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A B S T R A C T

Functional magnetic resonance imaging (fMRI) is a powerful non-invasive method for studying brain function
by analyzing blood oxygenation level-dependent (BOLD) signals. These signals arise from intricate interplays
of deterministic and stochastic biological elements. Quantifying the stochastic part is challenging due to its
reliance on assumptions about the deterministic segment. We present a methodological framework to estimate
intrinsic stochastic brain dynamics in fMRI data without assuming deterministic dynamics. Our approach
utilizes Approximate Entropy and its behavior in noisy series to identify and characterize dynamical noise
in unobservable fMRI dynamics. Applied to extensive fMRI datasets (645 Cam-CAN, 1086 Human Connectome
Project subjects), we explore lifelong maturation of intrinsic brain noise. Findings indicate 10% to 60% of fMRI
signal power is due to intrinsic stochastic brain elements, varying by age. These components demonstrate a
physiological role of neural noise which shows a distinct distributions across brain regions and increase linearly
during maturation.
1. Introduction

Functional magnetic resonance imaging (fMRI) is a powerful tool
for measuring blood oxygenation level-dependent (BOLD) signals in the
brain. However, these signals can be contaminated by various noise
sources, which can be broadly divided into measurement noise and
intrinsic brain noise (Krüger and Glover, 2001; Power et al., 2012; Liu,
2016). Measurement noise, sometimes referred to as additive or output
noise, primarily originates from factors related to the scanner, such as
thermal noise (Krüger and Glover, 2001), and artifacts caused by the
subject’s head motion (Power et al., 2012) or physiological fluctuations
like cardiac and respiratory cycles (Birn et al., 2006). Given 𝑦𝑛 = 𝑥𝑛+𝜀𝑛,
where 𝑦𝑛 denotes the fMRI signal and 𝑥𝑛 represents the intrinsic brain
activity, measurement noise 𝜀𝑛 contributes to the system dynamics with
a specific statistical distribution and power spectral density. Thermal
noise is a fundamental noise source, arising from the random motion
of electrons in the MRI system’s receiver coil and other electronic
components (Krüger and Glover, 2001). Other scanner-related noise
sources include fluctuations in the fMRI signal due to scanner hard-
ware, such as gradient coil heating, magnetic field instability, and RF
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coil imperfections (Krüger and Glover, 2001). Artifacts can also be
introduced during fMRI data acquisition due to the subject’s movement
or physiological processes, including respiration, cardiac pulsation, and
vasomotor activity (Birn et al., 2006). Furthermore, the relatively low
sampling rate of fMRI data compared to these physiological processes
can lead to aliasing of high-frequency signals, resulting in spurious
low-frequency fluctuations (Lowe et al., 1998).

In contrast, intrinsic stochastic components in brain dynamics arise
from the inherent variability and randomness of neuronal activity and
inter-neuronal interactions (Fox et al., 2005; Deco et al., 2009a,b). Re-
cent studies have underscored the pivotal role of stochastic neural net-
work states (Destexhe and Contreras, 2006; Ponce-Alvarez et al., 2018),
also highlighting the need for experimental paradigms and theoretical
frameworks to comprehend noise dynamics at the brain network level.
Stochastic changes in synaptic activities are believed to enhance neural
network performance, potentially contributing to learning (Basalyga
and Salinas, 2006). Moreover, the occurrence of information transfer at
chemical synapses, where vesicles fuse with the plasma membrane and
release neurotransmitter, is a stochastic process, and its likelihood of
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053-8119/© 2024 The Author(s). Published by Elsevier Inc. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.neuroimage.2024.120562
Received 16 November 2023; Received in revised form 29 February 2024; Accepte
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

d 1 March 2024

https://www.elsevier.com/locate/ynimg
https://www.elsevier.com/locate/ynimg
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
https://github.com/AndScar/noise_estimation
mailto:andrea.scarciglia@phd.unipi.it
https://doi.org/10.1016/j.neuroimage.2024.120562
https://doi.org/10.1016/j.neuroimage.2024.120562
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


NeuroImage 290 (2024) 120562A. Scarciglia et al.

𝜀
t
r
e
n
p
l
e
d
o
t
(
p
w
r
p
s
c
m
a
a
s
w
e
c
T
a
p
a
N
(
e
p
c
t
s
h
m
t
i
b
s
t
c

t
b
w
a
s
m
d
s
h
p
t
2
a
d
a

w
i
c
a
i
T
s
2
i
i
c
2

2

2

g
I
f
t
b
a
w
a

i
w
t

𝑦

𝑇
𝑦
p
s
m
t
m
i

t
s
i
𝜀

A

f
t
E
t
t
a
a
c

2

s
p
c
a

occurrence plays a crucial role in regulating signal propagation within
neuronal networks (Branco and Staras, 2009). Finally, stochastic reso-
nance has been observed to enhance processing both in experimental
and theoretical models of neural systems (McDonnell and Ward, 2011).

Intrinsic brain noise is dynamic since it is involved in brain activity
over time. Specifically, it can be modeled as 𝑦𝑛 = 𝑇 (𝑦𝑛−1, 𝑦𝑛−2,… , 𝑦0) +
𝑛, where 𝑦𝑛 represents the fMRI signal at time 𝑡𝑛 and {𝜀𝑛}𝑛 denotes
he intrinsic brain noise. Characterizing {𝜀𝑛}𝑛 is crucial for ensuring the
eliability and validity of fMRI-based inferences on brain function (Fox
t al., 2007). However, determining whether a component is signal or
oise depends on understanding the underlying physiology and bio-
hysics (Liu, 2016). For example, components initially considered noise
ater became signals of significant interest (Liu, 2016). This is because
stimating the dynamical brain noise {𝜀𝑛}𝑛 depends on the precise
efinition of the deterministic function 𝑇 . Recent studies have focused
n investigating the stochastic component in brain regions in relation
o waveform regularity and orderliness, as explored by Hoffman et al.
2023). This study employ statistical comparisons to assess the ex-
ected waveform regularity. However, it is important to note that the
aveform regularity approach assumes brain dynamics to be entirely

andom, without considering the potential presence of complex and
ossibly chaotic deterministic components in brain functioning. In this
tudy, we address this limitation and quantify the intrinsic stochastic
omponent in brain dynamics by measuring 𝜀𝑛 in fMRI signals without
aking assumptions about the deterministic function 𝑇 . Our approach

ims to provide an estimation technique applicable to any continuous
nd differentiable function underlying brain dynamics, as 𝑇 may be
pecific to e.g. a particular brain region and/or a particular task. Here,
e assume that in MRI measurement is not associated with age and
xplore whether age-related physiological changes in the brain are asso-
iated with modulation of estimates of intrinsic dynamical brain noise.
o achieve this objective, we analyze stochastic brain components
cross different stages of brain maturation, leveraging high-quality
ublicly available fMRI datasets. We specifically utilize two publicly-
vailable datasets: the Cam-CAN (Cambridge Centre for Ageing and
euroscience) (Taylor et al., 2017) and the Human Connectome Project

HCP) (Van Essen et al., 2013). The Cam-CAN dataset, designed to
xplore shifts in cognitive abilities during healthy aging, provides com-
rehensive data, including functional MRI, from a population-based
ohort of over 700 healthy individuals aged 18 to 87 years. In contrast,
he HCP dataset aims to provide a comprehensive understanding of the
tructural and functional connectivity of the human brain. It includes
igh-resolution functional MRI data, along with other data types, from
ore than 1200 healthy young adults aged 22 to 35 years. Despite

he narrower age range in the HCP dataset, it was selected for this
nvestigation to offer additional insights into the modulation of intrinsic
rain noise across different brain regions and age groups within a
ubstantial data sample. Through the analysis of these datasets, we seek
o gain a deeper understanding of the role of intrinsic brain noise in the
ontext of healthy aging and brain function.

Numerous studies have shown that healthy aging is often linked
o neurodegeneration (Chen, 2019), which manifests as changes in
rain activity (Dennis and Thompson, 2014; Daselaar et al., 2006), as
ell as to reduced tissue volume, an accumulation of silent lesions,
nd increased iron deposits in multiple brain regions, particularly in
ubcortical areas (MacDonald and Pike, 2021). Recent studies have
echanistically linked healthy aging to white-matter degradation and
ynamical compensation (Petkoski et al., 2023) as well as interhemi-
pheric dedifferentiation (Lavanga et al., 2023). Previous fMRI research
as identified lower activation in specific brain regions, such as the
refrontal cortex and hippocampus, in older adults during cognitive
asks involving memory and attention (Grady et al., 2000; Park et al.,
004). The frontoparietal network and its associated neural networks
re more active in young individuals compared to elderly individuals
uring the resting state, attributed to a reduction in grey matter volume
2

nd white matter deterioration (Marstaller et al., 2015). Furthermore, t
hite matter cerebrovascular reactivity responses are higher and faster
n elderly subjects compared to grey matter (Thomas et al., 2014). A de-
line in cerebrovascular health and reduced cerebral blood flow in older
dults have been observed, while accounting for concurrent age effects
n brain volume (Lu et al., 2011; Tarumi et al., 2014; Chen et al., 2013)
his phenomenon has been associated with both increasing arterial
tiffness (Heffernan et al., 2008) and cognitive decline (Xekardaki et al.,
015). Conversely, some studies have observed increased activation
n the aging brain, a phenomenon referred to as overactivation. This
s believed to represent compensatory mechanisms that help maintain
ognitive performance in the face of age-related neural decline (Cabeza,
002; Reuter-Lorenz and Stanczak, 2000).

. Materials and methods

.1. Defining intrinsic brain noise

Let us consider the signal measured in a brain voxel as an observable
enerated by an unknown, discrete metric dynamical system (𝑌 , 𝜇, 𝑇 ).
n this model, 𝑌 denotes a compact subset of R, while 𝑇 represents a dif-
erentiable mapping function with a bounded derivative that conserves
he probability measure 𝜇. Intuitively, the collected signal is generated
y a deterministic, unknown and smooth function or map whose values
re restricted to a limited interval of the real numbers. In this context,
e assume that a noise-free fMRI signal from a voxel can be expressed
s 𝑤𝑛 = 𝑇 (𝑤𝑛−1, 𝑤𝑛−2,… , 𝑤0), where 𝑤𝑖 ∈ 𝑌 for all positive integers 𝑖.

We define the stochastic aspects of brain dynamics as a sequence of
ndependent and identically distributed (IID) random variables {𝜀𝑛}𝑛,
hich form the intrinsic dynamical brain noise. The samples of 𝜀𝑛 alter

he brain dynamics at each step, as outlined in the following equation:

𝑛 = 𝑇 (𝑦𝑛−1; 𝑦0) + 𝜀𝑛. (1)

This equation may include generic mapping functions, such as 𝑦𝑛 =
(𝑦𝑛−1, 𝑦𝑛−2,… , 𝑦0) + 𝜀𝑛, where 𝑦𝑖 ∈ 𝑌 for all positive integers 𝑖, and
(𝜀)𝑁𝑛=1 represents a noisy fMRI time series containing 𝑁 samples. We
ropose a method for estimating 𝜀𝑛 without any knowledge of the
pecific 𝑇 function, applicable to any 𝑇 function in the presence of
easurement and dynamical noise. To the best of our knowledge, other

echniques in the literature, like Kalman filter or the autoregressive
odels, are not able to analytically estimate noise 𝜀𝑛 without specific

nformation or assumptions about the system dynamics equation 𝑇 .
Let 𝑥 → 𝜓(𝑥) signify the Probability Density Function (PDF) of

he random variable determined by the difference between any two
amples of the noise process. For any output of the system, dynam-
cally corrupted by noise according to the model 𝑦(𝜀) = (𝑦0, 𝑇 (𝑦0) +
1, 𝑇 (𝑇 (𝑦0)+𝜀1)+𝜀2,…), the following holds (Scarciglia et al., 2023b):

pEn(𝑦𝑛(𝜀)∞𝑛=1, 𝑚, 𝑟) ≈ − log [2𝜓(0)𝑟] (2)

or any embedding dimension 𝑚 ∈ N and for a sufficiently small
olerance 𝑟. Here, ApEn represents the nonlinear quantifier Approximate
ntropy, which has been introduced by Pincus (1991) as a substitute of
he exact regularity statistic Kolmogorov–Sinai Entropy, which measures
he amount of information needed to describe any element, or equiv-
lently, the possibility of finding repetitive or really close patterns of
time series. This index of regularity has been used to estimate the

omplexity of a system through the presence of regular patterns.

.2. Estimation of intrinsic brain noise

Contrary to the Markovian framework, which models the fMRI
ignal at a specific time point as dependent on a limited number of
rior time points and governed by transition probabilities between
onsecutive states, the quantitative approach proposed here does not
ssume full stochasticity nor the finite memory effects. In particular,

he model assumes the following:
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– Brain dynamics encompass both deterministic and stochastic com-
ponents;

– The deterministic components of brain dynamics are regulated by
any differentiable map 𝑇 , potentially accounting for deterministic
chaos (Scarciglia et al., 2023b);

– Random fluctuations of brain dynamics are realizations of IID
Gaussian, stationary, random variables {𝜀𝑛}𝑛, following the distri-
bution  (0, 𝜎2), excluding non-autonomicity for short recordings
during the same state;

– The stochastic components of brain dynamics represent realiza-
tions of dynamical noise: for a noise sequence {𝜀𝑛}𝑛 ∼  (0, 𝜎2),
any fMRI signal assumes the form 𝑦𝑛 = 𝑇 (𝑦𝑛−1,… , 𝑦0) + 𝜀𝑛.

In the context of fMRI analysis, the properties of the map 𝑇 are deemed
highly versatile and suitable for describing and modeling a wide range
of observable phenomena. Given these assumptions and following the
theory in Section 2.1, Eq. (2) becomes:

ApEn({𝑦𝑛(𝜎)}∞𝑛=1, 𝑚, 𝑟) ≈ − log [𝑟∕(𝜎
√

𝜋)]

As a result, we can infer the power 𝜎 of intrinsic brain noise in a
losed form as follows:

og(𝜎) ≈ ApEn({𝑦𝑛(𝜎)}∞𝑛=1, 𝑚, 𝑟) + log(𝑟∕
√

𝜋)

here 𝑛 denotes a time index, 𝑚 represents the embedding dimension
hen 𝑟 < 𝜎 and 𝑟 → 0+. In this case, the noise standard deviation 𝜎

an be approximated by the tolerance value 𝑟 at which the functions
→ ApEn

(

{𝑦𝑛(𝜀)}∞𝑛=1, 𝑚, 𝑧
)

and 𝑧 → − log 𝑧 exhibit the most similar
ifferential behavior, or the most similar slope.

By considering a noisy fMRI series {𝑦𝑛(𝜀)}𝑁𝑛=1 comprising 𝑁 samples,
he estimation of intrinsic brain noise power 𝜎2 can be performed
s follows. Set an embedding dimension 𝑚 and estimate the profile
ap 𝑟 → ApEn({𝑦𝑛(𝜀)}𝑁𝑛=1, 𝑚, 𝑟) as a function of the tolerance param-

ter 𝑟, which ranges from 0 to the amplitude of the series {𝑦𝑛(𝜀)}𝑁𝑛=1
ith an arbitrary 𝛥𝑟 step. An initial standard deviation 𝜎 is estimated
y searching for the tolerance value 𝑟̄ that minimizes the discrete
erivative of 𝑟 → ApEn({𝑦𝑛(𝜀)}𝑁𝑛=1, 𝑚, 𝑟) + log 𝑟. Finally, select a neigh-
orhood 𝐼(𝑟̄) around 𝑟̄ and determine the best fit 𝜎̄ for the function
→ ApEn({𝑦𝑛(𝜀)}𝑁𝑛=1, 𝑚, 𝑟) + log [𝑟∕(𝜎

√

𝜋)]. Absolute noise estimates are
tandardized with respect to time series range. An appropriate selection
or 𝐼(𝑟̄) could be 𝐼(𝑟̄) = [𝑟𝑚𝑎𝑥, 𝑟̄], where 𝑟𝑚𝑎𝑥 represents the tolerance
alue at which 𝑟 → ApEn(𝑋,𝑚, 𝑟) attains its peak value (Scarciglia et al.,
023b).

In this work, the intrinsic brain noise estimation has been performed
ith embedding dimension 𝑚 = 2, and 𝛥𝑟 = 0.001×{time series range}.
hese choices are motivated by the method validation on autoregres-
ive models and nonlinear maps (Scarciglia et al., 2023b,a).

.3. Mean field variability index

We compare the proposed noise estimation algorithm with the
ean Field Variability Index (MFVI), as proposed in Sheppard et al.

2013), which quantifies cerebral activity in terms of synchronization
f neuronal interactions. We applied this quantifier to the fMRI series
o examine whether the MFVI correlates with aging or if the potential
arying levels of noise indicate symptoms of synchrony, asynchrony, or
ntermittency in the neural networks.

.4. Experimental data

This study received approval from the University of Pisa’s Com-
ittee of Bioethics under review number 19/2021 and adhered to the
rinciples outlined in the Declaration of Helsinki. We conducted experi-
ents using two distinct fMRI datasets to assess the generalizability and

eliability of our proposed estimation framework. Firstly, we utilized
ata from the Cam-CAN dataset to evaluate intrinsic brain noise in
3

egion of interest (ROI)-based fMRI time series across the adult lifespan.
Secondly, we examined the distribution of intrinsic brain noise from the
HCP dataset in two experimental conditions to provide an independent
and large-sample cohort. These conditions included: (i) ROI-based fMRI
time series that matched the setup of the Cam-CAN dataset, and (ii)
fMRI data grouped using Independent Component Analysis (ICA).

By analyzing these datasets, we aimed to validate the brain noise
modulation and explore the role of brain noise in aggregated data. The
inclusion of both ROI-based and ICA-based approaches allows us to gain
a comprehensive understanding of intrinsic brain noise across different
analysis methods and experimental conditions.

2.4.1. Synthetic time series
While we evaluated the validity of the dynamical noise estimation

method on both linear and nonlinear periodic and chaotic maps (Scar-
ciglia et al., 2023b,a), here we evaluate the validity of the noise
estimation algorithm on noisy synthetic fMRI series. We simulated an
fMRI signal based on the model proposed in Glover (1999). According
to this model, the fMRI time series is generated by convolving the
hemodynamic response function (HRF) with a stimulus, represented as
a series of events occurring at random time points. The HRF itself is
modeled as the difference of two gamma functions. To introduce the
effects of dynamical noise, we incorporated a sequence of stochastic
random variables with a normal distribution  (0, 𝜎) into the HRF.

We conducted two types of simulations on synthetic fMRI data.
In the first simulation (Dataset 1), we generated 100 different noisy
fMRI series, each comprising 𝑁 = 261 samples and time between
two consecutive volumes in the fMRI acquisition, i.e. the repetition
time (TR), was set at 1970 ms. The series length and TR were selected
in accordance with the Cam-CAN dataset. The dynamical noise was
added with a mean of 0 and standard deviation 𝜎, which ranged from
{0.1, 0.5, 1, 1.5, 2}. An exogenous stimulus of 2s duration was also con-
sidered. In the second simulation set (Dataset 2), the series length and
TR were adjusted to 1200 and 0.72 ms, respectively, aiming to replicate
the characteristic fMRI series of the HCP-1200 Connectome dataset.
All estimations were performed by setting an embedding dimension of
𝑚 = 2 and a radius resolution of 𝛥𝑟 = 0.001 × {time series range}.

2.4.2. Cam-CAN data set description
The dataset consists of multimodal fMRI series collected from a large

(approximately N=700), cross-sectional adult lifespan (18–87 years
old) population-based sample. The study aimed to characterize age-
related changes in cognition and brain structure and function and to
uncover the neurocognitive mechanisms that support healthy cogni-
tive aging. For each subject, fMRI recordings in three functional runs
(resting state with a repetition time, TR, of 1970 ms, movie-watching
with a TR of 2470 ms, and a sensorimotor task with a TR of 1970 ms)
were collected. In a subsequent stage, fMRI data were preprocessed and
regrouped into 116 ROI series according to the Automated Anatomical
Labeling (AAL)1 atlas (Geerligs et al., 2016).

In the present study, we include data from 645 subjects who have
completed fMRI series for resting state task. Each fMRI series contains
N=216 samples for each ROI, for every subject. Therefore, for each
subject, we estimate intrinsic brain noise in 116 ROI-wise fMRI series.
Further details on the data collection and characteristics can be found
in Taylor et al. (2017).

2.4.3. HCP1200 dataset — Region of interest
We utilized publicly available data from the Human Connectome

Project (HCP), which includes a total of 1086 subjects. The data can
be accessed at https://www.humanconnectomeproject.org. In our anal-
ysis, we specifically focused on the 116 fMRI node time series that
correspond to the 116 ROI, as defined by the AAL1 atlas (Geerligs
et al., 2016) — consistently with the Cam-CAN setup. The HCP dataset
consists of fMRI recordings obtained from two resting-state sessions
(Rest1 and Rest2). Each session involved scanning from left to right

(LR) and from right to left (RL), resulting in a total of four fMRI

https://www.humanconnectomeproject.org
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recordings for each subject. Each ROI fMRI time series comprised
1200 volumes, with a repetition time (TR) of 720 ms. This equates to
approximately 15 min of scanning for each of the four experimental
settings.

2.5. HCP1200 dataset — Nodes

We conducted additional analysis on the HCP dataset, which in-
volved 25 fMRI node time series obtained from each subject. These
node time series corresponded to the 25 components resulting from
the group-ICA decomposition. Each node time series consisted of 𝑁 =
1200 samples from four resting-state fMRI runs. The HCP consor-
tium performed preprocessing on the 15-minute resting-state fMRI
data of each subject, employing a combination of FSL Multivariate
Exploratory Linear Optimized Decomposition into Independent Com-
ponents (MELODIC) (ICA) and FMRIB’s ICA-based X-noisifier (FIX) to
remove artifacts. Inter-subject registration of the cerebral cortex was
accomplished using areal-feature-based alignment and the Multimodal
Surface Matching algorithm. For the input of group principal com-
ponent analysis (PCA), each dataset underwent temporal demeaning
and variance normalization. Specifically, the HCP consortium utilized
Multivariate Imputation of Gaussian Process (MIGP) group-PCA output
as input for FSL’s MELODIC tool for group-ICA, applying spatial-ICA at
various dimensionalities. For our analysis, we selected a dimensionality
of 25, which determined the number of distinct ICA components
retained for further investigation. Spatial-ICA was conducted in grayor-
dinate space, encompassing surface vertices as well as subcortical grey
matter voxels. The set of ICA spatial maps was then projected onto each
subject’s fMRI time series data to derive one representative time series
per ICA component (referred to as a network ‘‘node’’ in our study).
We estimated the noise level for each of the 25 components in each
run, and then retained the average across the four runs for subsequent
statistical analysis.

3. Results

3.1. Synthetic data

Results are summarized in the boxplots depicted in the subse-
quent figures, where the red lines represent the median noise standard
deviation observed among realizations, and the lower and upper bound-
aries of the blue boxes indicate the 25th and 75th percentiles of the
distribution.

Indeed, results indicate that our approach effectively discriminates
between various levels of superimposed noise; there is a direct correla-
tion between the noise intensity and the dispersion around the median
value. Notably, the standard deviation of the HRF superimposed noise
aligns closely with the one estimated in the synthetic fMRI signal.
Nonetheless, the two datasets exhibit some differences. Specifically,
estimated noise values seem to be underestimated in the first dataset
(refer to Fig. 1(a)), while in the second dataset, they appear to be
more accurate (Fig. 1(b)). We believe these differences are primarily
due to the varying series lengths; indeed, the longer the series, the
more precise the estimation of the noise levels, as previously discussed
in Scarciglia et al. (2023a). To address this limitation, we consis-
tently conducted separate analyses for each dataset. It is important
to note that the positive trends observed within the two datasets are
independent of each other.

3.2. ROI-wise intrinsic brain noise across adult lifespan — CamCAN dataset

For the Cam-CAN dataset, we calculated the Spearman correlation
coefficient between the estimated noise power to signal ratio and
subjects’ age for each ROI. Intrinsic brain noise power in these fMRI
series reaches up to the power of the signal and varies among brain
areas and age. To illustrate, in Fig. 2 the ROIs showing a significant
4

Fig. 1. Noise estimates in synthetic data: For each superimposed noise level (x-axis),
noise was estimated using 𝑚 = 2 and 𝛥𝑟 = 0.001×{time series range} on 100 realizations
of the noisy synthetic fMRI model.

correlation between noise and age are represented. From the dark red
areas, we note that the correlations are mostly verified in the precentral
and frontal areas. More details about Spearman correlation coefficient
and associated 𝑝-value for any ROI between subject-wise noise esti-
mates and subjects’ ages, alongside the AAL1 reference abbreviation
and corresponding MNI coordinates are provided in Table A1 of the
Appendix.

A total of 73 ROIs exhibit statistically significant positive correla-
tions between noise and age, while only two ROIs (# 71 and # 72)
show a significant, negative trend. The left-hand side column of Fig. 3
displays exemplary ROI statistics (#12=Frontal Inferior Operculum R,
#14=Triangular Inferior Frontal Gyrus R, and #16=Frontal Inferior
Orbit R) with statistically significant Spearman correlation coefficients
(𝜌 = 0.2843, 0.2763, and 0.2573, respectively) and 𝑝 < (0.05∕116) com-
puted subject-wise, following a Bonferroni correction. It is noteworthy
that intrinsic brain noise can contribute substantially to the overall
signal power, ranging from 10% to 100% of the fMRI signal power.
In addition, we found that the estimated brain noise levels positively
correlate with the fMRI signal power for any ROI, with a mean ±
standard deviation correlation coefficient of 0.66 ± 0.078 among all the
ROIs, indicating that the brain noise significantly contribute the fMRI
signal variability. The detailed results can be found in Table A2(a) of
the Supplementary Material.

The MFVI index does not correlate with the estimated noise vari-
ance, nor with aging. The MFVI values are consistently slightly below
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Fig. 2. Brain ROIs with a significant correlation between noise and age. The
brain images depict the first 78 ROIs (excluding the limbic system, cerebellum, and
vermis), illustrating the significant Spearman correlation coefficients between noise and
aging. These images correspond to the Cam-CAN dataset, where darker regions indicate
stronger correlations.

Fig. 3. Age-Related fMRI Noise Variation in Key ROIs within the Cam-CAN and
HCP 1200 Datasets. The figure presents boxplot statistics of the noise to signal ratio,
computed as the variance of the encountered noise divided by the power of the signal,
for three significant regions of interest (ROIs): Frontal Inferior Operculum R (#12),
Triangular Inferior Frontal Gyrus R (#14), and Frontal Inferior Orbit R (#16). The
left-hand column corresponds to the Cam-CAN dataset, while the right-hand column
represents the first recording of the four HCP-1200 trials. In the left-hand side panels,
the figure shows the variations in noise to signal ratio across different age groups
(18–87) for the Cam-CAN dataset. The age groups are categorized as follows: <30
(73 subjects), 30–40 (95 subjects), 40–50 (110 subjects), 50–60 (95 subjects), 60–70
(104 subjects), 70–80 (107 subjects), and > 80 (61 subjects). Individual subject noise
estimations are denoted by black crosses. All the ROIs exhibit a significant positive
trend in median noise levels as age increases, with Spearman coefficients of 𝜌 = 0.9286,
0.9286, and 0.87 (p=0.0067, 0.0067, and 0.0238, respectively). Similarly, the right-
hand side panels illustrate the relationship between the noise to signal ratio and age
range series for the first recording of the HCP-1200 trials. The age groups are divided
as follows: 22–23 (114 subjects), 24–25 (113 subjects), 26–27 (195 subjects), 28–29
(185 subjects), 30–31 (177 subjects), 32–33 (177 subjects), and > 34 (121 subjects).
In this case as well, the boxplots demonstrate significant positive trends in median
noise levels as age increases, with Spearman coefficients of 𝜌 = 1.000, 0.8929, and
0.9643 (p<0.0123). Across all panels, the thick blue line represents the least-square
linear regression of the group-wise median noise levels.

the threshold of 0.215, indicating partial phase synchronization of the
underlying neuronal activity.
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Table 1
Percentages of ROIs with consistent correlation among the different recordings of HCP
- 1200.

Fig. 4. Brain ROIs with a significant correlation between noise and age. The brain
images represent the first 78 ROIs – limbic system, cerebellum and vermis are excluded
– where there are represented the significant Spearman correlation coefficient between
noise and aging. The upper four brain images are associated with the Cam-CAN dataset;
the remaining ones with the HCP-1200 dataset. The darker the areas, the higher are
the correlations.

3.3. ROI-wise intrinsic brain noise across adult lifespan — HCP connectome
1200

We conducted noise-to-signal ratio estimations for all four record-
ings of the HCP dataset across different tasks. Additionally, we calcu-
lated the Spearman correlation coefficient between the estimated noise
power and the subjects’ age for each ROI in all sessions. A matching
analysis was conducted to compare results from the four different
resting state sessions. A match for a ROI was determined if the noise
levels of two different datasets either significantly changed with age
(Spearman 𝑝 < 0.05∕116) or did not exhibit a joint correlation with age
(Spearman 𝑝 > 0.05∕116). The results in Table 1 reveal that there were
no significant differences in noise levels across the various recordings,
with at least 90% of the ROIs displaying matching trends between
different resting state sessions.

Therefore, for the sake of brevity and without loss of generality, we
provide a further details and analyses on the HCP dataset focusing on
the first recording in the resting state, denoted as ‘‘Rest1’’, which was
scanned from left to right (LR). Specifically, in Fig. 4 we highlight the
Spearman correlation coefficient between the estimated noise power
and the subjects’ age for each ROI in this particular recording.

Among the 116 ROIs analyzed, 92 of them show statistically signif-
icant positive correlations between noise and age. As for the Cam-CAN
dataset, Fig. 3 illustrates this relationship, specifically highlighting
three ROIs: Frontal Inferior Operculum R (#12), Triangular Inferior
Frontal Gyrus R (#14), and Frontal Inferior Orbit R (#16). These ROIs
exhibit statistically significant Spearman correlation coefficients (𝜌 =
0.3276, 0.3027, and 0.328, respectively) with corresponding subject-
wise p-values of less than (0.05∕116), computed following a Bonferroni
correction.

For a comprehensive overview of the Spearman correlation coef-
ficients and associated p-values between subject-wise noise estimates
and subjects’ ages, please refer to Table A4 in the Appendix. This table
provides the results for all ROIs, along with the AAL1 reference abbre-
viation and corresponding MNI coordinates. Similarly to the previous
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Fig. 5. fMRI Time Series Physiological Noise Analysis. Displayed are the boxplot
statistics for each group-ICA component within the HCP1200 dataset, considering an
embedding dimension of 𝑚 = 2.

Fig. 6. Age-Related Noise Variation in fMRI Cluster Nodes. This figure illustrates
exemplary node-wise noise trends in relation to aging, using an embedding dimension
of 𝑚 = 2. Black crosses represent noise estimation for individual subjects, while the
horizontal red line signifies the median noise level per age range. Age groups are
divided into 22–25 (218 subjects), 25–30 (432 subjects), and > 30 (353 subjects).

analysis, we found positive correlations between estimated brain noise
levels and fMRI signal variance, with a mean and standard deviation
of 0.85 ± 0.074. This confirms that noise plays a fundamental role in
the series variability. The results can be found in Table A2(b) of the
Supplementary Material.

Also this case, the MFVI index does not correlate with the esti-
mated noise variance or with aging. The MFVI values are notably
slightly above the threshold of 0.215, indicating complex coherence or
intermittency in neuronal activity.

3.4. Intrinsic brain noise in aggregated fMRI series

We further conducted noise estimation on fMRI series obtained from
25 highly aggregated nodes. For the purpose of brevity and due to the
similarity of the noise estimation across the four recordings in the rest-
ing state of the HCP-1200 Dataset, we present the results specifically
for the recording in task ‘‘Rest1’’, scanned from LR. The findings are
summarized through group-wise boxplot statistics, as depicted in Fig. 5.
The significance level for the test was set at 𝛼 = 0.05∕25, considering
the Bonferroni correction.

From a spatial perspective, intrinsic brain noise contributes to the
entirety of fMRI variance and demonstrates variability across different
brain regions or group-ICA clusters. On average, noise levels range from
20% to 40% for most nodes, except for clusters 21, 23, and 24, which
exhibit median noise power-to-signal power ratios ranging from 50%
to 90%.

From the perspective of aging, we classified the fMRI series and
the associated stochastic brain dynamics into three age ranges: 22–25,
26–30, and >30. Across all nodes, we observed a consistent pattern of
increasing noise to signal ratios with aging. This increasing trend was
confirmed by conducting a Kruskal–Wallis test, where the null hypoth-
esis assumed equal medians among the three age cohorts. Exemplary
boxplot statistics for nodes exhibiting higher brain noise and displaying
significant noise trends with age are presented in Fig. 6. For more
comprehensive information, please refer to Table A5 in the Appendix.
6

4. Discussion

In this study, we approached fMRI acquisition as a sampled out-
put of an unknown dynamical system representing deterministic and
stochastic brain activity, acknowledging that measurement and intrin-
sic brain noise are inherently interwoven with the observed dynamics.
Measurement noise, or additive noise, arises from external sources due
to limitations or inaccuracies in the data acquisition process, such as
sensor fluctuations, environmental interference, or background noise.
This noise directly impacts the recorded signal, often masking the
true underlying biological phenomena. In contrast, intrinsic biological
noise, or dynamical noise, is an inherent property of biological systems,
stemming from the stochastic nature of various biological processes,
such as gene expression, cellular activity, or neural fluctuations. Quan-
tifying this dynamical noise is challenging, as it depends on the specific
modeling attributed to the deterministic brain activity.

We introduced an estimation framework for the intrinsic brain
noise when the underlying deterministic dynamics is unknown. Our
method leverages the nonlinear quantifier (ApEn) (Pincus, 1991) and
its differential behavior in noisy series when the quantifier is consid-
ered as a function of one of its parameters (Scarciglia et al., 2023b).
We examined stochastic brain components across brain maturation.
Assuming that measurement noise is uncorrelated with aging due to
its distribution across data acquisition from various subjects and MRI
machines, we discovered a modulation of intrinsic brain noise with age
progression in healthy individuals.

Our findings based on the Cam-CAN and HCP Connectome 1200
datasets highlight the distinct distribution of stochastic brain activity
components across various brain regions during resting state, as well
as the modulation of their power during maturation. The behavior
of noise exhibits a similar trend for approximately 80%–85% of the
ROIs in both the Cam-CAN and the four recordings of the HCP Con-
nectome. Specifically, almost all the trends demonstrate a statistically
significant increase along with aging across various brain regions. Only
two ROIs in the Cam-CAN dataset exhibit a negative trend, while
the negative trend is not significant in the HCP Connectome dataset,
possibly due to the narrower age range considered. Additionally, our
analysis suggests that in the reduction of the variability of the fMRI
series along with aging (Xie et al., 2020; Grady and Garrett, 2014),
the intrinsic stochastic component is predominant in the variability
series of elderly subjects, while this noise is marginal in the overall
dynamics of the young cohort. From the comparison with the MFVI, we
deduce that the intrinsic noise could bias the MFVI, masking the actual
interaction of the underlying neuronal activity. We hypothesize that
the encountered noise in the BOLD fMRI signals might overshadow the
correlated neuronal activity through neurovascular coupling (Hillman,
2014). Confirming the method’s validity on noisy synthetic fMRI signals
enhances its resilience to the observed positive trend. Although the
series length could introduce bias when comparing different sample
series, it is essential to note that the escalating noise level has been
independently identified in each dataset. Additional, unreported anal-
yses imply that the amount of noise is approximately linked to the
quantity of pairs of temporally close stimuli, based on the employed
model for fMRI generation. Furthermore, it is important to note that
we performed additional noise estimation analyses, which are not pre-
sented here, to validate the robustness of our findings. These analyses
included: (i) applying a z-score transformation to each fMRI series; (ii)
concatenating the HCP-related z-scored series from different sessions;
(iii) cutting the HCP series length to match the length of the CAM-
CAN series (261 samples); (iv) resampling the HCP series to align with
the CAM-CAN TR by taking one sample every three samples. Notably,
these comprehensive analyses produced results that align with those
presented in the previous section and supplementary material; in fact,
results matching between datasets ranged between 72% and 78%. This
concurrence reinforces the reliability and consistency of our findings.
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Furthermore, approximately 90% of the significant positive corre-
lations are predominantly observed within the first 90 ROIs. Among
all areas, we have identified that frontal regions (in particular, Frontal
operculum R, and orbital part of Inferior Frontal gyrus R) are the
most correlated regions with the estimated brain noise. Other regions
exhibiting high correlations between noise and aging are as the precen-
tral areas, Rolandic Operculum, medial Cingulum and occipital areas.
Age-dependent modulation of fMRI noise is consistently demonstrated
through ICA spatial clusters and standard ROIs in two distinct, publicly
available datasets with pre-processed data. In the HCP fMRI dataset,
despite the narrow age range, the significant number of subjects and
the widespread availability of literature on such data support its use for
investigating brain noise. We remark that while the spatial clustering
in ICA can be viewed as a denoising method, the noise identified in
these processed series is dynamic and inherently linked to the intrinsic
brain dynamics, making its removal a challenging task.

The presence of noise can differentially influence biomarker defini-
tion and estimation across distinct brain regions, possibly resulting in
inaccuracies in pinpointing and characterizing trustworthy indicators
for specific conditions. Consequently, these inaccuracies may give rise
to misinterpretations and incorrect clinical decisions, particularly when
comparing biomarker levels among different brain areas. Therefore,
precise estimation of biological noise is crucial for evaluating psycho-
logical function and associated pathophysiology. Among all the possible
applications, our method could enhance the performances of existing
methods for classifying EEG series, like the mean-field variability in-
dex (Sheppard et al., 2013), by quantifying how much the index is
biased by the amount of noise.

Note that our proposed noise estimation framework can be applied
to any time series, making it potentially valuable in fields beyond
computational physiology and neuroscience.
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