INTRODUCTION

This work focuses on the Late Holocene paleo-geographic reconstruction of a sector of the Versilia coastal plain (Tuscany, Italy). Over the last 3000 yr, this area has experienced a coastline progradation of about 2,5 km, but the causes of this process are still not completely explained. Many studies support the relationships between high-frequency climatic variations (millennial to centennial scale), probably associated with small-scale sea-level fluctuations, and the development of
small transgressive-regressive cycles (e.g., LOWRIE & HAMITER, 1995; BOYER et al., 2005; AMOROSI et al., 2005; Leorri et al., 2006). Three millennial-scale transgressive-regressive cycles have recently been recognized (Amorosi et al., 2009) about 20 kilometers south of the study area (subsurface of the Arno coastal plain) within the transgressive deposits Late Pleistocene-Holocene in age (13-8 ky cal B.P.). In the neighbouring archaeological site of Pisa, which contains Roman ships, stratigraphic and sedimentological studies show that the cause of repeated episodes of river harbor destruction were high-frequency centennial-scale climatic and possibly eustatic changes (BENVENUTI et al., 2006).

Based on these data and considering the neighbouring Arno and Versilia coastal plain, the hypothesis that also the study area may have experienced short phases of stillstand, if not transgressions, seems plausible.

The aim of this paper, using a multidisciplinary approach that includes the use of geomorphological, sedimentological, and archeological data, is to define the timing of progradation of the Versilia coastal plain over the last 3000 yrs and to discuss the possible key factors that may have been controlled this process.

2. GEOLOGICAL SETTING

The study area (Fig. 1) is within the communities of Viareggio and Lido di Camaiore, (NW Tuscany). The modern Arno and Versilia coastal plain is part of the onshore portion of the wider Viareggio Basin, an extensional area oriented NW-SE, which has been active since the Upper Tortonian (MARIANI & PRATO, 1988; ARGANTI et al., 1997; PASCUCCI, 2005). This basin is filled with about 2500 m of deposits spanning from late Miocene to the Present. The uppermost portion (Late Pleistocene-Present, corresponding to seismic sequence 6b of PASCUCCI, 2005) has been investigated for its chronostatigraphic relevance and specifically for defining the Versilian stage (BLANC, 1937, 1942; FEDERICI, 1993). The late Quaternary depositional evolution has been recently reconstructed based on data from the ENEA core (Figs. 1, 2) drilled near the Massaciuccoli Lake about 10 km SE of the study area (ANTONIOLI et al., 2000; DEVOTI et al., 2003; NISI et al., 2003). The base of the Holocene transgression (10.568-10.236 cal B.P., see ANTONIOLI et al., 2000) is identified (Fig. 2) at a depth of about 34 m from the surface, at the transition from alluvial to paralic deposits bearing brackish fauna. These deposits grade upwards into marine sands. Their top (9 m below ground level) is dated to 5896-5830 cal B.P. (ANTONIOLI et al., 2000) and is overlaid by alternating peat layers, sands, and clays bearing brackish fauna. An age of 2627 - 2129 cal B.P (2.5 m below ground level) has been attributed to these deposits (ANTONIOLI et al., 2000). From the Apuane foothills to the coast, the outcropping deposits record a variety of depositional environments, such as some small coalescent alluvial fans, marsh areas connected to Massaciuccoli Lake, coastal dune systems with related interdune areas, and the present-day beaches.

METHODS

Geomorphologic surveys, field aerial photographs, and stratigraphic analysis were used to develop a detailed geomorphologic and geologic map at 1:10,000. Sedimentological and facies analysis, based on surface and subsurface data also allowed us to define a preliminary framework of relationships among the depositional units recognized. Subsurface data derive from a working-face about 6 m deep and 100 m wide (A in Fig. 3), where a continuously cored borehole (SE) was also drilled (location in Fig. 3), and from another excavation (3 m depth and 15 m wide; B in Fig. 3) located about 4.5 km northward.

Moreover, micropaleontologic data lead to a better definition of the depositional environments. Twenty-six samples were collected from section A and were washed and sieved with an 88 μ mesh. Thirty-two ostracods and twelve foraminifera species were recovered. Most of these presently live in the Mediterranean area (BONADUCE et al., 1976; SCHARLÄ & MONCHARMONT-ZEI, 1993). The plotting of archeological data, recorded since the 16th century, on the map provided further chronological constraints for reconstructing the palaeogeographical evolution of the study area with particular attention to coastline variations.
GEOMORPHOLOGIC DATA

The geomorphologic data, derived from field surveys and multitemporal aerial photographs analyses, allowed the identification of five geomorphological units: 1) the Camaiore alluvial fan, 2) dune ridge, 3) small marshes located in the interdune areas, 4) a major marsh area named Giardo, and 5) the present day beach (Fig. 3).

The Camaiore alluvial fan is about 4 km long and 2.5 km wide, and records cyclic depositional and quiescent phases during the Late Pleistocene-Holocene (FEDERICI, 1993). The alluvial fan reaches an elevation of 20 m in the foothills (apex) and decreases with a uniform and low gradient (<2% average dip) to an elevation of 2 m asl towards its distal area (Fig. 3). Lateral channel migration from west to east is suggested by the identification of several palaeo-channel traces on
the fan surface. Subsurface data available from a working face (Bini et al., 2007) carried out on the distal fan area (C in Fig. 3) reveals that fine-gravels are intercalated with organic-rich silt and clay related to the Giardo marsh. This indicates phases of progradation of the Camaiore alluvial fan into the Giardo marsh.

The Giardo marsh, which is Late-Holocene in age (Federici, 1993), is located between the Camaiore alluvial fan and the oldest beach ridge dune alignment and was connected in the past with the Massaciuccoli Lake area. This connection is strongly supported, according to Devoti et al., 2003, by geomorphological surveys (Fig. 3). Today it represents a lowland about 1.8 km long, 1.5 km wide, and is relatively depressed (1 m asl) with respect to the surrounding morphological units. It is occupied by a small permanent lake and several ephemeral marshes. Its fill is characterized by sands, silts, and peat.

The dune ridges, whose alignment records the position of the shoreline during the Late Holocene, are located between the Giardo marsh and the present-day coastline (Fig. 3). These dunes belong to an articulate beach-ridge system (Mazzanti & Pasquinucci, 1983) that characterizes the coastal plain from the Arno River (south) to the Magra River (north). Unfortunately, the modern human settlements that developed along the coast makes it difficult to identify the original morphology of each beach ridges. They are normally closely spaced, with interdune marshes employed as fish tanks (Benzio, 1986) from the early Middle Ages up to the 18th century and represented an important economic resource for the local community.

The landward dune (Migliarina beach ridge dune in Fig. 3) is located in front of the Massaciuccoli Lake area. It is the most elevated (1.5 m asl) and the best preserved. Archaeological findings (see § 5) date the Migliarina dune to an age not younger than the 7th century B.C. (Bini et al., 2007). This implies that the age of development of the related back-ridge marsh area (Giardo marsh) cannot be older.

Moving toward the coast, historical buildings permit us to date two other beach-ridge alignments. The Motrone Fort and the Castello Vecchio di Viareggio (Fig. 3, n.7) were built in the 12th century, while the Matilde Tower (Fig. 3, n.15) was built in the 16th century. These buildings mark the variation of the coast line during this time because the towers were coastal defences and are described as having been built on the beach (Mazzanti & Pasquinucci, 1983) (see § 5).

The younger morphologic unit corresponding to

![Fig. 3 - Geomorphological map with the location of the most important archaeological sites](image-url)
the present-day beach is actually in accretion (1 m per year; Cipriani et al., 2004) due to the influence of Viareggio harbour and its piers on the longshore sediment flux.

STRATIGRAPHIC AND SEDIMENTOLOGICAL DATA

The stratigraphic and sedimentological data have been collected from a working-face about 6 m deep and 100 m wide (A in Fig. 3), where a continuously cored borehole (S5) was also drilled, and from another excavation (3 m depth and 15 m wide; B in Fig. 3) located about 4.5 km northward. Unfortunately, the S5 core was destroyed and the available data are a log description and a photographic documentation.

The stratigraphy of the Enea core (Antonioli et al., 2000), drilled about 10 km south-east of the study area, was utilized as a reference for interpreting the data collected in this study (Fig. 2; see Fig. 1 for the location).

Facies analysis of section A shows an overall regressive trend passing upward from shallow-marine to coastal-dune deposits that also outcrop at the surface. Four small transgressive-regressive cycles (A1-A4; parasequences sensu Van Wagoner et al., 1990; Kamola & Van Wagoner, 1995) have been defined within this general trend (Fig. 2).

The lowest cycle (A1) is characterized by shallow marine sandy-silt bearing a relatively diversified microfauna constituted by ostracods (Cytheridea neapolitana, Pontocythere turbida, Leptocythere ramosa, Cytheretta subradiosa, Cytheretta adriatica, Neocytherideis fasciata) and foraminifera (Haynesina depressula, Ammonia beccarii, Quinqueloculina seminulum, and rare specimens of Florilus boueanaum, and Elphidium crispum).

The presence of vegetal debris associated with some reworked brackish to freshwater ostracods (e.g., Cyprideis torosa and Candona spp.) indicates the proximity to a paralic depositional environment such as an inner lagoon or a small bay. These deposits pass upward to medium and coarse sands (upper shoreface) with scarce and poorly diversified microfauna. Accumulation at the top of this sequence of centimetric lenticular layers of coarse vegetal debris, showing evidence of traction processes, has been related to a shore environment such as a storm berm. Low to high-angle cross-beds fine laminated sands interpreted as backshore to dune deposits form the upper portion of parasequence A1 (Fig. 4).

Sands showing chevron stratification related to wave processes indicate the return to subaqueous conditions (A2 parasequence). Upward the sands display a progressive increase in microfauna diversification and abundance (Pontocythere turbida, Palmoconcha turbida, Haynesina depressula, Ammonia beccarii and Elphidium crispum) up to 6 m depth (Fig. 2) even lower than observed in parasequence A1. We interpret these sediments as having been deposited in a very shallow-marine environment close to the coastline. The nearness of coast is also supported by the occasional presence of vegetal debris. In the uppermost portion of parasequence A2, medium to coarse foreshore-storm-berm sands displaying coarse vegetal-rich centimetric levels overlaid by well-sorted backshore fine sands represent the regressive phase (Fig. 5).

Parasequences A3 and A4 show features very similar to those observed in A2, recording the transition from a very shallow-marine to a foreshore-backshore depositional environment (Fig. 2).

We think plausible the correlation between section A and the upper portion of the Enea core, recording the progradational phases which occurred during the Late Holocene (Fig. 2). Even though the lack of detailed facies from this core stratigraphy do not allow the accurate placing of the transition from the retrogradational to progradational depositional phase (maximum flooding surface), we can assume that it occurs between 10 - 15 m depth, in the uppermost part of the marine siliceous sands (see Antonioli et al., 2000) considering the occurrence, few meters above, of a peat layer. Indeed it is undoubtedly, according to Nisi et al., 2003, that the occurrence of this layer at a depth of 8,50 m indicates the transition from a marine to a paralic depositional environment. Similarly, in S5 core the first organic-rich level above the marine sands occurs about 9 m depth (Fig. 2) and coincides with the base of section A. For this reason we can correlate section A with the upper part of Enea core.
Section B cuts, about 5 km northwards from A, the same sandy coastal dune deposits (Fig. 3). From the bottom to the top (Fig. 2) the stratigraphic succession consists of i) backshore to upper shoreface deposits, ii) a centimetric layer of peat related to a paralic environment, and iii) about 2,5 m of pedogenized dune deposits.

On the basis of stratigraphic and morphological data, we correlate section B with the uppermost portion of section A, and particularly with the regressive part of parasequence A4 (Fig. 2).

ARCHAEOLOGICAL DATA

Our knowledge of human settlements in the coastal plain of Versilia between Camaiore and Viareggio is related to some archaeological findings, mostly casual, which have been recorded since the 16th century. The site of Acquarella (Fig. 3, n. 3), whose archaeological and naturalistic aspects are still under investigation, shows a remarkable continuity of human settlement since the Roman Archaic period to the early Middle Ages (PARIBENI et al., 2006; BINI & FABIANI, 2008).

The first settlement documented in the Acquarella site goes back to the end of the 6th century B.C. At that time, it is possible that the Giardo marsh (see § 2) was already connected with the Massaciuccoli Lake area.

Acquarella, in addition to contributing to the agricultural exploitation of the plain and the nearby hills, played a strategic role in commerce. It was located at the junction of the coastal routes (terrestrial, maritime, and lagoon) and those which linked the coast to the plain of Lucca and to the Serchio valley, through the valley of Camaiore.

The burial site which was found at villa Mansi, close to Acquarella (Fig. 3, n. 2), perhaps part of a necropolis, suggests the existence of a village and demonstrates the vitality of the area since the end of the 7th century B.C. (CIAMPOLTRINI, 1990). (E.P.)

On the coast, the intensity of ship traffic is demonstrated by the settlement of San Rocchino (Fig. 3, n.12). This site was inhabited from the end of the 8th century B.C. up to the 3rd century B.C., and was situated on the border of the ancient marsh-lake area. Since its founding, this settlement was devoted to the commercial economy, and was visited constantly by sailors coming from south-Etruria, Greece, and the area east of Greece. In the earliest period, this site was probably so vital because of the metallic resources mined inland from Versilia. This is demonstrated, for example, by a cache containing bronze materials of the protohistoric period located on the hill of Camaiore (Bonamici & Fabiani, 2006). The Migliarina site (Fig. 3, n.11), a productive and specialized settlement of the end of the 7th century B.C., was located on a coastal dune deposit marking the coast line during this time. Behind the dune, a marsh area connected to the sea developed (see § 2). One of its purposes was, perhaps, salt production (CIAMPOLTRINI, 2005).

Acquarella again gives us the most articulate documentation about the Roman period. Here, it is possible to follow the phases of construction of a rustic building which was reorganized many times, from the Republican age up to late-Antiquity (Fig. 6). The proximity to the
hill-foot route between Pisa and Luni, part of the road link on the way to Lucca, must have played a role in the prosperity and in the prolonged vitality of the site, which was converted during the early Middle Ages into a settlement of huts, possibly fortified.

Weak traces of centuriation, Roman predials, like Capezzano and Trebbiano, together with occasional discoveries (Fig. 3, n. 1, 4, 5, 6) on the coastal dune (Fig. 3 n. 8, 9, 10; Bini et al., 2007), confirm the settlement of the Camaiore alluvial fan area.

Moreover, an important road, which could be identified with the Aurelia/Aemilia Scauri, ran along the coast (Fabiani, 2006). The fortress of Motrone (Fig. 3, n.7), erected in maris litorre (Giannotti, 2006), and the fortress of Viareggio (Fig. 3, n.13), which was built during the 12th century A.D., are important reference points for dating the coastal dune deposits in the Middle Ages (Bini et al., 2007).

In Viareggio, the building of the new tower Matilde (Fig. 3, n.14) during the 16th century, in a more advanced position than the old fortress, demonstrates the gradual advance of the coastline. (F.F)

DISCUSSION

Some of the late phases of progradation that affected the coastline of the study area during the last 3000 yrs were detected by the integration of geomorphological, stratigraphical, and archaeological data. The chronostratigraphic framework, derived from archeological data, indicate that the coastline was located i) near the Migliarina dune around the 7th century B.C., ii) in the proximity of the Motrone Fort and the Castello Vecchio di Viareggio (Fig. 3, n.7, 13) in 12th century and iii) near the Matilde Tower (Fig. 3, n.14) during the 16th century. These buildings were, in fact, built on the beach (Mazzanti & Pasquinnucci 1983) as coastal defences. Other ages derived from archeological findings give us other information about the landscape of the study area. The Acquarella site, located on the Camaiore fan, was active since the end of the 6th century B.C. and its role in becoming an important centre in the commercial communication between sea, coast, and inland areas was probably related to its closeness to the back dune marsh area (Giardo marsh). Indeed, this area, developed around the 7th century B.C., was in connection with the Massaciuccoli Lake area southward and thus to the sea also according to the features of the San Rocchino site (Fig. 3, n.11) settled from the end of the 8th century B.C. up to the 3rd century B.C. and devoted to shipping traffic. This demonstrates that if the archeological data play a significant role in defining the timing of the history of the progradation phases in the study area, the geomorphological and stratigraphic study have important implications in the context of the environments where the archeological sites developed.

On this basis the landscape, around 3000 yrs ago, was characterized by i) a coastline located about 2.5 km landward in respect to its present-day position near the Migliarina beach ridge, ii) a wide protected brackish marsh area (Giardo marsh) that was connected southward to the Massaciuccoli lake system behind the coast, and iii) an alluvial fan system (Camaiore fan) periodically connected with the Giardo marsh.

Afterward, repetitive phases of progradation took place, causing the development of a strandplain characterized by a wide back dune marsh area (Giardo marsh). Archeological data permit us to state that i) around the 12th centuries the coastline had experienced a progradation of about 1.3 km and was located in proximity of the dune alignments where Motrone Fort and the Castello Vecchio di Viareggio (Fig. 3 n°7, 13) were built and that ii) four centuries later the coastline had again moved seaward of about 500 m and was located near Matilde Tower (Fig. 3, n.14). From the 16th century to the present time the progradation of the coastline has proceeded by about 0.7 km.

On this basis, although the available data are sparse, a progradation rate was calculated (Fig. 7). The data show a relatively low progradation rate from the 7th century B.C until the 16th century (about 0.7m/yr), followed by a pronounced increase (1.75 m/yr), still active. Actually, this area is currently subject to expansion (1 m/yr) because of the influence of the piers of the Viareggio harbor on the longshore sediment transfer (Cipriani et al., 2004). The rapid increase after the 16th century appears to be significant and agrees with an analogous study carried out on the Tuscan coast (Stani & Ciulli, 2008; Pranzini, 2001) and has been related to an increase of sediment supply due to deforestation (Pranzini, 2001).

Nevertheless, it is worth noting that the average
rate of progradation calculated between the 7th century B.C. and the 16th century A.D., does not consider all the possible (and highly probable) fluctuations that could have occurred during this time (e.g., increase or reductions of the rate of progradation, or even phases of retrogradation of the coastline). The hypothesis that the progradation took place irregularly is also strongly supported by the subsurface stratigraphic data, evidencing four small high-frequency transgressive-regressive cycles within the succession recording the Late Holocene phase of progradation. High-frequency transgressive-regressive cycles have been documented from Late Quaternary to Holocene successions of Mississippi, Ebro, Rhône and Po Deltas (Lowe & Hamiter, 1995; Somoza et al., 1998; Boyer et al., 2005; Amorosi et al., 2005) and, recently, of Arno coastal plain about 20 km southward to the study area (Amorosi et al., 2009). A combination of small-scale sea-level fluctuations and rapid climatic variations (millennial to centennial scale) has been guessed as the possible major controlling factor of stratigraphic architecture in these areas even if in the Arno coastal plain (Amorosi et al., 2009) pollen characterization evidences the development of parasequences as chiefly the function of high-frequency (millennial scale) climatic variations. A climatic control (centennial-scale) during the Late Holocene is also suggested by B. ENVENUTI.

(2009) and, recently, of Arno coastal plain about 20 km southward to the study area (Amorosi et al., 2009). A combination of small-scale sea-level fluctuations and rapid climatic variations (millennial to centennial scale) has been guessed as the possible major controlling factor of stratigraphic architecture in these areas even if in the Arno coastal plain (Amorosi et al., 2009) pollen characterization evidences the development of parasequences as chiefly the function of high-frequency (millennial scale) climatic variations. A climatic control (centennial-scale) during the Late Holocene is also suggested by BENVENUTI et al. 2006, on the basis of detailed sedimentological and stratigraphical study, from an archaeological site near Pisa urban area, where a riverine harbour, erected in Etruscan age, was discovered. In this study the close relationships between recurring events of harbour destruction and high-magnitude flood episodes due to high-frequency climatic changes is documented.

Even if no data are at the present available from the study area the neighbouring with the Arno coastalplain makes it very probable that high-frequency climatic changes have played an important role in the dynamics of coastline position. Further multidisciplinary studies in the area could confirm this hypothesis.

CONCLUDING REMARKS

The integration of geomorphological, stratigraphical, and archaeological data allows for the reconstruction of the late phases of progradation that affected the study area during the last 3000 yr. The following key points can be highlighted:

1) about 3000 yr ago the coastline was located about 2.5 km landward in respect to its present position in proximity of Migliarina dune, and behind the dune, a marsh (Giardo marsh) connected to the Massaciuccoli lake area developed;

2) the connection between the Giardo and Massaciuccoli areas allows a better understanding of the characteristics of the archaeological site of Acquarella and this played an important role in it becoming an important centre in commercial communication between the sea, coast, and inland;

3) the timing of the coastline position is also constrained to the 12th and 16th centuries; during the interval between 3000 yr and the 12th the progradation of the coastline was about of 1.3 km and of about 500 m between the 12th and 16th centuries;

4) the estimate rate of progradation shows a significant increase since the 16th century to the present day testified by a progradation of the coastline of about 0.7 km;

5) evidence of four small high-frequency transgressive-regressive cycles within the succession recording the Late Holocene phase of progradation in the subsurface of the study area supports the hypothesis that the progradation took place irregularly.

ACKNOWLEDGEMENTS

We would like to thank the Fondazione Cassa di Risparmio di Lucca and Museo Archeologico di Camaiore for their support. We are grateful to M. Benvenuti and to anonymous contributors for their accurate review. Thanks are also due to S. Giacomelli for her contribution in the discussion of the manuscript. This work has been funded by Provincia di Pisa of a grant to Dr. G. Sarti.

REFERENCES

Geoarcheological evidences of changes in the coastline ...

Ms. ricevuta il 9 giugno 2008
Testo definitivo ricevuto il 16 febbraio 2009
Ms. received: June 9, 2008
Final text received: February 16, 2009