
Suffix array and Lyndon factorization of a text∗

Sabrina Mantaci1, Antonio Restivo1, Giovanna Rosone1, and
Marinella Sciortino1

1University of Palermo, Palermo, Italy

Abstract

The main goal in this paper is to highlight the relationship between
the suffix array of a text and its Lyndon factorization. It is proved in [?]
that one can obtain the Lyndon factorization of a text from its suffix
array. Conversely, here we show a new method for constructing the
suffix array of a text that takes advantage of its Lyndon factorization.
The surprising consequence of our results is that, in order to construct
the suffix array, the local suffixes inside each Lyndon factor can be
separately processed, allowing different implementative scenarios, such
as online, external and internal memory, or parallel implementations.
Based on our results, the algorithm that we propose sorts the suffixes
by starting from the leftmost Lyndon factors, even if the whole text or
the complete Lyndon factorization are not yet available.

1 Introduction

In this paper we propose a strategy for the construction of the suffix array
that takes advantage of a very close relationship between the sorting of the
suffixes (the suffix array) of a text and a particular decomposition of the
text itself, known as the Lyndon factorization.

∗ c©2014. This manuscript version is made available under the CC-BY-NC-ND 4.0
license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please, cite the publisher ver-
sion: Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, Marinella Sciortino, Suffix
array and Lyndon factorization of a text, Journal of Discrete Algorithms, Volume 28,
2014, Pages 2-8, ISSN 1570-8667, https://doi.org/10.1016/j.jda.2014.06.001. Partially
supported by Italian MIUR Project PRIN 2010LYA9RH, “Automi e Linguaggi Formali:
Aspetti Matematici e Applicativi”.

1



The suffix array is a very popular data structure in text algorithms,
first introduced in [?], used both in theoretical studies and for practical
applications. A recent quick tour on suffix arrays can be found in [?].

The Lyndon factorization is a text decomposition introduced in [?] hav-
ing several applications in algebra and combinatorics on words. There exists
a linear time algorithm, due to Duval [?], for computing the Lyndon factor-
ization of a given text.

In [?], the authors show a method to deduce the Lyndon factorization
of a text from its suffix array. Conversely, in this paper a construction of
the suffix array (SA) and the Burrows-Wheeler transform (BWT ) [?] of a
text w from the Lyndon factorization of w is given. In [?], combinatorial
aspects connecting three important data structures in string algorithms, i.e.
the suffix array, the Burrows-Wheeler transform, and the extended BWT
of a multiset of words [?, ?], are studied. A variant of the BWT has been
proposed in [?, ?] by combining the Lyndon factorization of a text and the
extended BWT of the multiset of the Lyndon factors. Note that, differently
from our approach, the output of such a transformation in general does
not coincide with the BWT of a text. For instance, if w = cbabacaac, the
Lyndon factorization is c|b|abac|aac, the output of the variant in [?, ?] is
ccababaac, whereas BWT produces cbbacaaca.

In the literature, there exist several techniques for sorting suffixes in
order to compute the SA, and, in general, they require that the whole text
is available. The Lyndon factorization and some combinatorial properties
proved in this paper allow the sorting of the suffixes of w (“global suffixes”)
by using the sorting of the suffixes inside each block of the decomposition
(“local suffixes”).

The main theorem in this paper states that if u is a concatenation of
consecutive Lyndon factors of a word w, then the mutual order of two local
suffixes in u is maintained when they are extended as global suffixes. This
result could suggest new strategies for the computation of the SA and the
BWT .

We give one of the possible implementations of a strategy that, at the
same time, incrementally computes from left to right both the SA and the
BWT , without the whole text or the complete Lyndon factorization being
available.

In Section ?? we give the fundamental notions and results concerning
combinatorics on words, the Lyndon factorization and the SA. In Section
?? we first introduce the notions of global and local suffixes and we prove
the main theorem. In Section ?? we describe an algorithm that uses the
above results to incrementally construct the SA and the BWT of a text

2



from left to right, and we discuss about possible implementations. Section
?? is devoted to some further developments and conclusions. A preliminary
version of the results given in the present paper can be found in [?].

2 Preliminaries

Let Σ = {c1, c2, . . . , cσ} be a finite alphabet with c1 < c2 < . . . < cσ. Given
a finite word w = a1a2 · · · an, ai ∈ Σ for i = 1, . . . , n, a factor of w is written
as w[i, j] = ai · · · aj . A factor w[1, j], for j = 1, . . . , n, is called prefix, while
a factor w[i, n], for i = 1, . . . , n, is called suffix. We say that x, y ∈ Σ∗ are
conjugate if x = uv and y = vu for some u, v ∈ Σ∗. Recall that conjugacy
is an equivalence relation. A word is primitive if all of its conjugates are
distinct.

Given a text w of length n, the suffix array (SA) of w is an array of
integers ranging from 1 to n specifying the lexicographic ordering of the
suffixes of the string w. That is, SA[j] = i if and only if w[i, n] is the
j-th suffix of w in ascending lexicographical order. For instance, if w =
mathematics then

SA(w) = [2, 7, 10, 5, 4, 9, 1, 6, 11, 3, 8].

We recall that in many applications it is useful to append the symbol $
to the end of the word w, where $ is considered as a symbol smaller than
any other letter in the text alphabet.

A Lyndon word is a primitive word which is the minimum in its conjugacy
class, with respect to the lexicographic order relation. In [?, ?], one can find
a linear algorithm that for any word w ∈ Σ∗ computes the Lyndon word in
its conjugacy class. We call it the Lyndon word of w.

Note that, in general, the sorting of two conjugates of a word w starting
in two given positions could be different from the sorting of the suffixes
starting in the same positions, but, as consequence of the properties of
Lyndon words, when w is a Lyndon word, then the two sorting coincide (cf.
[?, Lemma 12]). Therefore, a Lyndon word can equivalently be defined as a
word that is the minimum of its suffixes, with respect to the lexicographic
order relation. Lyndon words are involved in an important factorization
property of words.

Theorem 2.1. [?] Every word w ∈ Σ+ has a unique factorization w =
l1l2 · · · lk such that l1 ≥lex · · · ≥lex lk is a non-increasing sequence of Lyndon
words.

3



We call such a decomposition the Lyndon factorization of a word and it
can be computed in linear time (see for instance [?, ?]). Lyndon factorization
has been realized also in parallel (cf. [?, ?]) and in external memory (cf.
[?]).

A method to deduce the Lyndon factorization of a text from its SA has
been already given in [?]. In particular in the paper the notion of suffix
permutation is used.

Recall that the suffix permutation (cf. [?]) of a word w = a1 · · · an is the
permutation πw over {1, . . . , n}, where πw(i) is the rank of the suffix w[i, n]
in the set of the lexicographically sorted suffixes of w. In other words the
suffix permutation πw is the inverse permutation defined by the suffix array
SA(w). Given a permutation π over {1, . . . , n}, an integer i (1 ≤ i ≤ n) is a
left-to-right minimum of π if either i = 1 or π(j) > π(i), for all j < i. The
method described in [?] is synthesized in the following theorem.

Theorem 2.2. Let w be a word, let i1 = 1, i2, . . . , ik be the positions
of the left-to-right minima of the suffix permutation πw. Then the values
i1, i2, . . . , ik correspond to the starting positions of the factors in the Lyndon
factorization of w.

Since nowadays severalO(n) algorithms for computing the SA are known,
this implies that an algorithm based on Theorem ?? can be considered as
an efficient alternative method to Duval’s.

3 Suffix array of a text through its Lyndon factor-
ization

In this section, we deal with a problem which is dual with respect to Theorem
??. In particular, we show how the knowledge of the Lyndon factorization
of a text helps in the process of sorting its suffixes, a fundamental step for
computing the suffix array.

We recall that, in general, one can establish the order relation between
two suffixes of a text, by looking for the first symbol mismatch. We show
that, if the Lyndon factorization of the text is known, it is sufficient to look
at the suffixes of some particular factors, reducing in this way the needed
number of symbol comparisons.

Let w ∈ Σ∗ and let w = l1l2 · · · lk be its Lyndon factorization. For each
factor lr, we denote by first(lr) and last(lr) the position of the first and the
last character, respectively, of the factor lr in w. Let u be a factor of w. We
denote by sufu(i) = w[i, last(u)] and we call it local suffix at the position

4



i with respect to u. Note that sufw(i) = w[i, n] and we call it global suffix
of w at the position i. We write suf(i) instead of sufw(i) when there is no
danger of ambiguity.

Definition 3.1. Let w be a word and let u be a factor of w. We say that
the sorting of local suffixes with respect to u is compatible with the sorting
of the global suffixes if for all i, j with first(u) ≤ i < j ≤ last(u),

sufu(i) < sufu(j) ⇐⇒ suf(i) < suf(j).

Notice that in general, taken an arbitrary factor of a word w, the sorting
of its suffixes is not compatible with the sorting of the suffixes of w. Consider
for instance the word w = abababb and its factor u = ababa. Then sufu(1) =
ababa > a = sufu(5) whereas suf(1) = abababb < abb = suf(5).

Theorem 3.2. Let w ∈ Σ∗ and let w = l1l2 · · · lk be its Lyndon factorization.
Let u = lrlr+1 · · · ls with 1 ≤ r ≤ s ≤ k. Then the sorting of the local suffixes
with respect to u is compatible with the sorting of the global suffixes.

Proof. Let i and j be two indexes with i < j both contained in u. We
just need to prove that suf(i) > suf(j) ⇐⇒ sufu(i) > sufu(j). Let
x = w[j, last(ls)] and y = w[i, i+ |x| − 1].

Suppose that suf(i) > suf(j). Then y ≥ x by the definition of lex-
icographic order. If y > x there is nothing to prove. If x = y, then
sufu(j) is prefix of sufu(i), so by the definition of lexicographic order
sufu(i) > sufu(j).

Suppose now that sufu(i) > sufu(j). This means that y ≥ x. If y > x
there is nothing to prove. If x = y, the index i+ |x| − 1 is in some Lyndon
factor lm with r ≤ m ≤ s, then lr ≥ lm ≥ ls. We denote z = w[i +
|x|, last(lm)]. Then suf(i) = xzlm+1 · · · lk > xls+1 · · · lk = suf(j), since
z > lm (because lm is a Lyndon word) and lm ≥ ls+1 (since the factorization
is a sequence of non increasing factors).

The above theorem states, in other words, that the mutual order of the
suffixes of w starting in two positions i and j is the same as the mutual
order of the “local” suffixes starting in i and j inside each block obtained as
concatenation of consecutive Lyndon factors including i and j.

As particular case, the theorem is also true when the two suffixes start
in the same Lyndon factor.

Similar considerations used to prove Theorem ?? can be used to give an
alternative proof of the result of Theorem ??.

5



We recall that, if L1 and L2 denote two sorted lists of elements taken
from any well ordered set, the operation merge(L1, L2) computes the sorted
list of elements in L1 and L2.

A consequence of previous theorem is stated in the following corollary.

Corollary 3.3. Let sort(l1l2 · · · lr) and sort(lr+1lr+2 · · · lk) denote the sorted
lists of the suffixes of l1l2 · · · lr and the suffixes lr+1lr+2 · · · lk, respectively.
Then sort(l1l2 · · · lk) = merge(sort(l1l2 · · · lr), sort(lr+1lr+2 · · · lk)).

Theorem ?? also gives a bound on the number of symbol comparisons
needed to obtain the order relation between two global suffixes.

Remark 3.4. Let i and j be two positions in the word w. If i < j, let
us denote by lcp(i, j) the length of the longest common prefix between the
global suffixes w[i, n] and w[j, n]. Let lr and ls (r < s) be the Lyndon factors
in the Lyndon factorization containing respectively i and j. Let u be the
smallest concatenation of consecutive Lyndon factors containing both lr and
ls, i.e. u = lrlr+1 · · · ls. The previous theorem states that in order to get
the mutual order between the global suffixes w[i, n] and w[j, n] one needs
min(lcp(i, j)+1,m) symbol comparisons, where m denotes the length of the
rightmost local suffix with respect to u (i.e. the one starting at the position
j).

The following example shows that m can be much smaller than lcp(i, j)+
1.

Example 3.5. Let w = abaaaabaaaaabaaaabaaaaaab. The Lyndon factor-
ization of w is ab|aaaab|aaaaabaaaab|aaaaaab.
Consider the global suffixes w[2, 25] = b|aaaab|aaaaabaaaab|aaaaaab and
w[13, 25] = baaaab|aaaaaab. We have that the first mismatch between
w[2, 25] and w[13, 25] can be found after 12 symbol comparisons.

m lcp(2, 13) + 1
↓ ↓

w[2, 25] = baaaa b aaaaa b aaaabaaaaaab
w[13, 25] = baaaa b aaaaa a b

Let u = w[2, 18] = ab|aaaab|aaaaabaaaab|. By Theorem ?? we just need
to perform m = 6 < 12 = lcp(2, 13) + 1 symbol comparisons. So, even if
w[2, 7] = w[13, 18], the mutual order is established by the Lyndon proper-
ties, indeed we can state that the Lyndon word starting at the position 19,
w[19, 25] = aaaaaab, is smaller than of the suffix starting at the position 8.

6



4 An incremental left-to-right computation of the
suffix array of a text

The results of previous section suggest a versatile technique that can be
easily adapted to different implementative scenarios. In fact, if the Lyndon
factorization of a word w = l1l2 · · · lk is given, the suffix array of each of its
Lyndon factors can be computed separately by using any known algorithm.
The resulting sorted lists have to be merged in a second step in order to
obtain the sorted list of all the suffixes of w. The efficiency of the algorithm
will depend on the merging strategy. A possible strategy for the merging is
the one presented in [?], where Lyndon factors in the Lyndon factorization
are considered one-by-one from left to right.

A surprising property of these techniques based on the Lyndon factor-
ization is that one can determine the mutual lexicographic order among the
global suffixes of a text by considering the local suffixes of each Lyndon
factor from left to right, even before that the whole text is available.

Here we present a new strategy, integrated with the Duval’s algorithm
for Lyndon decomposition, that processes the symbols of w from left to right
in order to find the Lyndon factors and, when a Lyndon factor li is found,
it inserts the local suffixes of li, from the rightmost one to the leftmost one,
in the sorted list of the already considered local suffixes. The algorithm
stops when the last Lyndon factor lk is processed. Consequently, when the
complete Lyndon factorization of w into l1l2 · · · lk is determined, the suffix
array is definitively computed.

In order to find the mutual lexicographic order among all local suffixes
of the text, at each step of the algorithm we use an array of characters
that contains the Burrows-Wheeler Transform (BWT ) [?] of the processed
text. Recall that an end-of-string symbol $ (smaller than any other letter)
is usually appended to the end of the input text, when the BWT of the text
is constructed. The BWT is intuitively described as follows: given a text
v ∈ Σ∗, bwt(v$) is a word obtained by sorting the list of the suffixes of v$ and
by concatenating the symbols (circularly) preceding every suffix of v$ in the
sorted list. For instance, if v = mathematics then bwt(v$) = smmihtt$ecaa.

In the sequel, we consider the symbol $ appended to the input text w.
Let us denote by L the list, initially empty and incrementally constructed,
of the lexicographically sorted local suffixes of w$.

An intuitive description of the steps of our strategy, when the Lyndon
factorization of w$ is l1l2 · · · lk$, is the following.

• In the first step (i = 1), find the first Lyndon word l1 of the decomposi-

7



tion of w$. Then any known algorithm can be applied to compute the
suffix array of the first Lyndon factor. In analogy with the following
steps, proceed as follows:

– append the symbol $ to l1;

– insert the local suffix $ in L;

– insert the remaining local suffixes of l1$, by proceeding from right
to left, in L according with the lexicographic order.

• For i = 2, . . . , k, find the i-th Lyndon word li of the decomposition of
w$ and:

– append the symbol $ to li;

– replace in L the local suffix $ with the local suffix li$;

– insert the local suffix $ of li$ in the first position of L;

– insert the remaining local suffixes of li$, by proceeding from right
to left, in L, according with the lexicographic order.

• At step i = k + 1, we should insert in L the suffix $ of w$, but it has
been already inserted in L during the k-th step (as suffix of lk$).

Our on-line computation of the suffix array (named Build SA) takes
its cue from the first variant of Duval’s algorithm for Lyndon factorization.
This variant uses only three variables for a complete computation. The
variable q contains the index of the current input letter, and the variable
p represents an index such that when the letter aq is processed, one has
a1 · · · ap−1 = aq−p+1 · · · aq−1 and a1 · · · aq−1 is a Lyndon word. The vari-
able h is introduced in such a way that the remaining suffix is ah+1 · · · an.
The procedure continues until all Lyndon factors are found. Note that the
indexes p, q are moved from left to right and each input symbol is read at
most twice.

Since the function Build SA essentially consists in Duval’s algorithm
equipped of the insertion strategy of the suffixes of the Lyndon factors, we
explicitly describe only the function insert (see Figure ??). Whenever a
Lyndon factor li is constructed, we call the function insert in order to add,
at the i-th step, the positions in SA and the symbols in BWT associated
with the local suffixes of li$. The function insert takes in input the index i,
the first and the last position of li in w, the SA and the BWT computed in
the previous step. Such a function returns the updated SA and the updated
BWT .

8



The function new, used in insert function, takes as input an array T
and a position r and allocates a new cell in T at the position r.

In the function insert, in order to add the local suffixes, we also use
two known functions (introduced in [?]): rank and C. For any character
x ∈ Σ, let C(v, x) denote the number of symbols in the given word v that
are smaller than x, and let rank(v, t, x) denote the number of occurrences
of x in the prefix of length t of v.

insert(i, first, last, SA,BWT )

L = w[first] · · ·w[last]; len = last− first+ 1;1

append $ to L;2

if (i = 1) then3

new(SA, 1); SA[1] := 1;4

/* Insert the symbol $ in BWT */

new(BWT, 1); x = L[len+ 1]; BWT [1] := x;5

γ = 0;6

new(SA, γ + 1); SA[γ + 1] := last+ 1;7

/* Insert at the position γ + 1 the symbol preceding the suffix $ of L

*/

new(BWT, γ + 1); x = L[len]; BWT [γ + 1] := x;8

prevSymb = x; prevPos = γ + 1;9

for j=length to 2 do10

γ =C[BWT, prevSymb]+rank(BWT, prevPos, prevSymb);11

new(SA, γ + 1); SA[γ + 1] := first+ j − 1;12

/* Insert at the position γ + 1 the symbol preceding L[j, len+ 1] */

new(BWT, γ + 1); x = L[len+ 1]; BWT [γ + 1] := x;13

prevSymb = x; prevPos = γ + 1;14

return (SA, BWT);15

Figure 1: The algorithm to construct the SA and the BWT of l1 · · · li$ by in-
crementally adding the positions in SA and the symbols in BWT associated
with the local suffixes of L = li$.

The following example is useful to illustrate how the SA, the BWT
and, consequently, the elements of L (extended as global suffixes of w$) are
updated during a step.

Example 4.1. Let w = abcabdaabcabb$ and let abcabd|aabcabb|$ its Lyn-
don factorization. During the first step, we compute the SA and the BWT
of l1$ = abcabd$ and we get BWT = d$caabb and SA = [7, 1, 4, 2, 5, 3, 6].

9



In the second step, we have to consider all the suffixes of l2$ = aabcabb$.
Suppose we have already inserted the symbols and the positions associated
with the local suffixes $ and b$ of l2$ in BWT and SA, respectively. The
situation is depicted on the left in Figure ??. On the right, we depict the
situation after the insertion of the symbol and the position associated with
the local suffix bb$.

SA BWT L
14 b $
7 d a a b c a b b $
1 $ a b c a b d |a a b c a b b $
4 c a b d |a a b c a b b $

→ 13 b b $ ⇒
2 a b c a b d |a a b c a b b $
5 a b d |a a b c a b b $
3 b c a b d |a a b c a b b $
6 b d |a a b c a b b $

SA BWT L
14 b $
7 d a a b c a b b $
1 $ a b c a b d |a a b c a b b $
4 c a b d |a a b c a b b $
13 b b $

→ 12 a b b $
2 a b c a b d |a a b c a b b $
5 a b d |a a b c a b b $
3 b c a b d |a a b c a b b $
6 b d |a a b c a b b $

Figure 2: For presentation simplicity, we show the local suffixes in L ex-
tended as global suffixes. The three columns represent the partial SA
and partial BWT before and after the (implicit) insertion of the new suf-
fix bb$ of l2$. The position γ + 1 of the new symbol (shown by the
arrow → in the table on the right) is computed from the position of
the last inserted symbol (shown by → in the table on the left). Hence
γ = C(BWT, b) + rank(BWT, 5, b) = 3 + 2 = 5, because in BWT there
are two a’s and the symbol $ smaller than b. Moreover there are 2 suffixes
starting with b that are smaller or equal to bb$. So, 12 and a are inserted at
the position 6 both in the SA and in the BWT (see the table on the right).
At the end of this iteration, prevSymb = a and prevPos = 6. At the next
iteration γ = C(BWT, a) +rank(BWT, 6, a) = 1 + 1 = 2. So, 11 and c will
be inserted at the position 3 in the SA and the BWT , respectively.

4.1 Correctness

The correctness of our strategy can be deduced by the following lemmas. In
particular, the next two lemmas show that, if L is the list of lexicographic
sorted local suffixes of l1 · · · li−1$, then the local suffixes $ and li$ of l1 · · · li$
are placed in the first two positions of L. Lemma ?? determines the positions
of the remaining suffixes of l1 · · · li$ in L.

10



Lemma 4.2. For each step i ≥ 2, the local suffix li$ replaces the local suffix
$ of the suffix l1 · · · li−1$ in L.

Proof. During the step i − 1, we have computed the data structures, i.e.
the SA and the BWT , associated with l1l2 · · · li−1$. At the step i, we have
to update such data structures in order to obtain those associated with
l1l2 · · · li−1li$. In terms of the sorted list L, we should remove the local
suffix $ of l1l2 · · · li−1$ and insert the local suffix li$ in L. For the Lyndon
factorization properties, the local suffix li$ is the smallest suffix among all
suffixes in l1l2 · · · li−1li$ when its suffix $ is not considered. So the previous
local suffix $ have to be replaced in L with the new local suffix li$. An
important fact is that the value in the SA and the symbol in the BWT at
the first position never change, since in the previous step they are associated
with the suffix $, and now they are associated with the suffix li$.

Note that for each step i from 1 to k, the position in L of the suffix $ of
li$ is 1. The crucial point at each step i is to establish the position where we
have to insert in L the remaining local suffixes of li$. The following lemma
illustrates how to compute the positions in SA of these local suffixes from
the rightmost one to the leftmost. In particular, it determines the position
in SA of the local suffix of li$ starting at j where j is a integer ranging
from |li| down to 2, after that the positions of the local suffixes starting at
j+ 1, j+ 2, . . . , |li| have been determined. Let t be the position in SA of the
local suffix li[j + 1, |li|]$ in the list L.

Lemma 4.3. The local suffix li[j, |li|]$ is lexicographically larger than pre-
cisely γ local suffixes, where

γ = C(BWT, li[j]) + rank(BWT, t, li[j]),

where BWT is the Burrows-Wheeler Transform containing the symbols as-
sociated to the local suffixes in L. Therefore the symbol and the value asso-
ciated with li[j, |li|]$ have to be inserted in position γ + 1 of BWT and SA,
respectively.

Proof. Recall that C(BWT, li[j]) gives the number of already (implicity)
inserted suffixes starting with a symbol smaller than li[j] that are lexico-
graphically smaller than li[j, |li|]$. Let us count now the number of suffixes
starting with li[j] and being smaller than li[j, |li|]$. This is equivalent to
counting how many symbols equal to li[j] occur in BWT [1, t]. Such a value
is given by rank(BWT, t, li[j]).

11



At the end of the step i (from 1 to k), the arrays BWT (l1l2 · · · li$) and
SA(l1l2 · · · li$) are computed. Such insertions do not affect the relative order
of the local suffixes already considered in the previous steps. Note that we
can stop the process at the end of each step i, i.e. after the insertion of all
local suffixes of the Lyndon word li, so that we can obtain the suffix array of
the prefix of the word w up to the Lyndon factor li, i.e. the word l1 · · · li$.
This fact is at the base of our on-line algorithm.

As a consequence of the previous lemmas, we can state the following
theorem.

Theorem 4.4. Given a text w, the Build SA(w) algorithm correctly com-
putes the SA and BWT of the text by using its Lyndon factorization.

4.2 Discussion on complexity

We recall that, although the computation of the Lyndon factorization is lin-
ear, the current non-linear cost of the entire algorithm for the construction
of the suffix array could make it impractical. Actually, the complexity of
the algorithm depends on the time-space trade-off that one wishes to reach.
More precisely, the complexity depends on the suitable data structures used
for the rank and new operations. For instance, in order to compute the
BWT , one could use Navarro and Nekrich’s recent result [?] on optimal rep-
resentations of dynamic sequences. They show that one can insert symbols
in arbitrary positions and compute the rank function in the optimal time
O( logn

log logn) within essentially nH0(s)+O(n) bits of space, for a text of length
n. Moreover, it is possible to give also an external memory implementation
of our algorithm. Indeed, one could compute the Lyndon factorization in
external memory by using, for instance, the algorithm in [?]. One could
also implement the function insert by using the methods in [?, ?] where
disk data access are executed only via sequential scans, so that it could be
adapted in order to obtain a lightweight version of our algorithm.

5 Conclusions

In this paper, we have highlighted the tight relation between the SA and the
Lyndon factorization. An important consequence of the compatibility of the
sorting of the local suffixes inside the Lyndon factors with the sorting of the
global suffixes is that our method seems to lay out the path towards a new
approach to the problem of sorting the suffixes of a text. Partitioning the

12



text by using its combinatorial properties allows to tackle the problem in
local portions of the text, in order to extend solutions to a global dimension.

In particular, in this paper we give one of the possible implementations
of this general method that works by incrementally inserting one at a time a
symbol in the partial BWT and a value in the partial SA. Differently from
other incremental methods [?, ?, ?, ?] that insert the suffixes in the sorted
list by proceeding from the rightmost to the leftmost one, our algorithm
factorizes the word from left to right, and then, for implementative conve-
nience, inserts in the sorted list the local suffixes of the processed factor from
the rightmost to the leftmost one. The advantage of this method is that,
since Duval’s algorithm discovers Lyndon factors with a very small looka-
head w.r.t. the end of the factor itself, this allows to start the construction
of the SA even while the whole text is not yet available. As a consequence,
this method allows to define online algorithms for the construction of the
SA, such as, for instance, the one described in the present paper. Moreover
this implies that the substitution, insertion or deletion of a symbol in the
i-th Lyndon factor do not affect the mutual order of the suffixes starting into
the Lyndon factors l1, . . . , li−2. Moreover, as remarked above, the indepen-
dence of the mutual sorting of suffixes inside the Lyndon blocks, suggests a
possible design of parallel solutions. Indeed, one could compute the Lyndon
factorization in parallel way, for instance, as shown in [?, ?]. The suffix array
of each Lyndon factor could be also computed in parallel way, as shown in
[?]. In this case, the efficiency of the algorithm will depend on the merging
strategy. A possible strategy for this purpose is shown in [?]. Parallelization
techniques could also be used for the sorting and merging phases.

Unfortunately, the algorithm proposed here is not competitive in terms of
time complexity with respect to the existing algorithms for the construction
of the suffix array. Anyway, the idea of working independently on local
portions of the text in order to extend solution to global suffixes is quite new
and the presented algorithm is probably subject to improvements. Further,
an interesting question could be to ask whether there exist some different
combinatorial decomposition where the compatibility between the sorting of
local and global suffixes of the input text holds.

13


