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Hylomorphic solitons and charged Q-balls:

existence and stability
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Abstract

In this paper we give an abstract definition of solitary wave and soli-

ton and we develope an abstract existence theory. This theory provides

a powerful tool to study the existence of solitons for the Klein-Gordon

equations as well as for gauge theories. Applying this theory, we prove

the existence of a continuous family of stable charged Q-balls.
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1 Introduction

Loosely speaking a solitary wave is a solution of a field equation whose energy
travels as a localized packet and which preserves this localization in time. A
soliton is a solitary wave which exhibits some strong form of stability so that
it has a particle-like behavior (see e.g. [35], [38], [37] and the references therein
contained). We are interested in a class of solitons which, following [6], [4],
[5], [12], we call hylomorphic. Their existence is due to an interplay between
energy and charge. These solitons include the Q-balls, which are spherically
symmetric solutions of the nonlinear Klein-Gordon equation and which have
been studied since the pioneering papers [36] and [20]. Q-balls arise in a theory
of bosonic particles (see [29], [30]), when there is an attraction between the
particles. Roughly speaking, a Q-ball is a finite-sized ”bubble” containing a
large number of particles. The Q-ball is stable against fission into smaller Q-
balls since, due to the attractive interaction, the Q-ball is the lowest-energy
configuration of that number of particles. Q-balls also play an important role
in the study of the origin of the matter that fills the universe (see [25]).

In this paper we give an abstract definition of solitary wave and soliton and
we develope an abstract existence theory. This theory provides a powerful tool
to study the existence of solitons for the Klein-Gordon equations as well as for
gauge theories (see [7]). Most of the existence results in the present literature
can be deduced in the framework of this theory using Th.18 or 19, as it is shown
in a forthcoming book [17]. We get a new result applying Th.19 to the study of
charged Q-balls. Let us describe this result.

If the Klein-Gordon equations are coupled with the Maxwell equations (NKGM),
then the relative solitary waves are called charged, or gauged Q-balls (see e.g.[20]).
The existence of charged Q-balls is stated in [10], [11], [13], [33]. However, in
these papers there are not stability results and hence the existence of solitons
for NKGM (namely stable charged Q-balls) was an open question.

The problem with the stability of charged Q-balls is that the electric charge
tends to brake them since charges of the same sign repel each other. In this
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respect Coleman, in his celebrated paper [20], says ”I have been unable to con-
struct Q-balls when the continuous symmetry is gauged. I think what is hap-
pening physically is that the long-range force caused by the gauge field forces
the charge inside the Q-ball to migrate to the surface, and this destabilizes the
system, but I am not sure of this”.

A partial answer to this question is in [15] where the existence of stable
charged Q-balls is established provided that the interaction between matter
and gauge field is sufficiently small. Theorem 19 allows to extend this result
and to prove the existence of a continuous family of stable charged Q-balls.
More precisely, we prove that there is a family of Q-balls {uδ}δ∈(0,δ∞) whose
energy and charge are decreasing with δ.

2 Solitary waves and solitons

In this section we construct a functional abstract framework which allows to
define solitary waves, solitons and hylomorphic solitons.

2.1 Definitions of solitons

Solitary waves and solitons are particular states of a dynamical system described
by one or more partial differential equations. Thus, we assume that the states
of this system are described by one or more fields which mathematically are
represented by functions

u : RN → V

where V is a vector space with norm | · |V and which is called the internal
parameters space. We assume the system to be deterministic; this means that
it can be described as a dynamical system (X, γ) where X is the set of the states
and γ : R ×X → X is the time evolution map. If u0(x) ∈ X, the evolution of
the system will be described by the function

u (t, x) := γtu0(x). (1)

We assume that the states of X have ”finite energy” so that they decay at ∞
sufficiently fast and that

X ⊂ L1
loc

(

R
N , V

)

. (2)

Thus we are lead to give the following definition:

Definition 1 A dynamical system (X, γ) is called of FT type (field-theory-type)
if X is a Hilbert space of fuctions of type (2).

For every τ ∈ RN , and u ∈ X , we set

(Tτu) (x) = u (x+ τ ) . (3)

Clearly, the group
T =

{

Tτ | τ ∈ R
N
}

(4)

is a unitary representation of the group of translations.
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Definition 2 A set Γ ⊂ X is called compact up to space tanslations or T -
compact if for any sequence un(x) ∈ Γ there is a subsequence unk

and a sequence
τk ∈ RN such that unk

(x − τk) is convergent.

Now, we want to give a very abstract definition of solitary wave. As we told
in the introduction, a solitary wave is a field whose energy travels as a localized
packet and which preserves this localization in time. For example, consider a
solution of a field equation having the following form:

u (t, x) = u0(x− vt− x0)e
i(v·x−ωt); u0 ∈ L2(RN ); (5)

for every x0, v ∈ RN , ω ∈ R, u (t, x) is a solitary wave. The evolution of a
solitary wave is a translation plus a mild change of the internal parameters (in
this case the phase).

This situation can be formalized by the following definition:

Definition 3 If u0 ∈ X, we define the closure of the orbit of u0 as follows:

O (u0) := {γtu0(x) | t ∈ R}.

A state u0 ∈ X is called solitary wave if

• (i) 0 /∈ O (u0) ;

• (ii) O (u0) is T -compact.

Clearly, (5) describes a solitary wave according to the definition above. The
standing waves, namely objects of the form

γtu = u(t, x) = u(x)e−iωt, u ∈ L2(RN ), u 6= 0, (6)

probably are the ”simplest” solitary waves. In this case the orbit O (u0) itself
is compact.

Take X = L2(RN ) and u ∈ X ; if γtu = u
(

x
et

)

, u is not a solitary wave, since

(i) of the above definition is violated; if γtu = 1
et u
(

x
et

)

, u is not a solitary wave
since (ii) of Def. 3 does not hold. Also, according to our definition, a ”couple”
of solitary waves is not a solitary wave: for example

γtu = [u0(x − vt) + u0(x + vt)] ei(v·x−ωt),

is not a solitary wave since (ii) is violated.
The solitons are solitary waves characterized by some form of stability. To

define them at this level of abstractness, we need to recall some well known
notions in the theory of dynamical systems.

Definition 4 A set Γ ⊂ X is called invariant if ∀u ∈ Γ, ∀t ∈ R, γtu ∈ Γ.
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Definition 5 Let (X, d) be a metric space and let (X, γ) be a dynamical system.
An invariant set Γ ⊂ X is called stable, if ∀ε > 0, ∃δ > 0, ∀u ∈ X,

d(u,Γ) ≤ δ,

implies that
∀t ≥ 0, d(γtu,Γ) ≤ ε.

Now we are ready to give the definition of soliton:

Definition 6 A state u ∈ X is called soliton if u ∈ Γ ⊂ X where

• (i) Γ is an invariant stable set,

• (ii) Γ is T -compact

• (iii) 0 /∈ Γ.

The above definition needs some explanation. First of all notice that every
u ∈ Γ is a soliton and that every soliton is a solitary wave. Now for simplicity,
we assume that Γ is a manifold (actually, in many concrete models, this is the
generic case). Then (ii) implies that Γ is finite dimensional. Since Γ is invariant,
u0 ∈ Γ ⇒ γtu0 ∈ Γ for every time. Thus, since Γ is finite dimensional, the
evolution of u0 is described by a finite number of parameters. The dynamical
system (Γ, γ) behaves as a point in a finite dimensional phase space. By the
stability of Γ, a small perturbation of u0 remains close to Γ. However, in this
case, its evolution depends on an infinite number of parameters. Thus, this
system appears as a finite dimensional system with a small perturbation.

Example. We will illustrate the definition 6 with an example. Consider
the solitary wave (5) and the set

Γv =
{

u(x− x0)e
i(v·x−θ) ∈ H1

(

R
N ,C

)

: x0 ∈ R
N ; θ ∈ R

}

.

(5) is a soliton provided that Γv is stable; in fact the following conditions are
satisfied:

• The dynamics on Γv is given by the following equation:

γt

[

u(x− x0)e
i(v·x−θ)

]

= u(x− vt− x0)e
i(v·x−θ−ωt).

This dynamics implies that Γv is invariant and that (iii) holds.

• we have assumed that Γv is stable; in this case any perturbation of our
soliton has the following structure:

u(t, x) = u(x− vt− x0(t))e
i(v·x−θ(t)) + w(t, x)

where x0(t), θ(t) are suitable functions and w(t, x) is a perturbation small
in H1

(

RN ,C
)

.

• Γv is T -compact; actually it is isomorphic to RN × S1.
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2.2 Definition of hylomorphic solitons

We now assume that the dynamical system (X, γ) has two constants of motion:
the energy E and the charge C. At the level of abstractness of this section
(and the next one), the name energy and charge are conventional, but in our
applications, E and C will be the energy and the charge as defined in section
5.2.

Definition 7 A solitary wave u0 ∈ X is called standing hylomorphic soli-
ton if it is a soliton according to Def. 6 and if Γ has the following structure

Γ = Γ (e0, c0) = {u ∈ X | E(u) = e0, |C(u)| = c0} (7)

where
e0 = min {E(u) | |C(u)| = c0} . (8)

Notice that, by (8), we have that a hylomorphic soliton u0 satisfies the
following nonlinear eigenvalue problem:

E′(u0) = λC′(u0).

In general, a minimizer u0 of E on Mc
0
= {u ∈ X |C(u)| = c0} is not a

soliton; in fact, according to Def. 6, it is necessary to prove the following facts:

• (i) The set Γ (e0, c0) is stable.

• (ii) The set Γ (e0, c0) is T -compact (i.e. compact up to translations).

• (iii) 0 /∈ Γ (e0, c0) , since otherwise, some u ∈ Γ (e0, c0) is not even a
solitary wave (see Def. 3,(i)).

In concrete cases, the point (i) is the most delicate point to prove. If (i) does
not hold, according to our definitions, u0 is a solitary wave but not a soliton.

Now let us see the general definition of hylomorphic soliton.

Definition 8 Let (X, γ) be a dynamical system of type FT and invariant for
the action of a Lie group G, namely, for any u ∈ X, ∀g ∈ G,

gγtu =γtgu.

u is called hylomorphic soliton if u =gu0 where u0 is a standing hylomorphic
soliton and g is a suitable element of G.

In the application G will be a representation of the Galileo or of the Lorentz
group. Now let us illustrate with an example Def. 7 and Def. 8.

Example. Let us consider the example (6). The standing wave u(x)e−iωt

is a hylomorphic soliton if

Γ0 =
{

u(x− x0)e
−iθ ∈ H1

(

R
N ,C

)

: x0 ∈ R
N ; θ ∈ R

}

satisfies the request in Definition 6 and if Γ0 = Γ (e0, c0) (see (7)) for a suitable
c0.
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3 Existence results of hylomorphic solitons

In the previous section, we have seen that the existence of hylomorphic soliton
is related to the existence of minimizers of the energy. In this section we will
investigate the following minimization problem

min
u∈Mc

E(u) where Mc := {u ∈ X | |C(u)| = c} (9)

and under which conditions the set of the minimizers

Γ (e, c) = {u ∈ X | E(u) = e, |C(u)| = c} ; e = min
u∈Mc

E(u)

is stable.

3.1 The abstract framework

The following definitions could be given in a more abstract framework. Never-
theless, for the sake of definitess, in the following we shall assume that

(X, γ) is a dynamical system of FT-type (see Def 1)

and that
G is a subgroup of T (see(4)).

Definition 9 A subset Γ ⊂ X is called G-invariant if

∀u ∈ Γ, ∀g ∈ G, gu ∈ Γ.

Definition 10 A sequence un in X is called G-compact if there is a subsequence
unk

and a sequence gk ∈ G such that gkunk
is convergent. A subset Γ ⊂ X is

called G-compact if every sequence in Γ is G-compact.

Observe that the above definition reduces to Definition 2 if G = T . If
G = {Id} or, more in general, it is a compact group, G-compactness im-
plies compactness. If G is not compact such as the tranlation group T , G-
compactness is a weaker notion than compactness.

Definition 11 A G-invariant functional J on X is called G-compact if any
minimizing sequence un is G-compact.

Clearly a G-compact functional has a G-compact set of minimizers.

Definition 12 We say that a functional F on X has the splitting property if
given a sequence un = u+wn ∈ X such that wn converges weakly to 0, we have
that

F (un) = F (u) + F (wn) + o(1).
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Remark 13 Every quadratic form, which is continuous and symmetric, satis-
fies the splitting property; in fact, in this case, we have that F (u) := 〈Lu,u〉
for some continuous selfajoint operator L; then, given a sequence un = u+wn

with wn ⇀ 0 weakly, we have that

F (un) = 〈Lu,u〉+ 〈Lwn,wn〉+ 2 〈Lu,wn〉
= F (u) + F (wn) + o(1).

Definition 14 A sequence un ∈ X is called G-vanishing sequence if it
is bounded and if for any subsequence unk

and for any sequence g
k
⊂ G the

sequence gkunk
converges weakly to 0.

So, if un → 0 strongly, un is a G-vanishing sequence. However, if un ⇀ 0
weakly, it might happen that it is not a G-vanishing sequence; namely it might
exist a subsequence unk

and a sequence gk ⊂ G such that gkunk
is weakly

convergent to some ū 6= 0. Let see an example; if u0 ∈ X is a solitary wave and
tn → +∞, then the sequence γtnu0 is not a T -vanishing sequence.

In the following E and C will denote two constants of the motion for the
dynamical system (in the applications they will be the energy and the charge).
We will assume that

E and C are C1 and bounded functionals on X.

We set

Λ (u) :=
E (u)

|C (u)| , (10)

Since E and C are constants of motion, also Λ is a constant of motion; it
will be called hylenic ratio (see the definition of charge, sec. 5.2) and, as we
will see it will play a central role in this theory.

The notions of G-vanishing sequence and of hylenic ratio allow to introduce
the following (important) definition:

Definition 15 We say that the hylomorphy condition holds if

inf
u∈X

E (u)

|C (u)| < Λ0. (11)

where

Λ0 := inf {lim inf Λ(un) | un is a G-vanishing sequence} . (12)

Moreover, we say that u0 ∈ X satisfies the hylomorphy condition if,

E (u0)

|C (u0)|
< Λ0. (13)

By this definition, using the above notation, we have the following:

limΛ (un) < Λ0 ⇒ ∃unk
, gk ∈ G : gkunk

⇀ ū 6= 0.

In order to apply the existence theorems of sect. 3.2, it is necessary to
estimate Λ0; the following propositons may help to do this.
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Proposition 16 Assume that there exists a seminorm ‖‖♯ on X such that

{un is a G− vanishing sequence} ⇒ ‖un‖♯ → 0. (14)

Then
lim inf
‖u‖♯→0

Λ(u) ≤ Λ0 ≤ lim inf
‖u‖→0

Λ(u). (15)

Proof. It follows directly from the definition (12) of Λ0 and (14).

�

Proposition 17 If E and C are twice differentiable in 0 and

E(0) = C(0) = 0; E′(0) = C′(0) = 0,

then we have that

Λ0 ≤ inf
u 6=0

E′′(0) [u,u]

|C′′(0) [u,u]| .

Proof. By the above proposition,

Λ0 ≤ lim inf
‖u‖→0

Λ(u) = lim inf
‖u‖→0

E(0) + E′(0) [u] + E′′(0) [u,u] + o(‖u‖2)
∣

∣

∣
C(0) + C′(0) [u] + C′′(0) [u,u] + o(‖u‖2)

∣

∣

∣

= inf
u 6=0

E′′(0) [u,u]

|C′′(0) [u,u]| .

�

Now, finally, we can give some abstract theorems relative to the existence of
hylomorphic solitons.

3.2 Statement of the abstract existence theorems

We formulate the assumptions on E and C:

• (EC-0) (Values at 0)

E(0) = C(0) = 0; E′(0) = C′(0) = 0.

• (EC-1)(Invariance) E(u) and C(u) are G-invariant.

• (EC-2)(Splitting property) E and C satisfy the splitting property.

• (EC-3)(Coercivity) We assume that

– (i) ∀u 6= 0, E(u) > 0.

– (ii) if ‖un‖ → ∞, then E(un) → ∞;

9



– (iii) if E(un) → 0, then ‖un‖ → 0.

Now we can state the main results:

Theorem 18 Assume that E and C satisfy (EC-0),...,(EC-2) and (EC-3).
Moreover assume that the hylomorphy condition of Def. 15 is satisfied. Then
there exists a family of hylomorphic solitons uδ, δ ∈ (0, δ∞) , δ∞ > 0.

Theorem 19 Let the assumptions of theorem 18 hold. Moreover assume that

‖E′(u)‖ + ‖C′(u)‖ = 0 ⇔ u = 0. (16)

Then for every δ ∈ (0, δ∞) , δ∞ > 0, there exists a hylomorphic soliton uδ.
Moreover, if δ1 < δ2, the corresponding solitons uδ1 ,uδ2 are distinct, namely
we have that

• (a) Λ(uδ1) < Λ(uδ2)

• (b) |C(uδ1)| > |C(uδ2)| .

• (c) E(uδ1) > E(uδ2)

The proofs of the above results are in the remaining part of this section. In
subsection 3.3 we prove the existence of minimizers, namely that Γ(e, c) 6= ∅

(see (7)) and in subsection 3.4, we prove the stability of Γ(e, c), namely that the
minimizers are hylomorphic solitons.

3.3 A minimization result

We start with a technical lemma.

Lemma 20 Let un = u+wn ∈ X be a sequence such that wn converges weakly
to 0. Then, up to a subsequence, we have

limΛ (u+wn) ≥ min (Λ (u) , limΛ (wn))

and the equality holds if and only if Λ (u) = limΛ (wn) .

Proof. Given four real numbers A,B, a, b, (with B, b > 0), we have that

A+ a

B + b
≥ min

(

A

B
,
a

b

)

. (17)

In fact, suppose that A
B ≥ a

b ; then

A+ a

B + b
=

A
BB + a

b b

B + b
≥

a
bB + a

b b

B + b
=
a

b
≥ min

(

A

B
,
a

b

)

.
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Notice that the equality holds if and only if A
B = a

b . Using the splitting property
and the above inequality, up to a subsequence, we have that

limΛ (u+wn) =
limE (u+wn)

lim |C (u+wn)|
=

E (u) + limE (wn)

|C (u) + limC (wn)|
≥

E (u) + limE (wn)

|C (u)|+ |limC (wn)|

≥ min

(

E (u)

|C (u)| ,
limE (wn)

lim |C (wn)|

)

= min (Λ (u) , limΛ (wn)) .

�

For any δ > 0, set
Jδ(u) = Λ (u) + δE(u)

By the hylomorphy condition (11) we have

δ∞ = sup {δ > 0 | ∃v : Λ (v) + δE(v) < Λ0 } ∈ R
+ ∪ {+∞} . (18)

Clearly, if δ ∈ [0, δ∞) , ∃v : Λ (v) + δE(v) < Λ0.

Theorem 21 Assume that E and C satisfy (EC-0),...,(EC-3) and the hylo-
morphy condition (11). Then, for every δ ∈ (0, δ∞) , Jδ is G-compact and it
has a minimizer uδ 6= 0. Moreover, uδ ∈ Γ (eδ, cδ) (see (7)) where eδ = E(uδ),
cδ = |C(uδ)| > 0.

Proof. Let un be a minimizing sequence of Jδ (δ ∈ (0, δ∞)). This sequence
un is bounded in X. In fact, arguing by contradiction, assume that, up to a
subsequence, ‖un‖ → ∞. Then by (EC-3) (ii), E(un) → ∞ and hence Jδ(un) →
∞ which contradicts the fact that un is a minimizing sequence of Jδ.

We now set
jδ := inf

u∈X
Jδ (u) .

Since δ ∈ (0, δ∞), where δ∞ is defined in (18), we have that

jδ < Λ0. (19)

Moreover, since E ≥ 0,we have

0 ≤ Λ (un) ≤ Jδ(un)

and
Jδ(un) → jδ < Λ0.

Then, up to a subsequence, Λ (un) → λ < Λ0. So, by definition (12) of Λ0 , un is
not a G−vanishing sequence. Hence, by Def. 14, we can extract a subsequence
unk

and we can take a sequence gk ⊂ G such that u′
k := gkunk

is weakly
convergent to some

uδ 6= 0. (20)

11



We can write
u′
n = uδ +wn

with wn ⇀ 0 weakly. We want to prove that wn → 0 strongly.
By lemma 20 and by the splitting property of E, we have, up to a subse-

quence, that

jδ = lim Jδ (uδ +wn) = lim [Λ (uδ +wn) + δE (uδ +wn)]

≥ [min {Λ (uδ) , limΛ (wn)}] + δE (uδ) + δ limE (wn) .

Now there are two possibilities (up to subsequences): 1- min {Λ (uδ) , limΛ (wn)} =
limΛ (wn); 2- min {Λ (uδ) , limΛ (wn)} = Λ (uδ) . We will show that the possi-
bility 1 cannot occur. In fact, if it holds, we have that

jδ ≥ limΛ (wn) + δE (uδ) + δ limE (wn)

= lim Jδ (wn) + δE (uδ)

≥ jδ + δE (uδ)

and hence, we get that E (uδ) ≤ 0, contradicting (20). Then possibility 2 holds
and we have that

jδ ≥ Λ (uδ) + δE (uδ) + δ limE (wn)

= Jδ (uδ) + δ limE (wn)

≥ jδ + δ limE (wn) .

Then, limE (wn) = 0 and, by (EC-3)(iii), wn → 0 strongly. Then Jδ (u
′
n) →

Jδ (uδ) . So Jδ is G.-compact and uδ is a minimizer.
To prove the second part of the theorem, we set:.

eδ = E(uδ)

cδ = |C(uδ)|
Mδ : = {u ∈ X | |C(u)| = cδ} .

Since

Jδ|Mδ
=
E

cδ
+ δE =

(

1

cδ
+ δ

)

E

it follows that uδ minimizes also E|Mδ
.

�

In the following uδ will denote a minimizer of Jδ.

Lemma 22 Let the assumptions of Theorem 21 be satisfied. If δ1, δ2 ∈ (0, δ∞)
δ1 < δ2 (δ∞ as in (18)), then the minimizers uδ1 ,uδ2 of Jδ1 , Jδ2 respectively
satisfy the following inequalities:

• (a) Jδ1(uδ1) < Jδ2(uδ2)

12



• (b) E(uδ1) ≥ E(uδ2),

• (c) Λ(uδ1) ≤ Λ(uδ2),

• (d) |C(uδ1)| ≥ |C(uδ2)| .

Proof. (a)

Jδ1 (uδ1) = Λ (uδ1) + δ1E(uδ1)

≤ Λ (uδ2) + δ1E(uδ2) (since uδ1 minimizes Jδ1)

< Λ (uδ2) + δ2E(uδ2) (since E is positive)

= Jδ2 (uδ2) .

(b) We set

Λ(uδ1) = Λ(uδ2) + a

E(uδ1) = E(uδ2) + b.

We need to prove that b ≥ 0 and a ≤ 0. We have

Jδ2 (uδ2) ≤ Jδ2(uδ1) ⇒
Λ (uδ2) + δ2E(uδ2) ≤ Λ (uδ1) + δ2E(uδ1) ⇒
Λ (uδ2) + δ2E(uδ2) ≤ (Λ (uδ2) + a) + δ2 (E(uδ2) + b) ⇒

0 ≤ a+ δ2b. (21)

On the other hand,

Jδ1 (uδ2) ≥ Jδ1(uδ1) ⇒
Λ (uδ2) + δ1E(uδ2) ≥ Λ (uδ1) + δ1E(uδ1) ⇒
Λ (uδ2) + δ1E(uδ2) ≥ (Λ (uδ2) + a) + δ1 (E(uδ2) + b) ⇒

0 ≥ a+ δ1b. (22)

From (21) and (22) we get

(δ2 − δ1) b ≥ 0

and hence b ≥ 0.
Moreover by (21) and (22) we also get

(

1

δ2
− 1

δ1

)

a ≥ 0

and hence a ≤ 0. Since |C(u)| = E(u)
Λ(u) , also inequality (d) follows.

�

Lemma 23 Let the assumptions of Theorem 21 be satisfied and assume that
also (16) is satisfied. If δ1, δ2 ∈ (0, δ∞) (δ∞ as in (18)), δ1 < δ2, then the
minimizers uδ1 ,uδ2 of Jδ1 , Jδ2 respectively satisfy the following inequalities:
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• (a) E(uδ1) > E(uδ2),

• (b) Λ(uδ1) < Λ(uδ2)

• (c) |C(uδ1)| > |C(uδ2)| .

Proof: Let δ1, δ2 ∈ (0, δ∞) and assume that δ1 < δ2.
(a) It is sufficient to prove that E(uδ1) 6= E(uδ2). We argue indirectly and

assume that
E(uδ1) = E(uδ2). (23)

By the previous lemma, we have that

Λ (uδ1) ≤ Λ (uδ2) . (24)

Also, we have that

Λ (uδ2) + δ2E (uδ2) ≤ Λ (uδ1) + δ2E(uδ1) (since uδ2 minimizes Jδ2)

= Λ (uδ1) + δ2E (uδ2) (by (23))

and so
Λ (uδ2) ≤ Λ (uδ1)

and by (24) we get
Λ (uδ1) = Λ (uδ2) . (25)

Then, it follows that uδ1 is a minimizer of Jδ2 ;in fact, by (25) and (23))

Jδ2 (uδ1) = Λ (uδ1) + δ2E (uδ1)

= Λ (uδ2) + δ2E (uδ2) = Jδ2 (uδ2) .

Then, we have that J ′
δ2
(uδ1) = 0 as well as J ′

δ1
(uδ1) = 0 which esplicitely give

Λ′ (uδ1) + δ2E
′ (uδ1) = 0

Λ′ (uδ1) + δ1E
′ (uδ1) = 0.

The above equations imply that E′ (uδ1) = 0 and Λ′ (uδ1) = 0, and since Λ (u) =
E(u)
|C(u)| , we get that C

′ (uδ1) = 0. Then by (16) uδ1 = 0, and this fact contradicts

Th. 21.
(b) We argue indirectly and assume that

Λ(uδ1) = Λ(uδ2). (26)

By (a), we have that
E (uδ1) > E (uδ2) . (27)

Also, we have that

Λ (uδ1) + δ1E (uδ1) ≤ Λ (uδ2) + δ1E(uδ2) (since uδ1 minimizes Jδ1)

= Λ (uδ1) + δ1E (uδ2) (by (26))
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and so
E (uδ1) ≤ E (uδ2)

and by (27) we get a contradiction.
(c) Since

|C (uδ)| =
E (uδ)

Λ (uδ)
,

the conclusion follows from (a) and (b).
�

3.4 The stability result

In order to prove Theorem 18 it is sufficient to show that the minimizers in Th.
21 provide solitons, so we have to prove that the set Γ (e, c) is stable. To do
this, we need the (well known) Liapunov theorem in following form:

Theorem 24 Let Γ be an invariant set and assume that there exists a differ-
entiable function V (called Liapunov function) defined on a neighborhood of Γ
such that

• (a) V (u) ≥ 0 and V (u) = 0 ⇔ u ∈ Γ

• (b) ∂tV (γt (u)) ≤ 0

• (c) V (un) → 0 ⇔ d(un,Γ) → 0.

Then Γ is stable.

Proof. For completeness, we give a proof of this well known result. Arguing
by contradiction, assume that Γ, satisfying the assumptions of Th. 24, is not
stable. Then there exists ε > 0 and sequences un ∈ X and tn > 0 such that

d(un,Γ) → 0 and d(γtn (un) ,Γ) > ε. (28)

Then we have

d(un,Γ) → 0 =⇒ V (un) → 0 =⇒ V (γtn (un)) → 0 =⇒ d(γtn (un) ,Γ) → 0

where the first and the third implications are consequence of property (c). The
second implication follows from property (b). Clearly, this fact contradicts (28).

�

Lemma 25 Let V be G-compact, continuous functional, V ≥ 0 and let Γ =
V −1(0) be the set of minimizers of V. If Γ 6= ∅, then Γ is G-compact and V
satisfies the point (c) of the previous theorem.

15



Proof : The fact that Γ is G-compact, is a trivial consequence of the fact that
Γ is the set of minimizers of a G-compact functional V . Now we prove (c). First
we show the implication ⇒ . Let un be a sequence such that V (un) → 0. By
contradiction, we assume that d(un,Γ) 9 0, namely that there is a subsequence
u

′

n such that
d(u′

n,Γ) ≥ a > 0. (29)

Since V (un) → 0 also V (u′
n) → 0, and, since V is G compact, there exists a

sequence gn in G such that, for a subsequence u′′
n, we have gnu

′′
n → u0. Then

d(u′′
n,Γ) = d(gnu

′′
n,Γ) ≤ d(gnu

′′
n,u0) → 0

and this contradicts (29).
Now we prove the other implication ⇐ . Let un be a sequence such that

d(un,Γ) → 0, then there exists vn ∈ Γ s.t.

d(un,Γ) ≥ d(un,vn)−
1

n
. (30)

Since V is G-compact, also Γ is G-compact; so, for a suitable sequence gn,
we have gnvn → w̄ ∈ Γ. We get the conclusion if we show that V (un) → 0. We
have by (30), that d(un,vn) → 0 and hence d(gnun, gnvn) → 0 and so, since
gnvn → w̄, we have gnun → w̄ ∈ Γ. Therefore, by the continuity of V and since
w̄ ∈ Γ, we have V (gnun) → V (w̄) = 0 and we can conclude that V (un) → 0.

�

Proof of Th. 18. By Theorem 21 for every δ ∈ (0, δ∞) Jδ is G−compact
and it has a minimizer uδ 6= 0 with

E(uδ) = eδ

where
eδ = min {E(u) : |C(u)| = cδ} , cδ = |C(uδ)| .

So, in order to show that uδ is an hylomorphic soliton, we need to show that

Γ (eδ, cδ) = {u ∈ X | |C(u)| = cδ, E(u) = eδ}

is G- compact and stable (see Definitions 6 and 7).
We set

V (u) = (E(u)− eδ)
2 + (|C(u)| − cδ)

2.

Clearly
Γ (eδ, cδ) = V −1(0)

V is G compact. In fact:
Let wn be a minimizing sequence for V, then V (wn) → 0 and consequently

E (wn) → eδ and C (wn) → cδ. Now, since

min Jδ =
eδ
cδ

+ δeδ,
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we have that wn is a minimizing sequence also for Jδ. Then, since by Theorem
21 Jδ is G-compact, we get

wn is G-compact. (31)

So we conclude that V is G-compact.
Then, by Lemma 25, we deduce that V −1(0) = Γ (eδ, cδ) is G compact and

that V satisfies the point (c) in Theorem 24. Moreover V satisfies also the points
(a) and (b) in Theorem 24. So we conclude that Γ (eδ, cδ) is stable.

�

Proof of Th. 19 By Theorem 18 for any δ ∈ (0, δ∞) there exists a hylo-
morphic soliton uδ. By using Lemma 23, we get different solitons for different
values of δ. Namely for δ1 < δ2 we have Λ(uδ1) < Λ(uδ2), |C(uδ1)| > |C(uδ2)|
and E(uδ1) > E(uδ2).

�

4 The structure of hylomorphic solitons

4.1 The meaning of the hylenic ratio

Let (X, γ) be a dynamical system of type FT. If u ∈ X is a finite energy field,
usually it disperses as time goes on, namely

lim
t→∞

‖γtu‖⋆ = 0.

where

‖u‖
⋆

= sup
x∈RN

∫

B1(x)

|u|V dx,

V is the internal parameter space (cf. pag. 3) andB1(x) =
{

y ∈ RN : |x− y| < 1
}

.
However, if the hylomorphy condition (11) is satisfied, this dispersion in general
does not occur. In fact we have the following result:

Proposition 26 Assume that X is compactly embedded into L1
loc

(

RN , V
)

. Let
u0 ∈ X such that Λ (u0) < Λ0, then

min lim
t→∞

‖u(t)‖
⋆
> 0

where u(t) = γtu and γ0u = u0.

Proof : Let tn → ∞ be a sequence of times such that

lim
n→∞

‖u (tn)‖⋆ = min lim
t→∞

‖u(t)‖
⋆
. (32)

Since Λ is a constant of motion

Λ (u (tn)) = Λ (u0) < Λ0
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then, by the definition of Λ0, may be taking a subsequence, there is a sequence
of translations Txn

such that

Txn
u (tn) = u (tn, x− xn) = ū+wn (33)

where ū 6= 0 and wn ⇀ 0 in X. Without loss of generality, we may assume that
ū 6= 0 in B1(0). Since X is compactly embedded into L1

loc

(

RN , V
)

, we have
that

∫

B1(0)

|wn|V dx→ 0. (34)

By (33), we have that

|Txn
u (tn)|V ≥ |ū|V − |wn|V . (35)

Then, using (35), (34), we have that

min lim
n→∞

∫

B1(0)

|Txn
u (tn)|V dx

≥ lim
n→∞

(

∫

B1(0)

|ū|V dx −
∫

B1(0)

|wn|V dx

)

=

∫

B1(0)

|ū|V dx > 0

Then

min lim
n→∞

∫

B1(0)

|Txn
u (tn)|V dx > 0. (36)

Finally, by (32) and (36), we get

min lim
t→∞

‖u (t)‖
⋆

= lim
n→∞

‖u (tn)‖⋆ ≥ min lim
n→∞

∫

B1(xn)

|u (tn)|V dx

= min lim
n→∞

∫

B1(0)

|Txn
u (tn)|V dx > 0.

�

Thus the hylomorphy condition prevents the dispersion. As we have seen
in the preceding section, (11) is also a fundamental assumption in proving the
existence of hylomorphic solitons.

Now, we assume E and C to be local quantities, namely, given u ∈ X, there
exist the density functions ρE,u (x) and ρC,u (x) ∈ L1(RN ) such that

E (u) =

∫

ρE,u (x) dx

C (u) =

∫

ρC,u (x) dx

18



Energy and hylenic densities ρE,u, ρC,u allow to define the density of binding
energy as follows:

β(t, x) = βu(t, x) =
[

ρE,u (t, x)− Λ0 ·
∣

∣ρC,u (t, x)
∣

∣

]−
(37)

where [f ]
−
denotes the negative part of f.

If u satisfies the hylomorphy condition, we have that E (u) < Λ0 |C (u)| and
hence he have that βu(t, x) 6= 0 for some x ∈ RN .

The support of the binding energy density is called bound matter region;
more precisely we have the following definition

Definition 27 Given any configuration u, we define the bound matter region
as follows

Σ (u) = {x : βu(t, x) 6= 0}.
If u0 is a soliton, the set Σ (u0) is called support of the soliton at time t.

In the situation considered in this article, we will see that the solitons satisfy
the hylomorphy condition. Thus we may think that a soliton u0 consists of
bound matter localized in a precise region of the space, namely Σ (u0). This fact
gives the name to this type of soliton from the Greek words ”hyle”=”matter”
and ”morphe”=”form”.

4.2 The swarm interpretation

Clearly the physical interpretation of hylomorphic solitons depends on the model
which we are considering. However we can always assume a conventional inter-
pretations which we will call swarm interpretation since the soliton is regarded
as a swarm of particles bound together. This iterpretation is consitent with the
model of the Q-ball.

We assume that u is a field which describes a fluid consisting of particles; the
particles density is given by the function ρC(t, x) = ρC,u(t, x) which, of course
satisfies a continuity equation

∂tρC +∇ · JC = 0 (38)

where JC is the flow of particles. Hence C is the total number of particles. Here
the particles are not intended to be as in ”particle theory” but rather as in fluid
dynamics, so that C does not need to be an integer number. Alternatively, if you
like, you may think that C is not the number of particles but it is proportional
to it. Also, in some equations as for example in NKG, C can be negative; in
this case, the existence of antiparticles is assumed.

Thus, the hylomorphy ratio

Λ (u) =
E (u)

|C (u)|
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represents the average energy of each particle (or antiparticle). The number Λ0

defined in (12) is interpreted as the rest energy of each particle when they do
not interact with each other. If Λ (u) > Λ0, then the average energy of each
particle is bigger than the rest energy; if Λ (u) < Λ0, the opposite occurs and
this fact means that particles act with each other with an attractive force.

If the particles were at rest and they were not acting on each other, their
energy density would be

Λ0 · |ρC(t, x)| .
If ρE(t, x) denotes the energy density and if

ρE(t, x) < Λ0 · |ρC(t, x)| ;

then, in the point x at time t, the particles attract each other with a force which
is stronger than the repulsive forces; this explains the name density of binding
energy given to β(t, x) in (37).

Thus a soliton relative to the state u can be considered as a ”rigid” object
occupying the region of space Σ (u) (cf. Def. 27); it consists of particles which
stick to each other; the energy to destroy the soliton is given by

∫

βu(t, x)dx =

∫

Σ(u)

(Λ0 |ρC(t, x)| − ρE(t, x)) dx.

5 The Nonlinear Klein-Gordon-Maxwell equa-

tions

Existence results of solitary waves for the Nonlinear Klein-Gordon-Maxwell
(NKGM) are stated in many papers (besides the papers quoted in the intro-
duction see also [8], [19], [23], [21], [22], [1], [2], [13], [15], [31]). As stated in
the introduction, in this section we prove the existence of a continuous family
of stable solitary waves of NKGM.

5.1 Basic features

The nonlinear Klein-Gordon equation for a complex valued field ψ, defined on
the space-time R4, can be written as follows:

�ψ +W ′(ψ) = 0 (39)

where

�ψ =
∂2ψ

∂t2
−∆ψ, ∆ψ =

∂2ψ

∂x21
+
∂2ψ

∂x22
+
∂2ψ

∂x23

and, with some abuse of notation,

W ′(ψ) =W ′(|ψ|) ψ|ψ|
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for some smooth function W : [0,∞) → R. Hereafter x = (x1, x2, x3) and t will
denote the space and time variables. The field ψ : R4 → C will be called matter
field. If W ′(s) is linear, W ′(s) = m2s, m 6= 0, equation (39) reduces to the
Klein-Gordon equation.

Consider the Abelian gauge theory in R
4 equipped with the Minkowski met-

ric and described by the Lagrangian density (see e.g. [9], [38], [37])

L = L0 + L1 −W (|ψ|) (40)

where

L0 =
1

2

[

|Dtψ|2 − |Dxψ|2
]

L1 =
1

2
|∂tA+∇ϕ|2 − 1

2
|∇ ×A|2 .

Here q denotes a positive parameter, ∇× and ∇ denote respectively the curl
and the gradient operators with respect to the x variable,

Dt =
∂

∂t
+ iqϕ, Dj =

∂

∂xj
− iqAj , Dxψ = (D1ψ,D2ψ,D3ψ) (41)

are the covariant derivatives and finally ϕ ∈ R and A= (A1, A2, A3) ∈ R3 are
the gauge potentials.

Now consider the total action

S =

∫

(L0 + L1 −W (|ψ|)) dxdt. (42)

Making the variation of S with respect to ψ, ϕ and A we get the following
system of equations

D2
tψ −D2

xψ +W ′(ψ) = 0 (43)

∇ ·
(

∂A

∂t
+∇ϕ

)

= q

(

Im
∂tψ

ψ
+ qϕ

)

|ψ|2 (44)

∇× (∇×A) +
∂

∂t

(

∂A

∂t
+∇ϕ

)

= q

(

Im
∇ψ
ψ

− qA

)

|ψ|2 . (45)

The abelian gauge theory, namely equations (43, 44, 45), provides a very
elegant way to couple the Maxwell equation with matter if we interpret ψ as a
matter field.

In order to give a more meaningful form to these equations, we will write ψ
in polar form

ψ(x, t) = u(x, t) eiS(x,t), u ≥ 0, S ∈ R/2πZ
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So (42) takes the following form

S(u, S, ϕ,A) =

∫ ∫

[

1

2

(

∂u

∂t

)2

− 1

2
|∇u|2 −W (u)

]

dxdt+

+
1

2

∫ ∫

[

(

∂S

∂t
+ qϕ

)2

− |∇S − qA|2
]

u2dxdt

+
1

2

∫ ∫

(

∣

∣

∣

∣

∂A

∂t
+∇ϕ

∣

∣

∣

∣

2

− |∇ ×A|2
)

dxdt

and the equations (43, 44, 45) take the form:

�u+W ′(u) +

[

|∇S − qA|2 −
(

∂S

∂t
+ qϕ

)2
]

u = 0 (46)

∂

∂t

[(

∂S

∂t
+ qϕ

)

u2
]

−∇ ·
[

(∇S − qA) u2
]

= 0 (47)

∇ ·
(

∂A

∂t
+∇ϕ

)

= q

(

∂S

∂t
+ qϕ

)

u2 (48)

∇× (∇×A) +
∂

∂t

(

∂A

∂t
+∇ϕ

)

= q (∇S − qA)u2. (49)

In order to show the relation of the above equations with the Maxwell equations,
we make the following change of variables:

E = −
(

∂A

∂t
+∇ϕ

)

(50)

H = ∇×A (51)

ρ = −
(

∂S

∂t
+ qϕ

)

qu2 (52)

j = (∇S − qA) qu2. (53)

So (48) and (49) are the second couple of the Maxwell equations with respect to
a matter distribution whose charge and current density are respectively ρ and
j:

∇ ·E = ρ (gauss)

∇×H− ∂E

∂t
= j (ampere)

(50) and (51) give rise to the first couple of the Maxwell equations

∇×E+
∂H

∂t
= 0 (faraday)

∇ ·H = 0. (nomonopole)
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Using the variables j and ρ, equation (46) can be written as follows

�u+W ′(u) +
j2 − ρ2

q2u
= 0 (matter)

and finally Equation (47) is the charge continuity equation

∂

∂t
ρ+∇ · j = 0. (54)

Notice that equation (54) is a consequence of (gauss) and (ampere). In
conclusion, an Abelian gauge theory, via equations (gauss,..,matter), provides
a model of interaction of the matter field ψ with the electromagnetic field (E,H).
In fact that equations (gauss,..,matter) are equivalent to (46,..,49).

5.2 Energy and charge

Let examine the invariants of NKGM which are relevant for us, namely the
energy and the charge. In this subsection we compute these invariants using the
gauge invariant variables u, ρ, j,E, H.

Energy. Energy, by definition, is the quantity which is preserved by the
time invariance of the Lagrangian. Using the gauge invariant variables, the
energy E calculated along the solutions of equation (gauss) takes the following
form

E = Em + Ef (55)

where

Em =
1

2

∫

[

(

∂u

∂t

)2

+ |∇u|2 +W (u) +
ρ2 + j2

2q2u2

]

dx

and

Ef =
1

2

∫

(

E2 +H2
)

dx.

Proof. By the Noether’s theorem (see e.g. [28] or [6]), we have that, given
the Lagrangian

L =
1

2

(

∂u

∂t

)2

− 1

2
|∇u|2 −W (u)+

+
1

2

(

∂S

∂t
+ qϕ

)2

− 1

2
|∇S − qA|2 u2

+
1

2

∣

∣

∣

∣

∂A

∂t
+∇ϕ

∣

∣

∣

∣

2

− 1

2
|∇ ×A|2)

the density of energy takes the following form:

∂L
∂
(

∂u
∂t

) · ∂u
∂t

+
∂L

∂
(

∂S
∂t

) · ∂S
∂t

+
∂L

∂
(

∂ϕ
∂t

) · ∂ϕ
∂t

+
∂L

∂
(

∂A
∂t

) · ∂A
∂t

− L
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Now we will compute each term. We have:

∂L
∂
(

∂u
∂t

) · ∂u
∂t

=

(

∂u

∂t

)2

(56)

∂L
∂
(

∂S
∂t

) · ∂S
∂t

=

(

∂S

∂t
+ qϕ

)

∂S

∂t
u2

=

(

∂S

∂t
+ qϕ

)

∂S

∂t
u2 +

(

∂S

∂t
+ qϕ

)

qϕu2 −
(

∂S

∂t
+ ϕ

)

qϕu2

=

(

∂S

∂t
+ qϕ

)2

u2 −
(

∂S

∂t
+ qϕ

)

qϕu2

=
ρ2

q2u2
+ ρϕ.

Multiplying by ϕ equation (gauss) and integrating, we get

−
∫

E·∇ϕ =

∫

ρϕ

Thus, replacing this expression in the above formula, we get

∫

∂L
∂
(

∂S
∂t

) · ∂S
∂t

=

∫

ρ2

q2u2
−E·∇ϕ (57)

Also we have
∂L

∂
(

∂ϕ
∂t

) · ∂ϕ
∂t

= 0 (58)

and
∂L

∂
(

∂A
∂t

) · ∂A
∂t

=

(

∂A

∂t
+∇ϕ

)

· ∂A
∂t

= −E · ∂A
∂t

(59)

Moreover, using the notation (50, 51, 52, 53), we have that

L =
1

2

(

∂u

∂t

)2

− 1

2
|∇u|2 −W (u) +

ρ2 − j2

2q2u2
+

E2 −H2

2

24



Then, by (56,...,59) and the above expression for L we get

E(u, S, ϕ,A) =

∫

∂L
∂
(

∂u
∂t

) · ∂u
∂t

+
∂L

∂
(

∂S
∂t

) · ∂S
∂t

+
∂L

∂
(

∂A
∂t

) · ∂A
∂t

− L

=

∫
(

∂u

∂t

)2

+
ρ2

q2u2
−E·∇ϕ−E · ∂A

∂t
− L

=

∫
(

∂u

∂t

)2

+
ρ2

q2u2
+E2 (60)

−
∫

[

1

2

(

∂u

∂t

)2

− 1

2
|∇u|2 −W (u) +

ρ2 − j2

2q2u2
+

E2 −H2

2

]

=

∫

[

1

2

(

∂u

∂t

)2

+
1

2
|∇u|2 +W (u) +

ρ2 + j2

2q2u2
+

E2 +H2

2

]

�

Charge. Using (54), we see that the electric charge has the following ex-
pression

Q =

∫

ρdx = −q
∫

(∂tS + qϕ)u2dx (61)

In order to be consistent with the previous literature ([6], [4], [5], [12], [16], [15],
[13], [17]), we will call charge the following quantity:

C(u) =
Q

q
= −

∫

(∂tS + qϕ)u2dx.

C(u) is a dimensionless quantity which, in some interpretation of NKGM, rep-
resents the number of particles (see [20], [6], [17]). In some of the quoted papers,
C(u) is called hylenic charge and hence the ratio (10) is called hylenic ratio.

5.3 Existence of charged Q-balls

We shall make the following assumptions on W :

• (W-0) (Positivity)
W (s) ≥ 0; (62)

• (W-i) (Nondegeneracy)W is a C2 function s.t. W (0) =W ′(0) = 0 and

W ′′(0) = m2 > 0; (63)
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• (W-ii) (Hylomorphy) if we set

W (s) =
1

2
m2s2 +N(s) (64)

then
∃s0 ∈ R

+ such that N(s0) < 0 (65)

• (W-iii) (Growth condition)

|N ′(s)| ≤ c1s
r−1 + c2s

q−1 for q, r ∈ (2, 6) (66)

(W-0) implies that the energy E in (55) is positive; if this condition does
not hold, it is possible to have solitary waves, but not hylomorphic solitons.

(W-i) In order to have solitary waves it is necessary to have W ′′(0) ≥ 0.
There are some results also when W ′′(0) = 0 (null-mass case, see e.g. [18] and
[3]), however the most interesting situations occur when W ′′(0) > 0.

(W-ii) is the crucial assumption which characterizes the nonlinearity which
might produce hylomorphic solitons.

The hylomorphy condition (W-ii) can also be written as follows:

α0 := inf
s∈R+

W (s)
1
2 |s|

2 < m2 (67)

(W-iii) ifW and hence N is of class C3, then (66) reduces to |N ′(s)| ≤ csq−1

for q < 6, and this is the usual subcritical growth condition.
Now we introduce the phase space X.
First observe that the term

(

ρ2 + j2
)

/u2 in (55) is singular, so we introduce
new gauge invariant variables which eliminate this singularity:

θ =
ρ

qu
; Θ =

j

qu
.

Using these new variables the energy takes the form:

E (u) =
1

2

∫

(

|∂tu|2 + |∇u|2 + θ2 +Θ2 +E2 +H2
)

dx+

∫

W (u)dx

=
1

2

∫

[

|∂tu|2 + |∇u|2 +m2u2 + θ2 +Θ2 +E2 +H2
]

+

∫

N(u).

The generic point in the phase space X is given by

u = (u, û, θ,Θ,E,H)

where û = ∂tu is considered as independent variable; the phase space is given
by

X = {u ∈ H : ∇ ·E = qθu, ∇ ·H = 0} (68)
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where H is the Hilbert space of the functions

u = (u, û, θ,Θ,E,H) ∈ H1
(

R
3
)

× L2
(

R
3
)11

equipped with the norm defined by the quadratic part of the energy, namely:

‖u‖2 =

∫

[

û2 + |∇u|2 +m2u2 + θ2 +Θ2 +E2 +H2
]

dx (69)

In these new variables the energy and the hylenic charge become two con-
tinuous functionals on X having the form

E (u) =
1

2
‖u‖2 +

∫

N(u)dx (70)

C (u) =

∫

θu dx. (71)

Our equations (matter, gauss, ampere, faraday, nomonopole) become

�u+W ′(u) +
Θ2 − θ2

u
= 0

∇ · E = qθu

∇×H− ∂E

∂t
= qΘu (72)

∇×E+
∂H

∂t
= 0

∇ ·H = 0.

Remark 28 In the following we shall assume that the Cauchy problem for
(NKGM) is well posed in X. Actually, in the literature there are few results
relative to this problem (we know only [26], [32], [34]) and we do not know
which are the assumptions that W should satisfy. Also we refer to [14] for a
discussion and some partial results on this issue.

We have the following existence results.

Theorem 29 Assume that W satisfies assumptions (W-0),(W-i),(W-ii),(W-
iii). Then there exists q̄ > 0 such that for every q ∈ [0, q̄] the dynamical system
described by (72) has a family uδ (δ ∈ (0, δ∞) , δ∞ > 0) of standing hylomorphic
solitons (Definition 7). Moreover if δ1 < δ2 we have that

• (a) Λ(uδ1) < Λ(uδ2)

• (b) |C(uδ1)| > |C(uδ2)|

• (c) .E(uδ1) > E(uδ2)
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Theorem 30 The solitons uδ = (uδ, ûδ, θδ,Θδ,Eδ,Hδ) in Theorem 29 are sta-
tionary solutions of (72), this means that ûδ = Θδ = Hδ = 0, Eδ = −∇ϕδ and
uδ, θδ, ϕδ solve the equations

−∆uδ +W ′(uδ)−
θ2δ
uδ

= 0 (73)

−∆ϕδ = −qθδuδ. (74)

We shall prove Theorem 29 by using the abstract Theorem 19. First of all
observe that the energy and the hylenic charge E and C, defined in (70) and
(71) are invariant under translations i. e. under the action of the group T
defined in (4).

We shall see that assumptions (62),...,(66) onW permit to show that assump-
tions (EC-0), (EC-1), (EC-2), (EC-3), (16) and (11) of the abstract theorem 19
are satisfied.

The next two lemmas, whose proofs follow standard arguments, state that
E satisfies the coercivity assumption (EC-3) and that both E and C satisfy the
splitting property (EC-2).

Lemma 31 Let the assumptions of Theorem 29 be satisfied, then E defined by
(70) satisfies (EC-3), namely for any sequence un = (un, ûn, θn,Θn,En,Hn)
in H such that E(un) → 0 (respectively E(un) bounded), we have ‖un‖ → 0
(respectively ‖un‖ bounded), where ‖·‖ is defined in (69).

Proof. See proof of Lemma 23 in [15].
�

Lemma 32 Let the assumptions of Theorem 29 be satisfied, then E and C
satisfy the splitting property (EC-2).

Proof. See proof of Lemma 22 in [15].
�

It remains to prove that the hylomorphy condition (11) holds.

5.4 Analysis of the hylenic ratio

First of all we set:

‖u‖♯ = ‖(u, û, θ,Θ,E,H)‖♯ = max (‖u‖Lr , ‖u‖Lq ) (75)

where r, q are introduced in (66). With some abuse of notation we shall
write max (‖u‖Lr , ‖u‖Lq) = ‖u‖♯.

Lemma 33 The seminorm ‖u‖♯ defined in (75) satisfies the property (14),
namely

{un is a T −vanishing sequence} ⇒ ‖un‖♯ → 0.

where T is defined in (4).
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Proof. Let un be a bounded sequence in H1
(

R3
)

‖un‖2H1(R3) ≤M (76)

such that, up to a subsequence,

‖un‖♯ ≥ a > 0. (77)

. We need to show that un is not T − vanishing.
May be taking a subsequence, we have that at least one of the following

holds:

• (i) ‖un‖♯ = ‖un‖Lr

• (ii) ‖un‖♯ = ‖un‖Lq

Now suppose that (i) holds (If (ii) holds, we will argue in the same way
replacing r with q).

We set for j ∈ Z3

Qj = j +Q = {j + q : q ∈ Q}

where Q is now the cube defined as follows

Q =
{

(x1, .., xn) ∈ R
3 : 0 ≤ xi < 1

}

.

Clearly

R
3 =

⋃

j

Qj .

Now let c be the constant for the Sobolev embedding H1 (Qj) ⊂ Lt (Qj) . We
have

0 < ar ≤
∫

|un|r =
∑

j

∫

Qj

|un|r =
∑

j

‖un‖r−2
Lt(Qj)

‖un‖2Lt(Qj)

≤
(

sup
j

‖un‖r−2
Lt(Qj)

)

·
∑

j

‖un‖2Lr(Qj)

≤ c

(

sup
j

‖un‖r−2
Lt(Qj)

)

·
∑

j

‖un‖2H1(Qj)

= c

(

sup
j

‖un‖r−2
Lr(Qj)

)

‖un‖2H1 ≤ cM

(

sup
j

‖un‖r−2
Lt(Qj)

)

.

where M and a are the constants respectively in (76) and (77). Then

(

sup
j

‖un‖Lt(Qj)

)

≥
(

at

cM

)1/(t−2)
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Then, for any n, there exists jn ∈ Z3 such that

‖un‖Lr(Qjn ) ≥ α > 0. (78)

Then, since (Tjnun) (x) = un(x + jn) (see ( 3)), we have

‖Tjnun‖Lr(Q0)
= ‖un‖Lr(Qjn ) ≥ α > 0. (79)

Since un is bounded, also Tjnun is bounded in H1(R3). Then we have, up
to a subsequence, that Tjnun ⇀ u0 weakly in H1(R3) and hence strongly in
Lr(Q). By (79), u0 6= 0.

So we conclude that un is not T − vanishing.
�

Now, as usual, we set

Λ0 := inf {lim inf Λ(un) | un is a T −vanishing sequence}

Λ♯ = lim inf
‖u‖♯→0

Λ(u) = (80)

lim
ε→0

inf
{

Λ(εu, û, θ,Θ,E,H) |u ∈ H1, (û, θ,Θ,E,H) ∈
(

L2
)11

; ‖u‖♯ = 1
}

.

By the definition of Λ0 and Λ♯ and lemma 33, we have that

Λ0 ≥ Λ♯ (81)

The following lemma holds:

Lemma 34 Let W satisfy assumption (66), then the following inequality holds

Λ♯ ≥ m. (82)

Proof. First of all observe that by (66) we have

∣

∣

∣

∣

∫

N(|u|)dx
∣

∣

∣

∣

≤ k1

∫

|u|r + k2

∫

|u|q

≤ k1 ‖u‖r♯ + k2 ‖u‖q♯ .

So, if we take ‖u‖♯ = 1 and ε > 0,we get

∣

∣

∣

∣

∫

N(|εu|)dx
∣

∣

∣

∣

≤ k1ε
r + k2ε

q. (83)

By the Sobolev embeddings, there is k3 > 0 such that

∫

(

|∇u|2 +m2u2
)

dx ≥ k3 ‖u‖2♯ (84)
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Now, choose
2 < s < min(r, q).

Since r, q > s, we have, by (84), (83) and taking ε > 0 small enough, that

εs
∫

(

|∇u|2 +m2u2
)

dx −
∣

∣

∣

∣

∫

N(|εu|)dx
∣

∣

∣

∣

≥ εsk3 ‖ψ‖2♯ − k1ε
r − k2ε

q = k3ε
s − k1ε

r − k2ε
q ≥ 0

So
∣

∣

∣

∣

∫

N(ε |u|)dx
∣

∣

∣

∣

≤ εs
∫

(

|∇u|2 +m2u2
)

dx where s > 2. (85)

Then, by using (85), for any u = (u, û, θ,Θ,E,H) , with u ∈ H1, ‖u‖♯ = 1 and

any (û, θ,Θ,E,H) ∈
(

L2
)11

, we have, for ε > 0 small

Λ(εu, û, θ,Θ,E,H) ≥
1
2

∫

(

θ2 + ε2 |∇u|2 + ε2m2 |u|2
)

dx +
∫

N(|εu|)dx
ε
∣

∣

∫

θu
∣

∣

≥
1
2

∫

θ2 +
(

ε2

2 − εs
)

∫

(

|∇u|2 +m2 |u|2
)

ε ‖θ‖L2 ‖u‖L2

≥
(∫

θ2dx
)1/2 · εm

√
1− 2εs−2

(∫

u2dx
)1/2

ε ‖θ‖L2 ‖u‖L2

= m
√

1− 2εs−2.

Then, since s > 2, we have

Λ♯ = lim
ε→0

inf
{

Λ(εu, û, θ,Θ,E,H) |u ∈ H1, (û, θ,Θ,E,H) ∈
(

L2
)11

; ‖u‖♯ = 1
}

≥ m

(86)
�

Next we will show that the hylomorphy assumption (11) is satisfied.

Lemma 35 Assume that W satisfies (W-0),...,(W-iii) and (66) then

inf
u∈X

Λ(u) < Λ0. (87)

Proof. We shall prove that

Λ∗ = inf
u∈X

Λ(u) < m (88)

So (87) will follow from (81) and (82) and (88).
Let R > 0; set

uR =







s0 if |x| < R
0 if |x| > R+ 1

|x|
R s0 − (|x| −R)R+1

R s0 if R < |x| < R+ 1

. (89)
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where R > 1.
By the hylomorphy assumption (63) there exist α ∈ (0,m) such that

W (s0) ≤
1

2
α2s20 (90)

Now let ϕR ∈ D1,2 denote the solution of the following equation

∆ϕ = −qαu2R. (91)

We have

Λ∗ = inf
u∈X

1
2 ‖u‖

2
+
∫

N(u)dx

|C (u)|

= inf
u∈X

1
2

∫

[

û2 + |∇u|2 + θ2 +Θ2 +E2 +H2
]

dx+
∫

W (u)dx
∣

∣

∫

θu dx
∣

∣

.

Now remember that u = (u, û, θ,Θ,E,H) and take u = uR with

uR = (uR, 0, αuR, 0,∇ϕR,0) .

By (91), uR ∈ X ; then we have

Λ∗ = inf
u∈X

1
2 ‖u‖

2 +
∫

N(u)dx

|C (u)| ≤
1
2 ‖uR‖2 +

∫

N(uR)dx

|C (uR)|

=

1
2

∫

[

|∇uR|2 + α2u2R + |∇ϕR|2
]

dx +
∫

W (uR)dx

α
∫

u2R dx

≤
1
2

∫

|x|<R

[

|∇uR|2 + α2u2R

]

+
∫

|x|<RW (uR)

α
∫

|x|<R u
2
R dx

+

1
2

∫

R<|x|<R+1

[

|∇uR|2 + α2u2R

]

+
∫

R<|x|<R+1W (uR)

α
∫

|x|<R u
2
R

+
1
2

∫

|∇ϕR|2

α
∫

|x|<R u
2
R

=

1
2

∫

|x|<R
α2s20 +

∫

|x|<R
W (s0)

α
∫

|x|<R
s20

+
c1R

2

α
∫

|x|<R
s20

+
1
2

∫

|∇ϕR|2

α
∫

|x|<R
s20

≤ α+
c2
αR

+
1
2

∫

|∇ϕR|2
4
3παs

2
0R

3
(92)

where the last inequality is a consequence of (90).
In order to estimate the term containing ϕR in (92), we remember that ϕR is

the solution of (91). Observe that u2R has radial symmetry and that the electric
field outside any spherically symmetric charge distribution is the same as if all
of the charge were concentrated into a point. So |∇ϕR (r)| corresponds to the
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strength of an electrostatic field at distance r, created by an electric charge given
by

|Cel| =
∫

|x|≤r

qαu2Rdx = 4π

r
∫

0

qαu2Rv
2dv

and located at the origin. So we have

|∇ϕR (r)| = |Cel|
r2

{

= 4
3πqαs

2
0r if r < R

≤ 4
3πqαs

2
0
(R+1)3

r2 if r ≥ R

Then
∫

|∇ϕR|2 dx ≤ c3q
2α2s40

(
∫

r<R

r4dr +

∫

r>R

(R+ 1)6

r2
dr

)

≤ c4q
2α2s40

(

R5 +
(R + 1)6

R

)

≤ c5q
2α2s40R

5.

Then
1
2

∫

|∇ϕR|2
4
3παs

2
0R

3
≤ c6q

2αs20R
2. (93)

By (92), we get

Λ∗ ≤ α+
c1
αR

+ c6q
2αs20R

2. (94)

Now set
m− α = 2ε

and take

R =
c1
αε
, 0 < q <

√

ε3α

s20c
2
1c6

.

With these choices of R and q, a direct calculation shows that

α+
c1
αR

+ c6q
2αs20R

2 < m. (95)

Then, by (94) and (95), we get that there exists a positive constant c such that,

for 0 < q < c
s̄

√

(m− α)
3
α, we have

inf
u∈X

Λ(u) < m. (96)

�

.
Proof of Th.29 Assumptions (EC-0), (EC-1) of Theorem19 are clearly satis-

fied. By Lemma 32 E and C satisfy the splitting property (EC-2) . . By Lemma
31 and by Lemma 35 also the coercitivity assumption (EC-3) and hylomorphy
condition (11) are satisfied.
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Finally it remains to show that also (16) is satisfied. To this end let

u = (u, û, θ,Θ,E,H) ∈ H1
(

R
3
)

× L2
(

R
3
)11

be a solution of E′(u) = 0, then it is easy to see that (û, θ,Θ,E,H)=0 and
u ∈ H1

(

R3
)

solves the equation

−∆u+W ′(u) = 0.

So, since W ≥ 0, we have by the Derrick-Pohozaev identity [24] that also u =
0.We conclude that

u = (u, û, θ,Θ,E,H) = 0.

So all the assumptions of the Theorem 19 are satisfied and the conclusion
follows.

�.
Proof of Th. 30. Let

uδ = (uδ, 0, θδ, 0,Eδ,0) ∈ X = {u ∈ H : ∇ ·E = qθu, ∇ ·H = 0}

be as in Theorem 30.
So uδ minimizes the energy E (see (70)) on the manifold

Xδ = {u ∈ X : C(u) = C(uδ) = σδ} .

If we write E = −∇ϕ, the constraint ∇ ·E = qθu becomes

−∆ϕ = qθu.

So uδ is a critical point of E on the manifold (in H) made up by those u =
(u, 0, θ, 0,∇ϕ,0) satisfying the constraints

∆ϕ = qθu (97)

C(u) =

∫

θu dx = σδ. (98)

Therefore, for suitable Lagrange multipliers λ ∈ R, ξ ∈ D1,2 (D1,2 is the
closure of C∞

0 with respect to the norm ‖∇ϕ‖L2), we have that uδ is a critical
point of

Eλ,ξ(u) = E(u)+λ

(
∫

θu dx−σδ

)

+ 〈ξ,−∆ϕ+ qθu〉 (99)

where 〈 · , · 〉 denotes the duality map in D1,2. It is easy to show that E′
λ,ξ(uδ) =

0 gives the equations

−∆uδ +W ′(uδ) + λθδ + qξθδ = 0 (100)

−∆ϕδ = ∆ξ (101)

θδ + λuδ + qξuδ = 0. (102)
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From (101) we get ξ = −ϕδ, so (100) and (102) become

−∆uδ +W ′(uδ) + θδ(λ− qϕδ) = 0

(λ− qϕδ) uδ = −θδ.

From the above equations we clearly get (73). (74) is given by the constraint
(97).

�
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