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Abstract

In this paper, we present a new model of dendrite growth in battery cells through

theoretical and numerical analysis. We use a statistical model based on the

competition between a deterministic electric field and a stochastic force, which

both drive the movement of the particles inside the battery cell. The simulation

of the dendrite growth is modeled via Diffusion Limited Aggregation. As a

major aspect, we point out the key role played by the intense electric field close

to the edges of the electrodes, which statistically drives the particles along the

electric field lines.

Keywords: Dendrite Formation, Diffusion Growth, Electrode Edge Effect,

Statistical model

1. Introduction

Dendrite growth represents a major aspect for the success of lithium batteries

technology, and a complete and comprehensive model is still under investigation.

Among the various factors, temperature, electrolyte nature, and nonuniform

current distribution on the electrode surface jointly are at the basis of dendrite
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formation [1]. However, it is recognized that high current densities are the cause

of dendrite growth [2], [3], [4].

Several papers focus on the effect of electric field distribution on the dendrite

growth [2], [5], [6], and [7]. Cui et al. experimentally analyze the effect of an

external electric field in the formation of dendritic carbon nanotubes in acid solu-

tion, and they clearly show the influence of an external electric field. Jana et al.

investigate the effect of the separator pore size on the dendrite growth through

a phase field method. Concerning the electric field, the authors conclude that

an inhomogeneous electric field distribution increases the deposition rate, thus

improving the dendrite growth. Kong et al. develop a lithium cell consisting

of two lithium electrodes and a liquid electrolyte. They provide experimental

evidence of dendrite formation at the corner of the electrodes where the electric

field intensity is higher. Zou et al. consider the electric field distribution as a

dominant factor and propose a copper grid to be interposed between the elec-

trodes, in order to modify the direction of the electric field force lines. Through

such a grid, the authors demonstrate that dendrites are guided to grow parallel

to the electrode plates, thus increasing the safety of the cell.

In [8], Rezinkina presents a model to study the shape of dendrite growth as

a function of the electric field. In more detail, the model divides the domain of

interest in conducting and insulating regions, and assumes a stochastic process

for which the probability to change from one region to the other is determined

by the electric field intensity. The conclusion of his work, indicates dendrite

branching mainly in the longitudinal direction, while this effect diminishes for

lower voltages.

In [9], Aryanfar et al. analyze the effect of pulse charging through a Monte

Carlo calculation. The authors show that shorter charge pulses mitigate the

dendrite growth, although their duration has to be larger than some charac-

teristic time. In addition, they also demonstrate how an appropriate frequency

rate can contribute to the reduction of the dendrite formation.

We start our analysis again analytically deriving the electric field distribution

for a capacitor made by two disk electrodes. Indeed, the charge distribution and
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the electric field are not uniform on the electrode surface and ideally diverge at

the edges. Thus, our conjecture is that such regions are particularly critical for

the dendrite growth.

Park et al. propose a relatively stable electrolyte system with respect to

lithium metal and able to reduce the dendrite growth, combining simulation with

in situ experimental observation [10]. In particular, the effect of the viscosity

of the electrolyte is analyzed through a Diffusion Limited Aggregation (DLA)

simulation model [11]. In [12], the fractal shape of dendrites forming during

electrodeposition is simulated by a DLA method, although the authors state

how there is still lack to predict shape and proper time scale for a real case. In

order to explore our conjecture, we also implement the effect of a nonuniform

driving force into a DLA scheme based on Brownian motion. The computation

domain is subdivided into several regions of probability and the results of this

simulation are then compared with the case of uniform driving force.

Analyses by Scanning Electron Microscopy of the electrode morphology

shows a rough surface. Within this context, whenever the radius of curva-

ture of the asperity peaks is relatively small, high intensity electric fields are

expected, but, as it will be better discussed throughout the paper, such local

fields are expected to vanish at a relatively short distance. Thus, on average,

the electric field distribution inside the capacitor will not be affected by these

local fields, but rather by the edge effects, which are expected to play a key role

on a relatively long distance.

The paper is organized as follows: In Sec. 2, we reformulate the classical

electrostatic problem of the charge distribution on a parallel plate capacitor

with disk electrode of finite radius, and point out the edge effects. In Sec. 3,

we present a statistical model combining the deterministic electric force with

a stochastic force due to the collision among all the particles inside the cell.

The model shows that the probability to find a charged particle (ion) in a given

region of the battery cell is determined by the electric potential and ultimately

by the electric field. In Sec. 4, we propose a simulation model based on a DLA

scheme. For each simulation, we follow the movement of one single charged
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particle driven by a stochastic force due to the interaction with all the particles

inside the cell, and a deterministic force due to the electric field. The stochastic

force generates a diffusion process and competes with the deterministic force.

The numerical analysis reproduces the growth of dendrites along the field lines,

which are denser close to the ends of the cell. Finally, in Sec. 5 we draw our

conclusions.

2. Finite Capacitor Model

An accurate analysis of the electrostatic potential distribution inside a bat-

tery cell is a complex task. At a first approximation, the electric field generated

within the double layer at the interface electrode/electrolyte can be assumed

uniform and to decay abruptly immediately outside. More advanced mod-

els simulate a gradual transition of the electric field across a diffused double

layer [13].

Under the hypothesis of electrodes with relatively high electrical conductivity

with respect to the electrolyte, we can assume the charge relaxation time on

the electrode surface negligible, and finally define an electrostatic problem to

investigate the electric field in the electrolyte, during the charge and discharge

phases. As a matter of fact, an electrostatic field E moves the ions across the

electrolyte, and in the electrolyte solution holds the Ohm’s law J = σE, where J

and σ are the local current density and electrical conductivity. Knowing the

charge distribution at the electrodes, we could finally solve the electrostatic

problem and determine the electric field distribution into the cell.

Here, we derive the charge and field distributions for a two-parallel disk

capacitor, showing how the electric field intensity diverges at the very electrode

edge region. Our conjecture aims at discussing how edge effects can play an

important role in the dendrite formation. Relatively more intense field values

are expected close to the electrode edges in the actual case, thus making such

regions more critical for the growth of dendrites.

The evaluation of the electric field distribution between two parallel disks is
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Figure 1: Two disk capacitor scheme.

a known problem of electrostatics and it can be found in the classical literature

[14]. This appears also in the study of current density distribution for battery

cell as well as for electrodeposition problems [15], [16]. Recently, some papers

provided experimental evidences on how edges and corners are preferential spots

for dendrite growth [2], [17], [18]. Although an accurate modeling is still missing,

we believe this discussion can contribute to shed some more light on this specific

issue.

Let us consider the very basic case of the electric field distribution inside a

finite capacitor. The anode and cathode are in our case modeled as two disks

of finite radius a. In order to simplify the calculation for the potential of a

disk of radius a we will use a more handy expression than the one used in [14].

We introduce the polar coordinate system (r, θ, z) and we set the origin of the

reference frame at the center of the bottom disk, as shown in Fig. 1. The electric

potential generated by the two disks has the following expression:

ϕ1(r, z) =
2V1

π
×

sin−1

[

2a
√

(r − a)2 + z2 +
√

(r + a)2 + z2

]

, (1)

ϕ2(r, z) =
2V2

π
×

sin−1

[

2a
√

(r − a)2 + z21+
√

(r + a)2 + z21

]

. (2)
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where ϕ1(r, z) and ϕ2(r, z) are the electric potentials generated by the bottom

and the upper disk, respectively, and h is the distance between the two disks.

Also, we introduced z1 = z − h for more compact notation. The electric field is

given by

E = −∇ϕ(r, z), ϕ(r, z) = ϕ1(r, z)− ϕ2(r, z). (3)

We omit the exact expression for E since it is quite large. We will focus on the

central region and on the circular boundaries. The field in the central region of

the capacitor (r ≪ a) at first non-vanishing order r/a is given by

Er(r, z) ≈ 0, (4)

Eθ(r, z) = 0, (5)

Ez(r, z) ≈ 2V

πa





1
(

1 +
(

h−z
a

)2
) +

1
(

1 +
(

z
a

)2
)



 . (6)

Near r ≈ a we have

Er(r, z) ≈
4
√
2V

πa










1

√

z
a

√

(

z
a

)2
+ 4

(

z
a +

√

(

z
a

)2
+ 4

)3/2
+

− 1
√

h−z
a

√

(

h−z
a

)2
+ 4

(

h−z
a +

√

(

h−z
a

)2
+ 4

)3/2











. (7)

Eθ(r, z) = 0, (8)

Ez(r, z) ≈
2
√
2V

πa








1
√

(

h−z
a

)2
+ 4

√

h−z
a

√

h−z
a +

√

(

h−z
a

)2
+ 4

+
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+
1

√

z
a

√

(

z
a

)2
+ 4

√

z
a +

√

(

z
a

)2
+ 4









. (9)

Note that for z → h, and z → 0 then Er, Ez → ∞ (see Figs. 2 and 3).

0.1 0.2 0.3 0.4 0.5
z

-3

-2

-1

1

2

3

E
r

Figure 2: Er radial component of the electric field E. The positive plate is located at the top.

The field is evaluated at the edge of the capacitor, i. e. at r ≈ a. The parameter values in

given unit of length and voltage are: h = 1/2, V1 = −1, V2 = 1, a = 1, and r = 0.99.
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Figure 3: Ez vertical component of the electric field E. The positive plate is located at the

top. The field is evaluated at the edge of the capacitor, i. e. at r ≈ a. The parameter values

in given unit of length and voltage are: h = 1/2, V1 = −1, V2 = 1, a = 1, and r = 0.99.

3. Stationary Diffusion in a Finite Domain Driven by an Electric Field

In this section, we propose a statistical model, which describes the ion col-

lision with all the particles inside the cell through a random force F, and the

interaction with the electric field during the charge-discharge phase through a

deterministic force qE, assuming q > 0 in our treatment. At a first approxima-

tion, we do not consider the electric field near the ions, since, even if it is very

intense close to the particle, it decays quickly. The details of the effect of the
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electric field in proximity of the ions together with the details of the dendrite

formation will be addressed and discussed in Sec. 4, where a simulation model

based on a DLA scheme will be considered. Here, we aim at showing that the

charged particles in the cell statistically follow the electric field lines, and the

probability to find a charged particle in a given region of the cell is determined

by the relevant local intensity of the electric field. Due to the fact that the we

are considering a finite plate capacitor model for determining the electric field

inside the cell, according to the previous section the charge probability distri-

bution is not uniform. This important fact will also be considered in the DLA

model of Sec. 4. Let us now start considering the continuity equation

∂ρ

∂t
= −∇ · J, J = ρ

dx

dt
, (10)

where ρ is the density of the particles, J is the associated current density and x =

x̂i + yĵ + zk̂ is the position vector in a cartesian coordinate system while î, ĵ

and k̂ are the unit vectors along the x, y and z axes respectively. The equation

of motion is

m
d2x

dt2
+ γ

dx

dt
= qE+ F, (11)

where qE is the deterministic force (electric force) and F is the stochastic force

associated to the collision of the ions with all the particles inside the cell, while

m is the mass of the single ion and γ a viscosity coefficient. We will adopt

the white noise prescription for F. If we consider the case friction dominated

process we may write

dx

dt
= qµE+ f , (12)

where µ = 1/γ is the mobility and f = µF. Setting ρ = qn, the Van Kampen

lemma [19] allows us for relating the charged particle density n(x, t) with the

probability density function P (x, t), i.e.
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〈n(x, t)〉 = P (x, t). (13)

Making the statistical average on many density realizations of (10), we have [20]

∂P (x, t)

∂t
= ∇ · (−qµEP (x, t) +D∇P (x, t)), (14)

where we used (12) for the charged particle velocity dx/dt and where at the

thermodynamical equilibrium it holds D = µkT (Einstein’s relation, see [20] for

its derivation). We may say something in general on the case of a stationary

process, i.e. ∂tP (x, t) = 0. Considering a closed volume the flowing current has

to vanish and we have

−qµEPeq(x) +D∇Peq(x) =

qµ∇ϕPeq(x) +D∇Peq(x) = 0, (15)

where Peq is the equilibrium probability distribution. Solving the above equation

we obtain the well known solution

Peq(x) = A exp
[

−qµ
ϕ

D

]

= A exp
[

− qϕ

kT

]

, (16)

where the constant A has to be determined imposing the normalization condi-

tion
∫

V
P (x, t)dV = 1. We evaluate the following quantity

Peq(x1)

Peq(x2)
= exp

[

−q
ϕ(x1)− ϕ(x2)

kT

]

≈

≈ exp

[

−qE(x1) · δx
kT

]

, δx ≡ x2 − x1. (17)

where the approximation indicates the first term of the Taylor series. Being in

our case q > 0, we infer that the ratio of the two probability densities increase

exponentially along the lines of force of the electric field E(x), i.e. when the
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angle between E(x) and δx is zero. We deduce that the probability to find

the charged particles is larger along the lines of force, where the field is more

intense, i.e., near to the capacitor edges.

In spite of the fact that intuitively we are led to conjecture that the charged

particles follow the lines of force of the electric field, (16) shows that the equi-

librium probability distribution is a function of the potential energy, which is

related to the electric field via the gradient operator.

To be more consistent with the two dimensional numerical simulations per-

formed in Sec. 4, we reduce the three dimensional problem discussed above to a

two dimensional analysis with a rectangular domain of sides a and b. The vector

x describing the particle position is now given by x = x̂i + zk̂ where î and k̂

are the unit vectors along the x and z axes, respectively, and the left low corner

of the rectangle is chosen as the origin of the frame system. For simplicity, we

consider a uniform field E. Applying (16) to this particular case, we have

Peq(x) ≡ Peq(x, z) =
q2ExEz exp

[

q(Exx+Ezz)
kT

]

k2T 2
(

1− exp
[

qaEx

kT

])(

1− exp
[

qbEz

kT

]) , (18)

where a and b are the sides of the rectangle. To further simplify the problem, we

assume that | qE ·x/(kT ) |≪ 1. Using the Taylor expansion exp [qE · x/(kT )] ≈
1 + qE · x/(kT ) + · · ·, (18) reads at the first order in qE · x/(kT ) as:

Peq(x, z) ≈
1 + q(Exx+Ezz)

kT

k2T 2ab
[

1
k2T 2 + q(aEx+bEz)

2k3T 3

] ≈

1

ab

[

1− q(aEx + bEz − 2(Exx+ Ezz))

2kT

]

. (19)

The probability Pr to find a charged particle in a small rectangle of area (a2 −
a1)(b2 − b1) is

Pr [a1 ≤ x ≤ a2, b1 ≤ z ≤ b2] =

∫

∆S

Peq(x, z)dxdz ≈

∆S

S

[

1− q(a− a1 − a2)Ex + q(b − b1 − b2)Ez

2kT

]

, (20)
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where ∆S = (a2−a1)(b2−b1) and S = ab. Note that the first term of the proba-

bility, ∆S/S, represents the uniform probability, namely the process without the

electric field while the second term represent the small correction to the uniform

probability caused by the presence of the electrical field. The corresponding two

dimensional expression of (17) for nonuniform electric field distribution writes

unchanged as:

Peq(x1)

Peq(x2)
= exp

[

−q
ϕ(x1)− ϕ(x2)

kT

]

≈ exp

[

−qE(x1) · δx
kT

]

, (21)

where we now defined δx ≡ x2 − x1 = (x2 − x1 )̂i+ (z2 − z1)k̂.

Although the previous discussion is more qualitative than quantitative, it is

important to note that if the thermal energy kT is greater than the potential

energy qϕ (kT ≫ qϕ) then the presence of the electric field slightly changes the

uniform probability to find an ion in a given volume, see (20). If the electrical

field is so intense such that kT ≪ qϕ then the charged particles will gather

along the electrical field lines where the electric field is more intense. [[With

reference to the capacitor under study, as shown in (7) and (9), this condition

is realized near the border of the circular plates.]] Using the results of this

elementary model we may infer that if it holds the condition kT ≫ qϕ, then the

charged particles will tend to weakly follow the force lines of the electrical field

and their distribution will be almost uniform, see (20). In this case the thermal

energy counteracts the charged particle aggregation. If it holds kT ≪ qϕ then

the probability density, roughly speaking, is different of zero only along the field

lines where the electric field is more intense. This implies that the majority of

the ions will gather mostly along such lines, facilitating the aggregation of the

charged particles along those lines.

4. DLA Numerical Simulation

The model adopted for the simulation of dendritic growth in our batteries is

based on a statistical DLA (Diffusion Limited Aggregation) scheme, which is a
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model proposed by Witten and Sander in 1981 to explain the observed fractal

shape of dust particle aggregates [11]. The traditional DLA simulation starts

with an initial seed particle positioned at the center of an m×n matrix and an-

other particle in some other part of the lattice, free to move following a random

walk due to Brownian motion, until it reaches the seed particle and aggregates

with it. Subsequent released particles follow the same diffusion process until

they aggregate to form a cluster centered on the seed particle.

In our case, the DLA simulation is obtained by allowing the random walkers

to initially aggregate to a straight line of seed particles positioned at the bottom

of the m × n matrix. For the sake of clarity, the matrix m × n represents the

rectangle of sides a and b mentioned in Sec. 3, which models the two dimensional

space between the two electrodes of the cell. The randomness of the diffusion

process of our model is biased by an anisotropic probability distribution of

movement of the free particles to favor their movement in some directions rather

than others. In more detail, we partition the m × n matrix in k configurable

zones, each having a specific set of probability values for the free particle to

move up, down, left, or right during its diffusion process. At the same time,

to mimic the conservation of the number of particles, every time a diffusing

particle (representing an ion in our case) reaches one of the two sides, or the

top, of the m× n matrix it bounces off and it continues its random walk. With

these choices, we are able to represent:

a) The space between the electrodes of our cells with the matrix m× n;

b) The variable electric field between the electrodes with the k probability zones.

In Figs. 4 and 5, we show the results of a simulation of an m×m matrix in the

case of 49 zones of isotropic and anisotropic probability distribution of movement

of the free particles, respectively.
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Figure 4: Simulation of a 245× 245 matrix with 49 zones of isotropic probability distribution

of movement. Aggregation of 1864 particles.

Figure 5: Simulation of a 245×245 matrix with 49 zones of anisotropic probability distribution

of movement. Aggregation of 586 particles.

In order to keep the growth of the dendrites in reasonable simulation times,

we decided to end the simulation half way between the two electrodes. The

probability distribution of movement of the free particles has been selected ac-

cordingly to the intensity of the electric field. In more detail, the probability

distribution increases moving towards the down-right and down-left corner.

The program for this simulation was developed using the free and open-
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source Anaconda distribution, which includes Python 3.6 and all the up-to-date

scientific packages that come with it.

5. Conclusions

We presented a new model of dendrite growth in battery cells. Through

a statistical model, we described how the deterministic electric field and the

stochastic force combine to drive the charged particles inside the battery cell.

We simulated the dendrite growth via Diffusion Limited Aggregation model

for different electric field distributions inside the cell. Finally, we showed how

charged particles align along the intense electric field, thus making critical for

the growth of dendrites the region close to the edges of the electrodes.
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