ·)

∥∥
L

pk
xk

t−d/2pkp⊗k
t (x1, . . . , xk−1).

Then we proceed similarly with the other variables and get

E
[
f

(
t, x1 + W 1

t , . . . , xk + Wk
t

)] ≤ c‖ft‖L
q
t (L

p1
x1 (···(Lpk

xk
)··· ))t

−d/2p1 · . . . · t−d/2pk .

We then conclude on (D.4.3) as in the previous proof, taking

C = CT = c

(∫ T

0
t−dq ′(1/2p1+···1/2pk) dt

)1/q ′

= c1T
1−1/q−d/(2p1)−···−d/(2pk),(D.4.4)

for some constant c1 > 0 independent of T . The bound for a general permutation σ follows from (D.4.3) applied to
f (xσ−1(1), . . . , xσ−1(k)). �

Finally, we put together the previous bounds to obtain an exponential estimate for Lq(Lp) functions (see [26, Corol-
lary 14] for a similar statement).

Lemma D.8. Let W 1, . . . ,Wk be k independent d-dimensional Brownian motions starting from 0. Take 1 ≤ p1, . . . , pk ,
q ≤ ∞ satisfying

d

p1
+ · · · + d

pk

+ 2

q
< 2.(D.4.5)

Then there exists a constant c > 0 (depending on p1, . . . , pk, q, T ) such that, for every f : [0, T ]×Rkd →R non-negative
Borel function with f ∈ L

q
t (L

p1
x1 · · · (Lpk

xk
) · · · ),

sup
x1,...,xk∈Rd

E

[
exp

[∫ T

0
f

(
t, x1 + W 1

t , . . . , xk + Wk
t

)
dt

]]
≤ exp

[
c
(
1 + ‖f ‖1/(1−α)

L
q
t (L

p1
x1 ···(Lpk

xk
)··· )

)]
,

with α = 1 − 1/q − d/(2p1) − · · · − d/(2pk).

Proof. We take

h = (
2c1‖f ‖

L
q
t (L

p1
x1 ···(Lpk

xk
)··· )

)−1/(1−α) ∧ T ,
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and let tj = hj ∧ T , and m the first positive integer with tm = T , in particular

m =
⌈

T

h

⌉
≤ T

(
2c1‖f ‖

L
q
t (L

p1
x1 ···(Lpk

xk
)··· )

)1/(1−α) + 1.

With this choice of h, we have

Ch sup
j=0,...,m−1

(∫ tj+1

tj

‖ft‖q

L
p1
x1 (···(Lpk

xk
)··· ) dt

)1/q

≤ Ch‖f ‖
L

q
t (L

p1
x1 ···(Lpk

xk
)··· ) ≤ 1

2
,

Ch being the constant in (D.4.4). As a consequence of Lemma D.7, we have

sup
j=0,...,m−1

sup
x1,...,xk∈Rd

∫ tj+1

tj

E
[
f

(
t, x1 + W 1

t − W 1
tj
, . . . , xk + Wk

t − Wk
tj

)]
dt

≤ Ch sup
j=0,...,m−1

(∫ tj+1

tj

‖ft‖q

L
p1
x1 (···(Lpk

xk
)··· ) dt

)1/q

≤ 1

2
.

Hence, we can apply Lemma 4.7 and get

sup
j=0,...,m−1

sup
x1,...,xk∈Rd

E

[
exp

[∫ tj+1

tj

f
(
t, x1 + W 1

t − W 1
tj
, . . . , xk + Wk

t − Wk
tj

)
dt

]]
≤ 2.(D.4.6)

Now we come back to the bound on the whole time interval [0, T ]. We split the time integral over [0, T ] into the integrals
over [tj , tj+1] and use conditional expectation with respect to Ftm−1 : we have, for every x1, . . . , xk ∈Rd ,

E

[
exp

[∫ T

0
f

(
t, x1 + W 1

t , . . . , xk + Wk
t

)
dt

]]

= E

[
m−1∏
j=0

exp

[∫ tj+1

tj

f
(
t, x1 + W 1

t , . . . , xk + Wk
t

)
dt

]]

= E

[
m−2∏
j=0

exp

[∫ tj+1

tj

f
(
t, x1 + W 1

t , . . . , xk + Wk
t

)
dt

]

·E
[

exp

[∫ tm

tm−1

f
(
t, x1 + W 1

t , . . . , xk + Wk
t

)
dt

] ∣∣∣ Ftm−1

]]

(all exponentials are ≥ 1 and so the above products make sense and we can use the rule E[XY ] = E[XE[Y | Fs]] for X

Fs -measurable). Now we apply the Markov property and the bound (D.4.6) and get

E

[
exp

[∫ T

0
f

(
t, x1 + W 1

t , . . . , xk + Wk
t

)
dt

]]

= E

[
m−2∏
j=0

exp

[∫ tj+1

tj

f
(
t, x1 + W 1

t , . . . , xk + Wk
t

)
dt

]

·E
[

exp

[∫ tm

tm−1

f
(
t, y1 + W 1

t − W 1
tm−1

, . . . , yk + Wk
t − Wk

tm−1

)
dt

]]∣∣∣∣
y1=x1+W 1

tm−1
,...,yk=xk+Wk

tm−1

]

≤ 2E

[
m−2∏
j=0

exp

[∫ tj+1

tj

f
(
t, x1 + W 1

t , . . . , xk + Wk
t

)
dt

]]
.
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Iterating this argument on j , we get finally, for every x1, . . . , xk ∈Rd ,

E

[
exp

[∫ T

0
f

(
t, x1 + W 1

t , . . . , xk + Wk
t

)
dt

]]
≤ 2m ≤ 2

T (2c1‖f ‖
L

q
t (L

p1
x1

···(Lpk
xk

)··· ))
1/(1−α)+1

,

which concludes the proof. �
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