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A GAUSSIAN APPROXIMATION OF THE DISTRIBUTED

COMPUTING PROCESS

O. V. Lukashenko1, E. V. Morozov2, and M. Pagano3

Abstract: The authors propose a refinement of the stochastic model describing the dynamics of the Desktop Grid
(DG) project with many hosts and many workunits to be performed, originally proposed by Morozov et al. in
2017. The target performance measure is the mean duration of the runtime of the project. To this end, the authors
derive an asymptotic expression for the amount of the accumulated work to be done by means of limit theorems for
superposed on-off sources that lead to a Gaussian approximation. In more detail, depending on the distribution of
active and idle periods, Brownian or fractional Brownian processes are obtained. The authors present the analytic
results related to the hitting time of the considered processes (including the case in which the overall amount of
work is only known in a probabilistic way), and highlight how the runtime tail distribution could be estimated by
simulation. Taking advantage of the properties of Gaussian processes and the Conditional Monte-Carlo (CMC)
approach, the authors present a theoretical framework for evaluating the runtime tail distribution.

Keywords: Gaussian approximation; distributed computing; fractional Brownian motion

DOI: 10.14357/19922264190215

1 Introduction
Gaussian processes are widely used in the performance
analysis of telecommunication systems for their analytic
tractability and arguments based on the central-limit
theorem that make them suitable in case of a large num-
ber of independent contributions. For instance, these
models are able to capture, in a simple and parsimonious
way, the properties of self-similarity and long-range de-
pendence, inherent to multimedia network traffic [1, 2].
These properties dramatically increase the difficulty of
the probabilistic analysis and, as a consequence, in
many cases only Monte-Carlo simulation can be used.
The fractional Brownian motion (FBM) is one of the
most studied self-similar long-range dependent Gaus-
sian processes due to its simplicity. Its use as traffic
model is supported by the following theoretical analy-
sis [3]: the sum of an increasing number of the so-called
on-off inputs, with either on-times or off-times having
a heavy-tailed distribution with infinite variance, con-
verges weakly to an FBM, after an appropriate time
scaling.

In this paper, the applicability of FBM for high-
performance computing is considered. In that frame-
work, computing clusters and computational Grid sys-
tems are the main tools: computing clusters are based on
computing nodes connected by a high-speed network,

while computational Grid systems include geographical-
ly dispersed computing nodes connected by a relatively
slow network.

Desktop Grid belongs to the latter class. The
DG combines nondedicated hosts (typically, desk-
tops/laptops owned by volunteers) over the Internet to
process loosely coupled workunits (computational tasks).
Desktop Grids utilize the idle host resources, providing
potentially huge, although highly variable, computing
power. (For example, the DG project EinsteinHOME
aggregates peak performance at about 1 PetaFLOPS [4].)
Typically, DGs are managed by a scientific community
that utilizes the resources to complete a DG project which
consists of a (usually finite) number of workunits. Thus,
the runtime of the DG project is the time to complete all
the workunits and it is desirable to minimize it.

Minimization of the DG project runtime may be
performed by means of scheduling optimization [5–7].
Additional information on the hosts, such as reliability
and availability, can be used to improve the efficiency
of DGs [8, 9], In [10, 11], the focus is placed on the
so-called workunit replication mechanism for reliability
purposes. However, to the best of our knowledge, the
estimation of the runtime of a DG project remains gen-
erally an unsolved issue, and it is the main motivation of
this paper.
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Desktop Grids have several important distinctive fea-
tures when compared to computational Grids or com-
puting clusters. First of all, hosts, being nondedicated,
possess individual availability periods. Moreover, the
management server of a DG is not able to obtain in-
formation on the current state of the hosts (such as
“computing,” “suspended,” etc.). These two issues
make the estimation of the runtime of a DG project
a hard problem.

The execution of a DG project can be divided into
two stages. During the first phase, the number of work-
units is greater than the number of hosts and, thus, each
host will receive at least one workunit. In the second
stage, all the available workunits are dispatched and there
are available (idle) hosts. In this paper, the focus is on
the duration of the first phase which is studied by means
of a Gaussian approximation of the overall work. The
study of the second stage requires a completely different
probabilistic technique, which relies on the theory of
order statistics and the asymptotic properties of renewal
processes, and is postponed for a future work. Thus, in
what follows, runtime will relate to the first stage of the
project solely.

We describe the availability patterns of the hosts by
treating each of them as an individual on-off source
which processes workunits during on periods. Our ap-
proach is based on the asymptotics of the (properly
scaled) superposition of a large number of independent
on-off sources. It is well-known [3] that after an ap-
propriate scaling, the limiting process describing the
summary workload in the system turns out to be Browni-

an motion (BM), when the sojourn times are light-tailed,
while it becomes fractional Brownian motion in case of
heavy-tailed sojourn times. Then, the problem reduces
to the calculation of the hitting time of the given thresh-
old D by the process of accumulated work which is
a well-known topic in probability theory.

The paper is organized as follows. Section 2 presents
the theoretical background related to FBM, includ-
ing functional limit theorems for the cumulative work
performed by an increasing number of on-off sources.
Then, Section 3 describes the model and summarizes the
available analytic results, while Section 4 is devoted to
the evaluation of the runtime tail distribution by means
of the CMC method which potentially leads to variance
reduction of the estimate of the runtime. Finally, in Sec-
tion 5, the main contributions of the paper are presented
and some future research issues are discussed.

2 Theoretical Background

In this section, let us recall the basic definitions about
FBM and how it is related to the limiting theorems for
the superposition of independent on-off sources.

2.1 Fractional Brownian motion

The FBM {BH(t), t ∈ R} is a Gaussian centered pro-
cess with BH(0) = 0, stationary increments, and the
following covariance function:

KH(t, s) := E [BH(t)BH(s)]

=
1

2

[
|t|2H − |t− s|2H + |s|2H

]
, s, t ≥ 0

where H ∈ (0, 1) is the so-called Hurst parameter. It is
easy to verify that BH(t) is a self-similar process with
self-similarity parameter H, i. e., for each c > 0,

c−HBH(ct)
d
= BH(t)

where
d
= denotes equality in distribution.

Fractional Brownian motion is widely used for mod-
eling purposes due to its Gaussianity (that typically
arises under aggregation conditions) and parsimonious
description (apart from mean and variance, its behavior
is unambiguously determined by H).

When H > 1/2, FBM is a long-range dependent
process since the autocorrelation of the corresponding
increment process is nonsummable. For more details on
FBM and its properties, see [12].

2.2 Limit theorems for distributed computing
processes

Let us assume that the DG consists of N heteroge-
neous hosts which can be considered as independent
on-off sources. In more detail, let us suppose that there
are n types of hosts (n < N ) and denote by Ni the
number of i-type hosts, i. e.,

∑n
i=1Ni = N . Moreover,

let Ri denote the amount of processed work per unit
time for i-type hosts and let

{
I(i)(t), t ≥ 0

}
,

I(i)(t) =

{
Ri , t ∈ on-period ;

0 , t ∈ off-period ,

be the on-off process that characterizes the activity/silent
periods of the corresponding hosts (Fig. 1). For sake
of simplicity, it is assumed that for each host, both on

and off periods are sequences of i.i.d. (independent and
identically distributed) random variables (RVs) and mu-
tually independent. Moreover, as already stated, the

Figure 1 On-off model

110 INFORMATIKA I EE PRIMENENIYA — INFORMATICS AND APPLICATIONS 2019 volume 13 issue 2



A Gaussian approximation of the distributed computing process

on-off processes modeling the contribution of different
hosts are assumed to be independent.

The cumulative processed work, i. e., the aggregated
amount of work provided by allN hosts, during the time
interval [0, t] is given by

A(t) =

t∫

0

(
n∑

i=1

Ni∑

k=1

I
(i)
k (u)

)
du

where I(i)k are the independent copies of I(i), i = 1, . . .
. . . , n. Moreover, for the i-type (i = 1, . . . , n) hosts, let
us denote byµi

on, σi
on, µi

o¨ , and σi
o¨ the mean length and

standard deviation (that may be infinite) of the duration
of the on and off periods, respectively.

The statistical behavior of A(t) is determined by the
distributions F i

on and F i
o¨ of the on and off periods for

each type of hosts, namely, by their tail. In more detail,
in case of infinite variance, let us assume that as x→ ∞,

1− F i
on(x) ∼ ℓionx

−αi
onLi

on(x) ;

1− F i
o¨(x) ∼ ℓio¨x

−αi
offLi

o¨(x)

where a ∼ b means that a/b → 1; ℓion and ℓio¨ are the
positive constants; the exponents αi

on and αi
o¨ ∈ (1, 2);

and the functions Li
on and Li

o¨ are slowly varying at
infinity, i. e., for any t > 0,

lim
x→∞

Li(tx)

Li(x)
= 1 , i = 1, . . . , n .

Instead, if σi
on and σi

o¨ <∞, we set αi
on = α

i
o¨ = 2.

It has been shown in [3] that the scaled process of cu-
mulative work arrived during interval [0, T t] converges
weakly to a sum of the i.i.d. FBM’s, provided that

(1) Ni → ∞ such that limN→∞Ni/N > 0, i = 1, . . .
. . . , n; and

(2) the scaling factor T → ∞.

This functional limit theorem leads to the following
approximation:

A(tT ) ≈ T

(
n∑

i=1

RiNi
µi
on

µi
on + µ

i
o¨

)
t

+

n∑

i=1

THiRi

√
Li(T )NiciBHi(t)

where ci are the positive constants; Li are the slowly
varying at infinity functions (expressed in terms of the
given parameters); and BHi are the independent FBMs
with the Hurst parameters Hi given by

Hi =
3−min(αi

on, α
i
o¨)

2
∈
(
1

2
, 1

)
, i = 1, . . . , n .

Thus, the cumulative work processed by a large number
of independent hosts (with heavy-tailed distributions of
the on-off periods) is approximated by a superposition of
independent FBMs {BHi (t)}, i = 1, . . . , n, with a linear
drift that depends on the rates Ri and the average duty
cycle.

Instead, if for all types of hosts the variances of the so-
journ times are finite (i. e.,σi

on, σ
i
o¨ <∞∀i = 1, . . . , n),

then the limiting (scaled) process becomes

T

(
n∑

i=1

RiNiµ
i
on

µi
on + µ

i
o¨

)
t+

(
√
T

n∑

i=1

Ri

√
Nici

)
W (t)

where W (t) is the Wiener process, and the constants ci
are given by

ci =

√√√√(µ
i
o¨σ

i
on)
2 +

(
µi
onσ

i
o¨

)2
(
µi
on + µ

i
o¨

)3 .

Finally, it is worth mentioning that taking the lim-
its in reverse order, the (scaled) process of cumulative
work converges to a Levy stable motion, an infinite
variance process with stationary and independent incre-
ments [13]; however, such model is beyond the scope of
this paper as in DG, the experimental data confirmed
the convergence to processes with finite variance.

3 Model Description
and Performance Measures

The above functional limit theorems provide a theoret-
ical motivation to consider the following model for the
cumulative processed work:

A(t) = mt+X(t) (1)

whereX is the centered Gaussian process with stationary
increments (FBM or the sum of independent FBM, in
case of heterogeneous systems), which describes random
fluctuations around the linearly increasing mean. Such
type of stochastic process was previously suggested as
the model of network traffic (see [14] for more details).

Let us denote by τD the runtime of the DG project
whereD denotes the required amount of work. Thus, τD
represents the hitting time of the process {A(t)}:

τD = min{t : A(t) ≥ D} ,

i. e., the first time the process {A(t)} hits the thresh-
old D. Then, the original problem is reduced to the
calculation (or estimation) of some useful performance
characteristics, such as the mean hitting time.
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3.1 Available analytic results

Let us recall the available analytic results for differ-
ent types of Gaussian processes, corresponding to the
different limiting cases.

3.1.1 Wiener case

When X is a Wiener process (i. e., X = σB1/2), the
density of τD is available in explicit form [15]:

P(τD ∈ dt) =
D√
2πσt3/2

exp

(
− (D −mt)2

2σ2t

)
dt

=:fτ (t|D) dt . (2)

In this case, the corresponding expected value E[τD] is
the ratio between the given amount of the work D and
the mean processing rate [15]:

E [τD] =
D

m
.

3.1.2 Fractional Brownian motion case

When the limiting process is an FBM, only asymptotic
results and some bounds for the distribution of τD are
available.

In [16], the following bounds (quite inaccurate
when H is close to 1, see Fig. 2) for the moments
of the hitting time were obtained for 1/2 ≤ H < 1:

1√
2π

(
2HD

n−H
Ln(D,H,m)

− (2H − 1)m
n+ 1−H

Ln+1(D,H,m)

)
≤ E [τn

D]

≤ 1√
2π

(
HD

n−H
Ln(D,H,m)

+
(1−H)m

n+ 1−H
Ln+1(D,H,m)

)

Figure 2 Bounds for the mean hitting time (D = 10, m = 3):
1 — D/m; 2 — lower bound; and 3 — upper bound

where

Ln(D,H,m)

=

∞∫

0

exp

{
−1
2

(
Dt−H/(n−H) −mt(1−H)/(n−H)

)2}
dt.

Additionally, the following asymptotic was derived for
the large values of level D:

lim
D→∞

E [τn
D]

Dn = m−n

for all n ≥ 1, m > 0, from which it is quite straightfor-
ward to show that for all n ≥ 1,

τD
D

Ln−→ 1

m
as D → ∞

where
Ln−→ means convergence in Ln space.

3.1.3 General case

In the general case, to derive asymptotic (for large values
of D) for the distribution of τD, it is possible to take
advantage of the following identity:

P (τD ≤ T ) = P

(
sup

t∈[0,T ]

A(t) ≥ D

)
.

The distribution of the maximum of Gaussian pro-
cesses over a finite interval is a well-studied problem. In
more detail, for any Gaussian process with stationary
increments and strictly monotonically increasing and
convex variance such that limt→0Var(X(t))/t = 0, the
following asymptotic holds [17]:

P

(
sup

t∈[0,T ]

A(t) ≥ D

)
∼ �

(
D −mT√
Var(X(T ))

)

as D → ∞

where � denotes the tail distribution of the standard
normal RV N(0, 1).

3.2 A possible generalization

It seems quite natural to consider the setting in which
the threshold D is an RV which is independent of the
process X in (1). Such a setting seems to be highly
motivated by practice because it is more realistic that
the exact value of the quantity D is not available, and it
is known in part. This incomplete information can be
reflected by introducing the probability density function
(PDF) fD of D, which is assumed to be predefined.
Provided that X in (1) is a Wiener process and, hence,

112 INFORMATIKA I EE PRIMENENIYA — INFORMATICS AND APPLICATIONS 2019 volume 13 issue 2



A Gaussian approximation of the distributed computing process

the conditional density fτ (t|D) in (2) is known, one can
write the density of the RV τD as

fτ (x) =

∞∫

y=0

fτ (x|y)fD(y) dy .

In general, one can calculate this density only by nu-
merical methods but for some cases, it is possible to
derive its expression in terms of special functions. For
example, when D is exponential with parameter λ, one
can obtain the following expression:

fτ (x) =
λ√

2πσx3/2
exp

(
−m

2x

2σ2
+

γ2

8β(x)

)

× (2β(x))−1/2D−1

(
γ√
2β(x)

)
(3)

where

γ = λ− m

σ2
; β(x) =

1

2σ2x
;

andDp,Re p < 0, is the parabolic cylinder function [18].
Numeric calculation of the expression (3) is shown in
Fig. 3.

Figure 3 Probability density function of τD for different values
of m (λ = 1): 1 — m = 1; 2 — 2; and 3 — m = 3

4 Estimation via Monte Carlo

A more flexible alternative to analytic results is repre-
sented by simulation that in our case can be used to
estimate

π(T ) := P (τD > T ) .

Such probability could be extremely small for large val-
ues of T ; thus, its estimation with a given accuracy
requires to generate a large number of sample paths of
the process X . However, for such type of rare events,
it is possible to apply a special case of the well-known
CMC method which always leads to variance reduction.

The method, originally proposed by some of the
authors in [19–21] and named Bridge Monte Carlo
(BMC), is based on the idea of expressing the target
probability as the expectation of a function of the Bridge
Y := {Yt} of the Gaussian process X, i. e., the process
obtained by conditioning X to reach a certain level at
some prefixed time instant τ :

Y (t) = X(t)− ψ(t)X(τ)

where ψ can be easily expressed in terms of the the
covariance function •(s, t) of the process X

ψ(t) :=
•(t, τ)

•(τ, τ)
.

Since the variance of X is an increasing function of t in
all models we consider, it is easy to see that ψ(t) > 0
for all t ≥ 0. Moreover, for any t, Y (t) is independent
of X(τ) since

E [X(τ)Y (t)] = •(τ, t)− •(t, τ)
•(τ, τ)

•(τ, τ) = 0

and (X(τ), Y (t)) has bivariate normal distribution.
Let T = [0, T ], then the target probability can be

expressed in the following way:

π(T ) = P

(
sup

t∈[0,T ]

A(t) ≥ D

)

= P (∀t ∈ T : mt+X(t) ≤ D)

= P

(
∀t ∈ T : X(τ) ≤ D − Y (t)−mt

ψ(t)

)

= P

(
X(τ) ≤ inf

t∈T

D − Y (t)−mt

ψ(t)

)

= P
(
X(τ) ≤ Y

)

where

Y := inf
t∈T

D − Y (t)−mt

ψ(t)
.

Finally, the considered probability can be rewritten
as follows:

π(T ) = P
(
Xτ ≤ Y

)
= E

[
ā

(
Y√
•(τ, τ)

)]

where independence between Y and Xτ is used and ā
denotes the cumulative distribution function of a stan-
dard normal variable.

Hence, givenN samples{Y (n), n = 1, . . . , N}ofY ,
the estimator of π(T ) is defined as follows:

π̂BMCN :=
1

N

N∑

n=1

ā

(
Y
(n)

√
•(τ, τ)

)
.
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Note that

ā

(
Y√
•(τ, τ)

)
= E

[
I(X(τ) ≤ Y )|Y

]

and, therefore, the BMC approach is actually a special
case of the CMC method; so, one can expect that the
BMC estimator implies variance reduction (with regard
to crude Monte-Carlo simulation) in the estimation of
the target probability π(T ) as also justified by the pre-
vious experience when such a method was successfully
applied for estimation some other rare-event probabili-
ties related to Gaussian processes [22].

5 Concluding Remarks
and Future Research

In this paper, a stochastic model describing the dynamics
of a DG project with many hosts and many workunits to
be performed, originally proposed in [23], is presented.
It is assumed that the project can be described by the so-
called on-off model where the hosts are on-off sources
of the workunits and the basic process is the completed
work. It is assumed that the hosts’ working sessions can
have both light- and heavy-tailed distributions. Then, an
approximation of the basic process, based on the asymp-
totics of the superposed on-off sources, is applied. The
suggested approach leads to a Gaussian approximation
of the process of the completed work. Finally, a simula-
tion framework for the evaluation of the runtime of the
project, using the properties of Gaussian processes and
CMC simulation, is presented.

Although this note is focused on estimation of the
runtime related to the 1st stage of the project completion
when the number of workunits is bigger than the number
of hosts, the 2nd stage could also be relevant. In more
detail, it can be considered as a collection of the “tails”
of the workunit remaining times. From this point of
view, the completion time of the 2nd stage of the project
can be interpreted as the longest remaining time and
analyzed by means of the asymptotic results of renewal

theory. Moreover, since the workunits are assumed to be
independent, to evaluate the duration of the 2nd stage,
it seems promising to apply the theory of order statistics

and interpret the completion time as the maximal order
statistics.
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Аннотация: Продолжено изучение стохастической модели процесса динамики выполнения задачи в сис-
теме Desktop Grid при наличии многих пользователей, предложенной в 2017 г. Морозовым с соавт. Требу-
емой характеристикой выступает средняя продолжительность времени выполнения проекта. Гауссовская
аппроксимация искомого процесса производится на основе предельных теорем для суперпозиции on-
off источников. Приведен обзор известных аналитических результатов для требуемой характеристики,
включая результаты для броуновского и дробного броуновского движения. Также показывается, как
с помощью условного метода Монте-Карло оценить хвост распределения времени выполнения проекта.
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