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Abstract — In this paper the relationships between stability at 

the input and at the output of a linear non-unilateral 2-port are 
analyzed. For this purpose the existence of a duality mapping 
between the two ports is shown and, by using the main properties 
of Möbius transforms, new mutual relationships between the 
stability conditions at input and output ports are demonstrated. 
Such relationships add to the case of unconditional stability for 
which it is well known that unconditional stability at the input 
implies unconditional stability at the output (and vice versa). 
This concept will be extended to all the possible cases of 
reciprocal position between the stability area in the load 
reflection coefficient plane and the Smith circle, showing that, for 
a given situation at the output, only one corresponding situation 
can be observed at the input (and vice versa). Limit cases are 
further considered. 
 

Index Terms— Stability, reflection coefficient, oscillators,  
S-parameters, two-port. 

I. INTRODUCTION 
HE problem of the stability of active 2-port circuits 
represented in terms of S-parameters has been thoroughly 

addressed in the literature, including standard textbooks (see 
e.g. a former review from the authors in [1]): it represents a 
crucial issue in the theory of circuits and systems [2],[3]. A 
classic textbook on microwave circuits [4] performs some 
treatment of conditional stability, and a more recent one [5] 
discusses some special cases. Among journal papers, 
particular attention to the conditional stability issue has been 
devoted by [6-8]. In particular in [8] criteria based on the well-
known Edwards-Sinsky parameters [9] are listed to assess 
exhaustively all possible mutual positions of the Smith circle 
and of the stability circle at the input and output ports, thus 
indirectly addressing the issue of conditional stability. 

The purpose of this paper is to provide simple geometric 
criteria, which may be used to establish the mutual position of 
the stability circle and the unit Smith circle at the output 
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provided that a given mutual position of these circles is 
observed at the input, and vice versa. These criteria apply just 
to a non-unilateral 2-port circuit and may be useful in 3-port 
circuit design and in the project of oscillators. In this latter 
case, the design could be started by choosing a suitable 
termination on the third port and deriving that the 2-port 
circuit, resulting from this choice, is characterized by given 
convenient mutual positions of the stability and unit Smith 
circles both at the input and output ports: the choice of the 
remaining two terminations would be then simplified.  

In this paper, after providing notations and definitions 
related to 2-port circuit stability in Section II, useful properties 
of the bilinear rational transform or Möbius Transform (MT) 
in the complex plane are briefly summarized in Section III, 
whereas in Section IV the existence of a “duality mapping” 
between the input and the output ports will be shown. Then, in  
Section V, a topological technique based on this mapping is 
applied to the case of unconditional instability at a given port 
and extended to certain significant cases of conditional 
stability. Finally, the results will be applied in Section VI by 
sketching the design of a 3-port oscillator and some 
conclusions are drawn in Section VII. 

II. DEFINITIONS RELATED TO THE STABILITY OF A 2-PORT 
The following abbreviations and notations will be used with 

reference to Fig. 1:  
I = Input; O = Output; C = Conditional; U = Unconditional;  
S = Stability; S* = Instability; A = Area; R  = Reactive; 
Γ = Reflection Coefficient; ΓS  = Source Γ; 
ΓL  = Load Γ; Γin = Γ at the Input; Γout = Γ at the Output. 

Therefore, the following definitions are made: 
IUS:  if |ΓS| ≤ 1 then  |Γout(|ΓS)| < 1;  
OUS:  if |ΓL| ≤ 1 then  |Γin(|ΓL)| < 1; 
US:  IUS and OUS; 
IUS*: if |ΓS| ≤ 1then |Γout| ≥ 1; OUS*:if |ΓL| ≤ 1then |Γin| ≥ 1; 
ICS:  for ΓS , |ΓS| ≤ 1, both |Γout| < 1 and |Γout| ≥ 1 may occur; 
OCS:  for ΓL , |ΓL| ≤ 1, both |Γin| < 1 and |Γin| ≥ 1 may occur; 
IRUS: if |ΓS| = 1 then  |Γout(|ΓS)| < 1, but there exists |ΓS| < 1 

such that |Γout| ≥ 1; 
IRUS*: if |ΓS| = 1 then  |Γout(|ΓS)| ≥1, but there exists |ΓS| < 1, 

such that |Γout| < 1 
ORUS:  if |ΓL| = 1then |Γin(|ΓL)| 1, but there exists |ΓL| < 1, such 

that |Γin| ≥ 1; 
ORUS*: if |ΓL| =1 then |Γin(|ΓL)| ≥1, but there exists  |ΓL| < 1, 

such that |Γout|<1; 
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Fig. 1. Notations for a 2-port circuit with reflection coefficients. 
 
ISA:  the set of the ΓS satisfying |Γout(ΓS)| < 1; 
OSA: the set of the ΓL satisfying |Γin(ΓL)| < 1; 
IS*A: the set of the ΓS satisfying |Γout(ΓS)| ≥ 1; 
OS*A: the set of the ΓL satisfying |Γin(ΓL)| ≥ 1. 

The expressions of Γin(ΓL) and Γout(ΓS) are recalled here 
below: 

  (1a) 

  (1b) 

wherein S = (Sij), i,j = 1,2, is the scattering matrix of the  
S-parameters for the 2-port circuit and Δ is the determinant  
of S. It is worth to recall also that (1a) and (1b) can be 
obtained by each other by mutually exchanging both ΓS  
with ΓL and 1 with 2, respectively. 

III. THE MÖBIUS TRANSFORM  
Equations (1a) and (1b) involve complex variables and are 
examples of the well-known bilinear rational transform, also 
called Möbius transform (MT) [10]. In view of the central role 
of this transform in the theory of stability of a microwave  
2-port circuit, its relevant properties are reviewed here. 

The general MT is defined as: 
  (2) 

with: 
 

  

wherein the symbol fl ° fm(z) denotes the function composition 
fl [fm(z)] and each fm(z), m = 1-4, is clearly a special case of 
MT. It is clear that (1a) is a MT with w = Γin, z = ΓL, a = –Δ,  
b = S11, c = –S22, d = 1, and similarly for (1b).  

In the complex plane f1 and f4 are translations, f2 is an 
inversion in the unit circle |z| = 1, followed by a reflection 
across the real axis Re(z) = 0 (as defined by the complex 
conjugation *) and f3 is an homothety (scaling) combined with 
a rotation around the origin z = 0. Therefore, in geometrical 
terms, a MT on the complex plane is a combination of 
isometries (translations, rotation and reflection, which are 
preserving shapes and sizes) with a homothety (performing 
scaling, thus preserving only shape, but not sizes) and an 
inversion (preserving in general neither shape nor sizes). 

From (2) it follows directly that the inverse of a MT is the 
following MT with the same value of D: 

  (3) 

so that a MT is one-to-one transform, and that the composition 
of two MTs is a MT. 

In view of the properties of the MT summarized up to now, 
it follows readily [7] that the MT has the following geometric 
properties, which will be used in the following: 

1) It transforms circles into circles (including the special 
case of a straight line as a circle with its center at 
infinity, i.e. a straight line may be transformed into a 
circle or another straight line and vice versa). 

2) By being conformal (i.e. the angles between two curves 
are preserved), it preserves tangency (e.g. between 
circles and with straight lines) and, if the curves are 
secant, the number of intersections.  

3) It preserves inclusion (if a region is included in another, 
the same relationship of inclusion applies to the 
transformed regions).  

4) The interior of a curve (e.g. a circle) is fully 
transformed in the interior or fully transformed in the 
exterior of the transformed curve depending on the 
transform coefficients; therefore, to check which of the 
two possibilities occurs, it is sufficient to check where 
one single point of the interior is transformed. 

IV. THE DUALITY MAPPING 
From (3) it follows that the transforms inverse to the ones 

defined in (2a) and (2b) are: 
  (4a) 

  (4b) 

leading to the definition of the Output Stability Circle (4a) and 
Input Stability Circle (4b), as the images of the unit circles, in 
the planes Γin and Γout , in the ΓL and ΓS planes respectively. 
This definition, directly deriving from property 1) of the MT, 
is thoroughly discussed in standard textbooks (like 
[2],[3],[8],[9]). 

By rearranging (4a) and (4b) and by comparing with the 
definitions of fin and fout in (1a) and (1b), one obtains that:  

 
 (5a) 

 
 (5b) 

In other words, in view of (5a) a pair (ΓS´, Γout´) of the input 
space (ΓS, Γout) (i.e. such that Γout´ = Γout (ΓS´)) is mapped to a 
corresponding pair (1/Γout´, 1/ΓS´) of the output space (ΓL, Γin) 
(i.e. such that 1/ΓS´ = Γin (1/Γout´)). A corresponding mapping 
from the output space into the input space, inverse to the 
previous, is defined in view of (5b). Equations (5a) and (5b) 
define thus a one-to-one and continuous “duality mapping” 
between the two spaces (ΓL, Γin) and (ΓS, Γout). It is worth 
observing that the functions appearing in (5a) and (5b) are 
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Fig. 2. An example of US: in every plane A to D the disk centered at the origin is the unit disk, i.e. in the plane ΓL the region of the passive loads (region 2 in 
the plane A). The grey region in the plane A, labeled 1 and mapped by fin in the exterior of the unit disk in the plane B, corresponds by definition to the OS*A, 
whereas the white region, complementary to the OS*A (union of the regions 2 and 3) and mapped in the unit disk in the plane B, represents the OSA. Planes C 
and D are obtained by transforming planes B and A with f2, respectively. The label on the right of the vertical axis marks then each plane starting from the ΓL 
plane A and mapped from it according to fin and f2. The arrow lines connect each circle with its respective image and the same numeric label (1, 2, 3) marks 
corresponding areas in all the transformations. In view of (5b) one has that the transformation fout occurs then between planes C and D and the C plane may be 
identified with the ΓS plane (the labels between square brackets on the left of the vertical axes in planes A to D thus apply). Therefore, the region 2 in plane C is 
mapped by fout in the exterior of the unit disk in plane D and corresponds by definition to the IS*A, whereas the union of regions 1 and 3 is mapped inside the 
unit disk in plane D and represents the ISA. Starting instead from the ΓS plane C and mapping it first to the other planes D, B, A according to fout and f2, one has 
similarly that the transformation fin occurs between the planes A and B in view of (5a).  

 
MTs, which the properties from 1) to 4) apply to.  

A direct consequence of the duality mapping is the well-
known fact that, given a 2-port circuit terminated with the 
source ΓS´ at the input and the load ΓL´ at the output, one has: 

ΓS´fin(ΓL´) = 1 ⇔ ΓL´fout(ΓS´) = 1 
 
(⇔ means “if and only if”). In fact, if ΓS´fin(ΓL´) = 1,  
the pair (ΓL´, 1/ΓS´) belongs in view of (1a) to the space  
(ΓL, Γin). This pair is mapped by the duality mapping into the 
pair (ΓS´, 1/ΓL´) of the space (ΓS, Γout), which means 
ΓL´fout(ΓS´) = 1 in view of (1b). The converse implication is 
shown similarly. 

V. TOPOLOGICAL TREATMENT OF INPUT/OUTPUT STABILITY 
RELATIONSHIPS 

As an example, the effects of the mapping introduced in the 
previous section can be observed in Fig. 2, which represents a 
case of OUS.  

In Fig. 2, the output planes ΓL, Γin, 1/Γin, 1/ΓL are 
represented as planes A to D, respectively, and are labeled 
accordingly to the right of the vertical axis. In every plane, the 

circle centered at the origin is the unit circle. In the ΓL plane 
A, the grey region (region 1) corresponds to the OS*A, 
mapped by definition to the exterior of the unit disk in the Γin 
plane B, equally labeled as 1, and region 2 represents the 
interior of the Smith circle. The remaining points of plane A 
are region 3. In the ΓL plane A, the white region, 
complementary to region 1, is the OSA, mapped in the region 
inside the Smith circle in the Γin plane B. It is clear that OUS 
occurs, in that the passive loads are mapped by fin in the region 
2 of plane B contained in the unit disk. In every 
transformation of one plane from A to D into another plane (in 
particular, from A to B and D, from B to C and from C to D), 
equally numbered or colored regions are transformed into each 
other (in particular, grey regions are transformed in grey 
regions and the same applies to white regions). The arrow 
lines indicate the transformations of significant circles from 
each plane into another. The application of the MT f2(z) = 1/z 
to the planes A and B leads to the 1/ΓL plane D and to the 1/Γin 
plane C, respectively. It is recalled here that f2 has the property 
to be equal to its inverse function, i.e. f2(z) = 1/z = f2

–1(z), and 
that f2 transforms the unit circle |z| = 1 in itself and maps its 
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Fig. 3. An example of OUS* and IRUS: the meaning of the planes A to D and of the white and grey regions is as in Fig. 2. Equally numbered regions are 
mapped to each other: region 2 corresponds to the IS*A or its image. 
 

 
Fig. 4. An example of reactive unconditional stability (RUI): the meaning of the planes A to D and of the white and grey regions is as in Fig. 2. Equally 

numbered regions are mapped to each other: region 2 corresponds to the ISA or its image. 
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interior in its exterior and vice versa (consider the origin and  
the point at infinity and use MT property 4) ). It follows that 
the OS*A, by applying the transformation fin followed by the 
transformation f2, is mapped in the unit disk of plane C. This is 
a very general conclusion, which depends directly on the 
definition of OS*A and applies not only to the situation of US 
described in Fig. 2. Due to the duality mapping, particularly  
to (5b), it follows also in general that the transformation 
mapping the plane 1/Γin to the plane 1/ΓL, i.e. plane C to  
plane D, is fout, so that the correspondences marked by the 
arrows between planes C and D apply. Therefore, the planes C 
and D may be identified with the ΓS and Γout planes, 
respectively, and one may conclude immediately that IUS 
occurs. Indeed, the transformation fout maps the passive 
sources (region 1 in the ΓS plane C) in region 1 of the Γout 
plane D, which results entirely contained inside the unit disk.  

As a consequence, the planes A to D (without any alteration 
of the regions represented therein) may be simply re-labeled as 
shown in Fig. 2 in square brackets to the left of the vertical 
axis. In view of the one-to-one character of the duality 
mapping and of the MTs involved, one could have started 
equivalently from the input planes ΓS, Γout, 1/Γout, 1/ΓS (planes 
C, D, A, B) obtaining their re-labeling as output planes. 

By using Fig. 2 as a reference example, one may conclude 
with the following general statement, which applies to any 
case of reciprocal position between stability circle and Smith 
circle: the transformation with f2 of OS*A (IS*A) coincides 
with the transformation with fout (fin) of the region inside the 
Smith circle.  

Therefore, the application of the properties just formulated 
to Fig. 2 leads to the conclusion that OUS ⇔ IUS, the  
well-known result already shown for instance in [1]. 

A. Unconditional Instability at a Port 
The well-known case of US discussed in the previous 

section represents just an example of the potentiality of the 
topological approach to the analysis of the relationships 
existing between 2-port input and output for the stability study 
of the amplifier. 

In that respect, let now the case of OUS* be considered: 
OUS* is equivalent, by definition, to that the region of the 
passive loads (region 1 in plane A) is properly included in the 
OS*A. An example of OUS* is presented in Fig. 3, wherein 
plane A to D have the same meaning as in Fig. 2. Regions 

corresponding for number or color are again transformed into 
each other (the OS*A is represented again in grey, whereas the 
complementary OSA is again in white).  

By direct inspection of Fig. 3 one can conclude that IRUS 
occurs: in fact, the Smith circle of plane C (|ΓS|=1) is 
transformed by fout in a circle entirely contained inside the 
Smith circle of plane D (|Γout|=1), whereas some passive 
source loads are mapped inside (region 3) and some other are 
mapped outside (region 2) the Smith circle in plane D. In a 
very similar way, by starting from IRUS, OUS* can be 
obtained so that we can conclude that OUS* and IRUS are 
equivalent. Similarly, IUS* and ORUS are equivalent as well.  

It is worth observing that IUS* is not the condition 
complementary to IUS, which occurs if at least one |ΓS| ≤ 1 
does exist for which |Γout| ≥ 1 and is called input potential 
instability. In case of IUS* for every |ΓS| ≤ 1 it must be  
|Γout| ≥ 1. 

B. Reactive Unconditional Instability (RUI) 
Let be finally considered at the particular case of OCS that 

has been defined in Section II as ORUS*, meaning that for 
any purely reactive load at the output (i.e. |ΓL|=1) it is  
|Γin(ΓL)| ≥ 1, whereas there exist |ΓL|, |ΓL|<1, such that  
|Γin(ΓL)| < 1. An example of this configuration is represented 
in Fig. 4. In the plane A, seen as output plane ΓL, ORUS* is by 
definition equivalent to that the OSA is strictly included in the 
Smith circle in order to satisfy the definition given in Sec. II. 
In Fig. 4 the planes A to D have the same meaning as in  
Fig. 2, wherein regions corresponding for number or color are 
transformed into each other (the OS*A is represented again in 
grey, whereas the complementary OSA is again in white). 

By direct inspection of Fig. 4 we can conclude that IRUS* 
occurs: in fact, the Smith circle of plane C (|ΓS|=1) is 
transformed by fout in a circle entirely exterior to the Smith 
circle of plane D (|Γout|=1), so that some passive loads are 
mapped inside (region 2) and some passive loads are mapped 
outside (region 3) the Smith circle in plane D. In a very similar 
way, by starting from IRUS*, ORUS* can be obtained, so that 
it may be concluded that ORUS* and IRUS* are equivalent. In 
view of that, one may use then the term Reactive 
Unconditional Instability (RUI) to indicate this situation. 

In case of a RUI 2-port circuit, all reactive terminations lead 
to instability at each port, in the sense that both |Γin| and |Γout| 
are not smaller than unity, and this case allows flexible 
oscillator design. 
C. Further Cases of Conditional Stability 

The considerations made up to now refer to all possible 
cases arising when the Smith unit circle and the stability circle 
in one of the planes ΓL (A) or ΓS (C) do not intersect with each 
other and are summarized in Table I. Indeed, in the reasoning 
in the previous sections it is apparent that, if the two circles do 
not intersect in one of the planes A to D, the MT character of 
f2, fin and fout and of their inverse functions ensures in view of 
MT properties 2) and 3) that the images of those circles do not 
intersect also in the remaining planes. On the other hand, it is 

TABLE I 
STABILITY AND INSTABILITY CASES 

Input Output 

IUS OUS 
IUS* ORUS 

IRUS OUS* 
IRUS* ORUS* 

 
The cases listed in the Table correspond to the Smith circle (or its image) 

not intersecting the stability circle in any plane. The first line corresponds to 
US and the last one to RUI. Corresponding limit cases arise when the two 
circles touch each other (in every plane). 
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Fig. 5. ΓL and ΓS plane are represented together to show an example of 

IRUS and OUS*: for the 2-port circuit with matrix S´, the OSA in ΓL plane is 
the grey disk with crosses, while the dark grey disk with diamonds represents 
the IS*A in ΓS plane. 

 
similarly shown in view of MT property 2) that in the 
complementary case, when the two circles are secant in a 
plane, for instance in the ΓL plane A, they are secant also in 
any other plane A to D: such a case always corresponds to 
conditional stability.  

Limit cases of the conditions shown in Table I may be 
defined, when the two circles touch each other in one of the 
planes ΓL (A) or ΓS (C). In view of property 2) of the MT and 
for corresponding reasons as provided in the non-intersection 
case, if the Smith unit circle and the stability circle (or their 
images) are tangent in one of the planes A to D, they will be 
tangent in any other plane. Therefore, a limit case occurs 
always at both ports of a 2-port circuit and according to  
Table I. 

VI. APPLICATION TO OSCILLATORS 
The conditions of OUS* and IRUS or that of RUI discussed 

above are useful in the simplification of the project of 2-port 
oscillators. Indeed, given a suitable 3-port circuit, a 2-port 
circuit satisfying one of the two conditions may be obtained 
by opportune termination of the third port. In such a case it is 
sufficient to put any couple of reactive terminations at the 
remaining ports, in order to obtain that Barkhausen conditions 
[11],[12] for the start of oscillation are satisfied. 

An example of OUS* 2-port circuit may be derived by 
using the potentially unstable bipolar transistor of Example 
12.2 in [4], having the following common emitter 2-port S-
parameters at 6 GHz: 

 

 

 
Fig. 6. An example of RUI: for the 2-port circuit with  

matrix S2´, the grey disk labeled with crosses encloses the OSA, while the 
grey disk labeled with diamonds encloses the ISA. 
 
In fact, by putting at the emitter a capacitive load with 

, the 2-port S-matrix is modified as follows: 
 

 
with the respective ISA and OSA represented in Fig. 5, 
showing that the IRUS and OUS* conditions are met. Letting 
at the collector (output) any passive or purely reactive load, 
whichever it is, and at the base (input) a purely reactive source 
(|ΓS| = 1), one has that |ΓS Γin| = |Γin| ≥ 1, which allows for the 
start of oscillation at the input. 
Let now the following 3-port circuit, studied in [13], be 
considered, having the following S-parameters: 

 

By putting at the third port an inductive load with 
, one obtains the 2-port circuit with the following S-matrix: 

 

 

with the respective ISA and OSA represented in Fig. 6, 
showing that the RUI condition is met. By letting at the input 
or at the output port a reactive termination, one has  
|Γout| ≥ 1 or |Γin| ≥ 1, respectively. Moreover, by letting 
reactive terminations at both input and output port, oscillation 
starts whichever the values of the reactive terminations are. 

VII. CONCLUSION AND FUTURE DEVELOPMENTS 
A thorough analysis of instability cases, which may arise 
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for a 2-port active circuit allowing sustained oscillation, has 
been performed. After showing the existence of a duality 
mapping between the input and the output of the 2-port circuit 
and recalling properties of Möbius transforms, all the possible 
cases of reciprocal position between the stability area and 
Smith circle at the output have been examined in order to 
obtain the related reciprocal position at the input. 

 First, in addition to the well-known unconditional stability 
case, unconditional instability and two special cases of 
conditional stability (reactive unconditional stability and 
reactive unconditional instability) have been defined. In this 
way the relationships between the two ports indicated in  
Table I have been proved. In particular, it has been shown that 
a 2-port circuit cannot be made unconditionally instable at 
both ports, whereas reactive unconditional instability occurs at 
both ports in analogy with unconditional stability.  

Finally, it has been shown, with numerical examples, how 
potential instability conditions defined and studied here may 
allow flexible design of oscillator circuits. 

However, whereas the criteria for unconditional stability are 
well consolidated [1-5],[9],[11],[12], further work, now in 
progress, is required first to provide for analytical criteria 
involving the S-parameter matrix capable to indicate the 
occurrence of a given condition among the ones described in 
Table I. Furthermore, a theoretical tool, now in development, 
will provide the rules to terminate one of the ports of a given  
3-port active circuit in such a way to obtain a two port with the 
desired type of conditional stability. 
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