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Evidence of Luttinger-liquid behavior in one-dimensional dipolar quantum gases
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A strongly correlated Luttinger-liquid behavior is found to emerge well beyond the Tonks-Girardeau (TG)
regime in a one-dimensional Bose gas with dipolar repulsions at 7=0, persisting for a wide range of densities.
After combining reptation quantum Monte Carlo and bosonization techniques, we provide a unifying theory of
the underlying crossover physics, evolving from the TG gas at low density into a classical quasiordered state
at high density. The density dependent Luttinger parameters extracted from the numerical data provide all that
is needed to determine the low-energy behavior from analytical expressions. Our quantitative predictions, in
the whole crossover, for measurable quantities such as the structure factor and the momentum distribution, are
estimated to be accessible in underway experiments with ultracold polar molecules.
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The realization of Bose-Einstein condensation (BEC) in
trapped ultracold quantum atomic gases [1] is at the frontier
of modern atomic and molecular, optical, and condensed-
matter physics [2]. Especially fascinating results arise from
the possibility of tuning the atomic interactions. Use of
Fano-Feshbach resonances [3,4] to change the magnitude
and sign of the s-wave scattering length a characterizing the
contact interactions, has allowed, e.g., the observation of col-
lapsing Bose condensates [5] and of the crossover from a
BEC to a Bardeen-Cooper-Schrieffer-type transition [6].

More recent experiments have demonstrated that the
range of the interactions can also be manipulated. Dipole
interactions with long-range anisotropic character have been
observed in >>Cr atoms [7] after exploiting the large mag-
netic moments of this atomic species, u,;~6ug with up be-
ing the Bohr magneton. A BEC containing up to 50 000 >>Cr
atoms has then been obtained below a transition temperature
T.=700 nK [8] and its dynamical behavior is being investi-
gated [9]. Promising proposals to tune and shape the dipolar
interaction strength in quantum gases of heteronuclear polar
molecules have more recently been suggested [10]. Signifi-
cant theoretical predictions have accompanied such realiza-
tions [11]. The stability diagram of anisotropic confined di-
polar gases has been predicted to be governed by the
trapping geometry [12,13], as corroborated by path-integral
quantum Monte Carlo (QMC) studies [14] and discussed in
diffusion QMC simulations including the dependence of a on
the dipole interaction [15].

Tuning of the interactions can be combined with the en-
hancement of quantum fluctuations after reducing their di-
mensionality by, e.g., storing them in elongated traps [16,17],
which could be relevant to applications such as precision
measurements [18], quantum computing [19], atomtronic
quantum devices, and theoretical investigations of novel
quantum phase transitions [20].

In the case of quasi-one-dimensional (1D) condensates
with short-range interactions, a rich phenomenology is
known to emerge despite the absence of broken symmetries
[21]. Bosons are known to arrange in a Luttinger-liquid state,
with single particles being replaced by collective density ex-
citations [22,23]. Strong repulsion may also lead to the fer-
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mionization of interacting bosons in the so-called Tonks-
Girardeau (TG) regime [24-26]. Experiments in elongated
traps have provided evidence for such 1D fluctuations [16].

For fermionic 1D models, the case of interactions falling
off as 1/x® has been studied by many authors [27,28], con-
cluding that for a>1 the long-range part of the interaction
decays rapidly enough to preserve the linear energy disper-
sion w(k)=ulk| typical of short-range models. Extrapolation
of this result to bosons would suggest that 1D Bose gases
with short enough ranged 1/x® interactions («>1) can be-
have at low energy as Luttinger liquids [22]. Unlike Fermi
systems, however, proving such behavior is a nontrivial task
since a nonperturbative approach is required.

An interesting question thus arises for quasi-1D conden-
sates with dipolar interactions, that is, whether the combina-
tion of enhanced quantum fluctuations and strong repulsion
are sufficient to drive the BEC in a super strong-coupling
regime, beyond the TG state [29]. More recent diffusion
QMC simulations [30] for a homogeneous 1D dipolar Bose
gas have revealed a crossover behavior with increasing linear
density, from a liquidlike superfluid state to an ordered, nor-
mal state with particles localized at lattice sites. For low
values of the density, the system is seen to behave as a
Tonks-Girardeau gas [24]. A quantitative and unifying theory
revealing the nature of the Bose dipolar liquid in the whole
crossover region is, however, missing, which is needed to
predict the behavior of observable quantities in the experi-
ment.

In this Rapid Communication we provide such a theory,
giving evidence for a robust Luttinger-liquid behavior of the
1D dipolar Bose gas in the crossover region well beyond the
Tonks-Girardeau state, gradually evolving from a TG gas at
low density into a classical quasiordered state at high density,
consistent with the absence of a quantum phase transition to
a solid [31]. By comparing theoretical results from a
bosonization approach against reptation quantum Monte
Carlo simulations [32] we are able to provide a unifying
theory of the underlying crossover physics. After analyzing
the scaling behavior of the static structure factor expected for
a Luttinger liquid, we find a small exponent K<<1 at inter-
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mediate to high-density values, signaling very strong repul-
sions at short distances. The knowledge of Luttinger param-
eters is then exploited to determine observable properties of
the fluid in a parameter range accessible to experiments. To
the best of our knowledge this is the first demonstration of
such a strongly correlated liquid behavior in Bose gases with
dipolar interactions within a continuum model [33,34].

We consider N atoms or molecules of mass M and perma-
nent dipole moments arranged along a line. For the purposes
of the present work, we assume a — 0 after, e.g., exploiting a
Fano-Feshbach resonance. In effective Rydberg units Ry”
=h%/(2M ré) the Hamiltonian is

1 F 1 1
H=(-52 S+352— 3| 1
( r320x2+r3[2<1j|x,~—xj|3> ()

where the effective Bohr radius ry=MC,,/(27h?) is defined
in terms of the interaction strength C,;. One has Cy;= ,LLO,uf,
and C,,=d*/ €, for magnetic u, and electric d dipole mo-
ments, respectively, with u, and €, the vacuum permittivi-
ties. The governing dimensionless parameter r,=1/(nry)
contains the linear particle density n and the unit length rr.

We analyze the low-energy structural properties of the
fluid. They can be accessed in experiments with atomic gases
by means of, e.g., Bragg scattering techniques. Here, we in-
fer them from QMC numerical simulations of the static
structure factor S(k) on a box with size L and periodic
boundary conditions. In terms of the density operator 7 this
is S(k)=[dxe ™ (i(x)iA(0)).

An accurate size-scaling analysis of S(k) is needed for our
purposes. To this aim we resort to the reptation quantum
Monte Carlo (RQMC) of Baroni and Moroni [32], which in
essence is a path-integral technique at zero temperature giv-
ing direct access to the ground-state wave function. This
makes the extraction of the ground-state properties concep-
tually simple and that of the correlation functions in imagi-
nary time immediate [35], with the additional possibility of
determining the excitation spectrum. We use a trial wave
function made up of a two-body Jastrow factor ,,,(R)
=I1,; exp[u(|x;—x;|)]. Removal of the short-range diver-
gences in Hi,,;,;/ ¥, due to the potential energy, is obtained
after imposing the cusp condition, which yields u(x— 0)
=—\r,/x [36].

The RQMC data for S(k) are reported in Fig. 1 for N
=40 and different values of nry=0.01, 50, 100, and 1000.
Free fermionlike behavior, typical of the Tonks gas, is seen at
low-density values (nry=0.01 in Fig. 1). Quasi-Bragg peaks
emerge at reciprocal lattice vectors k/n=2mm (m integer).
Their number increases with increasing nry, evidencing the
occurrence of a quasiordered state. Investigation of the
RQMC data at different values of N shows that the peak
heights scale as N with «,, <1 being an exponent depend-
ing on m, while their intensity diverges with the system size.

Both these characteristics are reminiscent of Luttinger-
liquid behavior and therefore we turn on analyzing the data
within a bosonization description. In terms of the conjugate
bosonic operators ¢ and II, the Hamiltonian for a Luttinger
liquid reads [21]
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FIG. 1. S(k) in dimensionless units for a dipolar gas with N
=40 particles and different values of nry=0.01, 50, 100, and 1000.
Decreasing slopes as k— 0 and the emergence of additional peaks
correspond to increasing nr, values.
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where K is the Luttinger exponent and u is the sound veloc-
ity. Knowledge of K and u allows analytical expressions for
physical quantities of interest. The structure factor S(k) can
be analytically calculated inserting in the definition of S(k)
above the bosonized expression of the density operator
A(X) == 23+ 2,2 0A e 0= [21 22, where A, are
nonuniversal dimensionless constants. In dimensionless units
for k, S(k) turns out to be Sy(k)=Kk/(2) for k—0. For k
close to k=2mm on the scale of the cutoff parameter 7/ a,
we find [37]

S(k) = X, A2n?3,,(k +2mm), (3)
m#0

where 2.,,(k) is explicitly given as

3,.(k) = L(1 = 272 Ko (kK. L)
X, F  (m*K,m*K + |k|L/(2m); 1 + |[k|L/(27) ;e ™E),
(4)

where  o(k;m*K,L) = T[m*K+|k|L/Q2m)][T(m*K)T'(1
+|k|L/(2m)]™"; ,F, is the Gauss hypergeometric function.

The low-k linear behavior of S(k) can be fitted to extract
the Luttinger K at different densities. The resulting K(n) is
displayed in Fig. 2. The inset shows S,(k) for selected den-
sities, where decreasing slopes correspond to increasing val-
ues of nry=50,100,1000, the symbols representing the
RQMC data and the lines the Luttinger prediction Sy(k)
=Kk/(2). K remains below the Tonks-Girardeau limit in a
wide range of densities, signaling the occurrence of strong
correlations. As nry<1, K tends to the TG limit K=1. In the
opposite high-density limit, K tends to vanish following the
classical-theory prediction K~ 7{6(3)nry]~""?. In essence,
strong repulsions at short distance produce a TG-type fermi-
onization while the remaining longer-range part pushes the
fermionized gas into a strongly correlated phase.

For a<L, %, (k) gets a simplified form depending on
whether y=m?K<1/2 or y>1/2 as L—o. For y<1/2,
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FIG. 2. Luttinger exponent K obtained from fitting the RQMC
data for S(k— 0)=S,(k). For comparison, the curves K(n—0)=1
and K(n— ) =a[6£(3)nry]""* are also displayed as dashed lines,
corresponding to the Tonks-Girardeau and to the classical predic-
tions. The solid line is a guide to the eye. Inset: Sy(k) at selected nr
(see text).

S, (k) ~ LK sin(mm?K)B(K:L)  with  B(K;L)=T(1
—2m*K)U[m*K+kL! (2m)]/T[1 =m?*K+kL/(27)], indeed re-
vealing the presence of quasi-Bragg peaks at |k|=27m and
a scaling behavior in the vicinity thereof. Peak number
increases with decreasing K, and peak intensities diverge
as LI"2K_ For y>1/2 instead, S, (k—0)~21"2T(2y
—1)I'(y)7% and the peaks disappear.

Besides the linear k behavior, evidence of a Luttinger lig-
uid comes also from the scaling behavior of S(k). Figure 3
displays the comparison between the RQMC S(k) close to
k=2 towards the quasiordered region with nry=50, and the
predictions of the Luttinger-liquid theory Egs. (3) and (4)
with m=1. We actually plot S(k)/S(27n) for different N val-
ues and verify that they indeed collapse on a single curve.
This signature of Luttinger-liquid behavior against the
RQMC data is robust in the whole crossover region. This is
the central result of the present work. Similar results are
indeed found at the remaining density values above nry=1,
while the scaling is absent below nry=1. The same scaling
analysis holds for the second peak at k=4m7 when it is
present. At k=61 (m=3), we have 2m?>K>1 for K<0.055
and the divergent peak is seen to show up in the simulation
only for the data set with nry=1000, as expected.
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FIG. 3. S(k)/S(2mr) in n~! units vs N(k—2)/40 at nry=50 for

different N values (see legend). Symbols represent RQMC data; the
solid line is the Luttinger-liquid prediction.
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The peak asymmetry visible in Fig. 3 results from band
curvature effects. Asymmetric S(k) are also obtained in mod-
els possessing a nonlinear spectrum such as Calogero-
Sutherland models [34] and can be viewed as anharmonic
phonon effects [38].

As a consistency check, we have verified that the K values
obtained from the RQMC S(k) agree with those determined
from the RQMC energy per particle €, as follows. Since
Hamiltonian (1) is invariant under Galilean boosts [22], we
have uK=hmn/M. Within the bosonization procedure
[21,22], the compressibility is y=K(Amun?)~'. Comparing
this result with the definition of y, x~'=n?*(ne(n))”, we ob-
tain K=fimm\n/[M(ne(n))"]. This result stems from the trivial
fact that the exact RQMC satisfies the compressibility sum
rule. However, we have formally demonstrated that our
Luttinger-liquid scheme satisfies the y sum rule too.

The knowledge of K(n) allows us to determine the mo-
mentum distribution n(k), which in current BEC experiments
can be accessed after analyzing, e.g., time-of-flight images.
Since in the continuum the boson creation operator is repre-
sented by ih(x) ~exp[—im[*dyll(y)] [21], we find that
n(k) k61 as L —o. As the density increases, the diver-
gence of n(k) at k=0 is expected to be gradually reduced
until it disappears for K<<1/2.

In conclusion, we have shown that dipolar gases in a re-
duced 1D geometry are promising candidates to observe un-
usually strong correlations well beyond the Tonks-Girardeau
regime, evolving from a TG gas at low density to a quasior-
dered state at high density. In the whole crossover region, the
system remains in a Luttinger-liquid phase, consistent with
the absence of a quantum phase transition to a solid [31].
Clear testing of the latter conclusion can be provided by the
excitation spectrum [39] where, from preliminary data, our
combination of bosonization and RQMC techniques in a
continuum can be successfully applied. Observation of the
Luttinger liquid in the crossover region is within the reach of
current and future experiments in elongated traps. Here, the
effective 1D character of trapped dipolar gases is governed
by the condition n~'>1, with [, =[ry/(4a,)]"?a, ensuring
the suppression of forward scattering [10]. Values of the
transverse oscillator length a, =\A/(Mw,) related to the
harmonic angular frequency w, can be pushed to 50 nm.
Then, dipolar SrO molecular gases in elongated traps are
promising candidates, as we might have [/, =0.2 um while
ro=~240 um, yielding access to nry values up to the quasi-
ordered regime. For dipolar >’Cr gases instead we can have
[, =31 nm while ry=4.8 nm, yielding access to nr, values
remaining down in the Tonks-Girardeau regime. For ultra-
cold SrO dipolar quantum gases created in such quasi-1D
conditions, we quantitatively predict the density-dependent
low-energy properties of the liquid as determined by the Lut-
tinger parameters and provide guiding analytical expressions.
A power-law decay of the peak heights in S(k) and a flatten-
ing of n(k) as nry>1 are expected fingerprints of the Lut-
tinger liquid.
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