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Abstract
The development of precise and robust navigation strategies for Autonomous
Underwater Vehicles (AUVs) is fundamental to reach the high level of per-
formance required by complex underwater tasks, often including more than
one AUV. One of the main factors affecting the accuracy of AUVs navigation
systems is the algorithm used to estimate the vehicle motion, usually based
on kinematic vehicle models and linear estimators. A precise and reliable
navigation system is indeed fundamental to AUVs: the Global Positioning
System (GPS) signal is not available underwater, thus making it very hard
to know the position of the vehicle in real-time.
In this paper, the authors present an innovative navigation strategy specifi-
cally designed for AUVs, based on the Unscented Kalman Filter (UKF). The
new algorithm proves to be effective if applied to this class of vehicles and
allows to achieve a satisfying accuracy improvement compared to standard
navigation algorithms.
The proposed strategy has been experimentally validated using the navi-
gation data acquired in suitable sea tests performed in Biograd Na Moru
(Croatia) in the framework of the FP7 European ARROWS project tests
performed during the Breaking the Surface 2014 (BtS 2014) workshop. The
vehicles involved are the two Typhoon AUVs, developed and built by the
Department of Industrial Engineering of the University of Florence within
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the THESAURUS Tuscany Region project for exploration and surveillance
of underwater archaeological sites. The experiment, described in the paper,
was performed to preliminary test the cooperative navigation between these
AUVs. The new algorithm has been initially tested offline, and the validation
of the proposed strategy provided accurate results in estimating the vehicle
dynamic behaviour.
Keywords: AUVs, Underwater Robotics, Navigation, Marine Robotics,
Underwater Vehicles.

1. Introduction

Nowadays, Autonomous Underwater Vehicles (AUVs) are widely used in
many fields of application: they are employed for scientific purposes (e.g.
exploration and surveillance of archaeological sites), to complete industrial
tasks at high depths (for instance they are exploited in the Oil&Gas indus-
try), to carry out reconnaissance and patrolling missions in the military field,
or even to conduct search and rescue duties.
Regardless of the kind of mission the vehicle is required to execute, the avail-
ability of a precise and robust navigation system, i.e. suitable hardware and
software components used to estimate in real-time the vehicle pose, is of fun-
damental importance [16], [18], [4], [11]. Indeed, the high accuracy needed
by the imposed tasks, which can even involve multiple vehicles [2], [10], [26],
[15] makes motion estimation a key factor in underwater autonomous nav-
igation, requiring precise and computationally lightweight estimation algo-
rithms. The quality of the navigation system not only influences the results
of the performed mission in terms of position error between the desired and
the executed path, but also affects the outcome of the georeferencing process
of the data acquired by the onboard sensors; this is especially important in
archaeology, history or anthropology-related missions (e.g. the exploration
of ancient wrecks).
In addition to the intrinsic difficulties of the localization task, the underwater
environment poses additional limitations that further complicate the estima-
tion process: for instance, the Global Positioning System (GPS) signal is not
available underwater, making it very hard to estimate the vehicle position.
This increases the need for a precise and robust navigation system.
The vast majority of the motion estimation filters which are used is based
on the Kalman Filter (KF) [22] and on the Extended Kalman Filter (EKF)
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[9], [14], [30], [3], [1], a KF extension which can be employed on nonlinear
dynamical systems. Furthermore, such filters usually make use of simplified
kinematic and dynamic models of the vehicle; such models must indeed offer
a good trade-off between the accurate reproduction of reality and the de-
mand for computational resources, in order to be used in real-time within an
estimation filter without simplifying too much the physical behaviour of the
AUV.
In this paper, a new motion estimation algorithm is proposed; the algorithm
is based on the Unscented Kalman Filter (UKF) [20], [33], [29], and it is
specifically designed for AUVs, exploiting the data acquired by the available
onboard sensors, including inertial, linear velocity, acoustic and depth sen-
sors [5], [7], [8], [23], [28]. The Unscented Kalman Filter offers a convenient
trade-off between performance and computational load but, to the authors’
knowledge, it has not yet been extensively used in practical underwater ap-
plications.
Particular effort has been dedicated to the development of a suitable model
of the AUV, accurate enough to produce consistent results when used within
a recursive estimation filter, but non too demanding in terms of required
computational load.
At this initial phase of the research activity, a preliminary validation of the
proposed filtering algorithm has been executed offline on the data acquired by
the two Typhoon AUVs, developed and built by the Department of Industrial
Engineering of the University of Florence in the framework of the Tuscany
Region THESAURUS1 project, during the FP7 European ARROWS2 project
[35] tests performed at the international workshop Breaking the Surface, held
in Biograd Na Moru (Croatia) in October 2014 (Figure 1) [25]. Such experi-
ments were performed to preliminary test the cooperative navigation between
the two AUVs.
During the tests, the vehicle navigates in dead reckoning; the presented algo-
rithm, along with the standard navigation filter of the Typhoon AUVs (which
is based on the Extended Kalman Filter) are tested offline and their perfor-
mance is compared, in order to evaluate the accuracy of the new navigation
approach in estimating the vehicle dynamic behaviour. The obtained results
are encouraging; in the near future, the proposed navigation filter will be

1THESAURUS project: www.thesaurus.isti.cnr.it
2ARROWS project: www.arrowsproject.eu
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implemented on the Typhoon AUVs and will be tested online in the water
during experimental campaigns.
The paper is organized as follows: Section 2 introduces the Typhoon class
AUV, briefly describing its structure and the sensors it is equipped with;
Section 3 illustrates the mathematical models used to describe the vehicle
behaviour, including its sensors and its propulsion system; in addition, a
state-space representation of the vehicle model is derived. Section 4 illus-
trates the recursive navigation filters, both the standard and the proposed
ones; the performance comparison among the two navigation algorithms and
the experimental data are finally presented in Section 5.2.

Figure 1: The Typhoon AUVs performing sea tests in Biograd Na Moru (Croatia) during
BtS 2014

2. AUV description

The Typhoon class AUV is a middle-sized class AUV developed and built
by the Mechatronics and Dynamic Modelling Laboratory (MDM Lab) of the
Department of Industrial Engineering of the University of Florence in the
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framework of the THESAURUS and the ARROWS projects.

Typhoon AUV characteristics
Length [mm] 3600
External diameter [mm] 350
Mass [kg] 130-180 (dep. on payload)
Max speed [kn] 5-6
Max depth [m] 300
Autonomy [h] >8

Table 1: Typhoon AUV physical data and performance

Figure 2: Typhoon AUV at sea

The physical data of the vehicle are reported in Table 1, along with the
achievable performance. Currently, two versions of the Typhoon AUV have
been built, named respectively TifOne and TifTu. The results presented in
this paper refer to the TifOne AUV (Figure 2), communicating with TifTu
during autonomous navigation (cooperative navigation).
Longitudinal, lateral and vertical motions of the Typhoon are directly con-
trolled, along with the yaw and the pitch angles, thanks to the two main rear
propellers and to the four thrusters (two vertical and two lateral), shown in
Figure 3. The position of the propellers and of the thrusters on the vehicle
is reported in Figure 4.
Stability against roll motion is ensured by the hydrostatic stability, i.e., the
correct positioning and alignment of the centers of buoyancy and gravity.
The sensor set available for the Typhoon class AUV includes:

• Global Positioning System (GPS);
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Figure 3: Typhoon AUV main propellers (left) and thrusters (right)

Figure 4: Typhoon AUV CAD design

• Ultra-short baseline (USBL);

• Depth sensor;

• Inertial Measurement Unit (IMU);

• Doppler Velocity Log (DVL).

The mathematical models used to describe the functioning of the available
sensors are presented in Section 5.1.

3. Vehicle modelling

3.1. Kinematic and dynamic model
To conveniently describe the AUV model, two suitable reference frames

are used [16], shown in Figure 5.
The fixed inertial frame {ONxNyNzN} has its origin on the surface and its
axes pointing North, East and Down (NED reference frame); the body frame
{Obxbybzb} is centered in the center of gravity of the AUV, with the x-axis
pointing in the direction of the forward motion of the vehicle, the z-axis
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Figure 5: Inertial and body reference frames

pointing down and the y-axis completing a right-handed reference frame.
To describe the kinematic and the dynamic model of the vehicle, SNAME
notation [16] has been used; hence, the model of the AUV is expressed in
terms of the following vectors:

η =
[
ηT1 η

T
2

]T
η1 = [x y z]T η2 = [φ θ ψ]T

ν =
[
νT1 ν

T
2

]T
ν1 = [u v w]T ν2 = [p q r]T

. (1)

η includes the position (η1) and the orientation (η2) of the vehicle expressed
in the inertial frame (note that, as regards the orientation, a triplet of Euler
angles has been used; in the considered case, these angles are the roll, the
pitch and the yaw angles), while ν is composed of the linear (ν1) and of the
angular (ν2) velocities of the AUV expressed in the body frame.
The introduced quantities are linked by the following kinematic relation:

η̇ = J(η2)ν, J(η2) =
[
RN
b (η2) 03×3
03×3 TNb (η2)

]
, (2)

being RN
b (η2) the rotation between the inertial and the body frame and

TNb (η2) the transformation matrix between angular velocity and the time
derivatives of the chosen Euler angles.
The dynamics of the AUV is governed by the following equations [16]:

M ν̇ + C(ν)ν +D(ν)ν + g(η) = τ (ν,u) . (3)
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M is the mass matrix, C(ν) and D(ν) are, respectively, the centrifugal and
Coriolis matrix and the damping effects matrix, g(η) is the vector of gravi-
tational and buoyancy effects and τ (ν,u) is the vector of the resultant force
and moment acting on the vehicle (being u the control inputs, i.e. the ro-
tational speed of the motors related to the delivered thrusts [12] [27] [12]
[1]).

3.2. State-space representation of the vehicle model
In order to use a recursive digital motion estimation filter (e.g. the

Kalman filter), a discrete state-space representation of the model of the ve-
hicle is needed; hence, the system must be described by a set of equations in
the form: xk = fk−1(xk−1,uk−1) + wk−1

yk = hk(xk) + vk
, (4)

where xk is the vector of state variables at the k-th instant, uk and yk are
the inputs and the outputs of the system, and wk and vk are, respectively,
additive process and measurement noise. The first equation in (4) is called
the system evolution equation, while the second one is called themeasurement
equation.
In this context, the state vector has been chosen as follows:

x =
[
η
ν

]
. (5)

x is a twelve-dimensional state vector containing the kinematic quantities
describing the motion of the AUV.
According to the previous sections, the time evolution of the system is defined
by the following equations:

ẋ =
[
η̇
ν̇

]
= F(x,u) + w =

=
(

J(η2)ν
M−1 (τ (ν,u)− C(ν)ν −D(ν)ν − g(η))

)
+ w .

(6)

The model expressed in Eq. (6) has been subsequently simplified in ac-
cordance with the following considerations: since the vehicle drag along
transversal directions strongly dampens the lateral and the vertical motions,
considerable dynamics takes place only on the longitudinal direction (i.e. the
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direction of the forward motion). This is especially true for autonomous ve-
hicles: AUVs often possess a torpedo shape and travel along the longitudinal
direction (the direction of minimal resistance) in order to save energy on
board (e.g. to preserve battery charge).
In addition, a simplified model reduces the number of unknown parameters
and shortens the computational time; this is especially advantageous since
the model has to be used in real-time within the recursive motion estimation
filter.
On the basis of these reasonable considerations, a simplified state-space
model has been derived, taking into account only the longitudinal degree
of freedom for what concerns the dynamics:

ẋ =


η̇1
η̇2
ν̇1
ν̇2

 =



RN
b (η2)ν1

TNb (η2)ν2
τ1x(ν,u)

m
+ F1(ν)
0
0


03×1


, (7)

being τ1x(·) the force acting on the vehicle x-axis [12] [27] [12] [1].
Particular attention has to be given to the equation that defines the longitu-
dinal acceleration, denoted in Eq. (7) by:

ν̇1x = u̇ = τ1x (ν,u)
m

+ F1(ν). (8)

The expression of F1(ν) is obtained from the complete dynamic model (3)
[16], and it has been further simplified in order to reduce the number of
unknown parameters:

F1(ν) = −AfCuρν
2
1xsgn(ν1x)
2m , (9)

where Af is the frontal area of the AUV, Cu is the longitudinal drag effect
coefficient and m is the mass of the vehicle.
Eq. (9) is derived under the following assumptions:

• the mass matrix is diagonal: this consideration derives from the fact
that, for the Typhoon AUVs, the body reference frame is aligned with
the vehicle principal axes of inertia;
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• the damping matrix is diagonal: this assumption equals to neglecting
the coupling between the dissipative effects, which is reasonable if ve-
locities are not too high. In addition, with respect to the form of D(ν)
given in [16], only a quadratic damping term has been considered;

• gravitational, centripetal and Coriolis effects have been neglected.

The continuous time model (7) has been subsequently discretized with a first
order Euler method, in order to obtain a discrete time representation, suitable
for use with a digital estimation filter. Denoting with ∆T the sampling period
of the discrete time system, the following equations have been derived:

η1
η2
ν1
ν2


k

= fk−1(xk−1,uk−1) + wk−1 =

=



(η1)k−1 + ∆TRN
b

(
(η2)k−1

)
(ν1)k−1

(η2)k−1 + ∆TTNb
(
(η2)k−1

)
(ν2)k−1

(τ1x)k−1(νk−1,uk−1)
m

+ (F1)k−1 (νk−1)
0
0


(ν2)k−1


+ wk−1 .

(10)

As regards the measurement equation, the available quantities are the out-
puts of the sensors mounted on the vehicle:

yk =
[
xmeas,GPS ymeas,GPS

(
ηmeas,USBL1

)T
zmeas (ηmeas2 )T (νmeas1 )T (νmeas2 )T

]T
k
. (11)

Hence, the measurement equation is affine: the measurement function hk(·)
can be expressed through a matrix Hmeas

k whose rows contain 1 or 0 elements,
and vector vk collects the measurement noise for each sensor introduced in
Section 5.1:

yk = Hmeas
k xk + vk . (12)

The actual size of the matrix Hmeas
k changes at each sampling time: since

the sensors possess different working frequencies, once ∆T has been fixed the
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sensors are queried for a new measurement at each sampling period, and if
none is available the corresponding row of Hmeas

k is removed.
In view of Equations (7)-(9) the state-space representation of the (simpli-
fied) model of the vehicle is highly nonlinear and non-differentiable (note, for
instance, the presence of the quadratic terms or of the sign function); this
implies the impossibility of using a linear filtering algorithm to estimate the
state of the vehicle (such as the Kalman filter).
Particular attention must be paid to the measurement of the orientation η2
(see also Section 5.2 for further details) that deeply affects the performance
of the navigation algorithm. In this application, a Xsensr MTI IMU sensor
has been used. Such a device is able to detect little orientation variations in
3D thanks to an estimate inner owner algorithm. The algorithm used within
the Xsens platform is a protected information, i.e. a proprietary algorithm
exploited for orientation estimation based on raw data from accelerometers,
gyroscopes and magnetometers: an example of the state of the art on this
topic is [24]. The orientation angles provided by the Xsens and preprocessed
through the proprietary algorithm η2 are then used into the navigation filter
to evaluate ηmeas2 .
In case of highly disturbed environments, e.g. in presence of metal objects that
create non-negligible magnetic noise, the navigation strategy used to guaran-
tee a valid vehicle localization is based on two independent algorithms, re-
spectively an orientation estimation one and a position estimation one. The
former does not exploit anymore only the Xsens and the sensor fusion within
a Nonlinear Complementary Filter: in order to be robust, the authors in-
tegrated in the system also a single-axis Fiber Optic Gyroscope (FOG) and
developed an innovative algorithm in the underwater field to have a reliable
orientation estimation [34]. Also in this circumstance, the orientation an-
gles provided by the Xsens and preprocessed through the new algorithm η2 are
then used into the navigation filter to evaluate ηmeas2 .

4. Navigation filter

This Section introduces the navigation filters used to estimate the state
vector of the system, the performances of which will be compared in Section
5.2.
The nonlinearity of the system evolution model (10) implies that a linear
filter cannot be used to estimate the system state. Hence, two nonlinear
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filters have been employed, namely the Extended Kalman Filter (EKF) and
the Unscented Kalman Filter (UKF) [22], [9], [20], [33], [29].
Given the vehicle model expressed in a suitable state-space representation
(4), the standard navigation filter is based on the EKF [9], [14], [30], [3], [1];
it is composed of the prediction/correction scheme shown in Alg. 1.

Function EKF algorithm
Step EKF prediction

Data: x̂k−1|k−1, Pk−1|k−1, fk−1(·)
Result: x̂k|k−1, Pk|k−1

Fk−1 = ∂fk−1
∂x

∣∣∣∣
x̂k−1|k−1,uk−1

;

x̂k|k−1 = fk−1(x̂k−1|k−1);
Pk|k−1 = Fk−1Pk−1|k−1F

T
k−1 +Qk−1;

end
Step EKF correction

Data: x̂k|k−1, Pk|k−1, hk(·)
Result: x̂k|k, Pk|k
Hk = ∂hk

∂x

∣∣∣∣
x̂k|k−1

;

Sk = Rk +HkPk|k−1H
T
k ;

Lk = Pk|k−1H
T
k S
−1
k ;

ek = yk − hk
(
x̂k|k−1

)
;

x̂k|k = x̂k|k−1 + Lkek;
Pk|k = Pk|k−1 − LkSkLTk ;

end
end

Algorithm 1: EKF algorithm

In Alg. 1, ·̂ denotes an estimate, P is the state covariance, and Q and R
are the covariance matrices of process and measurement noise, assumed as
zero mean stationary white noises with zero cross-correlation. The state is
recursively estimated starting from an initial guess

(
x̂0|0, P0|0

)
.

While the EKF offers an easy and lightweight implementation, it suffers from
the need of a good initial estimation and requires the explicit expression of
the derivatives of the system evolution and of the measurements functions.
An alternative estimation technique is the UKF [20], [33]. The filter dy-
namics is not propagated through linearization (as the EKF), but using a
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deterministic sampling technique known as the Unscented Transform (UT).
The UT allows to compute the mean and the covariance matrix of a random
variable (r.v.) which undergoes a generic nonlinear transformation by prop-
agating a minimum set of its samples and exploiting the knowledge of the
mean and of the covariance of the starting variable.
Let a ∈ Rna be a r.v. with mean ā and covariance Pa, and let b = g(a) ∈ Rnb

denote the r.v. obtained by propagating a through the nonlinear function
g(·) : Rna → Rnb . Then, the Unscented Transform of a propagated through
g(·), denoted with UT (ā, Pa,g(·)), is composed of the following steps:

• generate 2na+1 samples (na is the minimum necessary number of sam-
ples) called the σ-points Σa, each one with the dimension of a, exploit-
ing the knowledge of ā and of Pa. The σ-points are usually chosen as
symmetric with respect to the average value ā, i.e.:

Σa = [· · · ā · · · ] + ωσ [0na×1 Γa − Γa] ,

where Γa is such that Pa = ΓaΓTa (e.g. the matrix square root or the
Cholesky factor) and ωσ is a weight factor;

• propagate the σ-points through g(·):

G = g(Σa) ∈ Rnb×2na+1 ;

• compute the mean b̄, the covariance matrix Pb and the cross-covariance
Pab from the σ-points of the propagated r.v.:

b̄ = Gωm

Pb = GΩcGT

Pab = ΣaΩcGT

for suitable weights ωm ∈ R2na+1 and Ωc ∈ R2na+1×2na+1.

It is easy to note that the result of the Unscented Transform strongly de-
pends on the choice of the weights ωσ, ωm and Ωc: in the considered case
study, they are computed as in Alg. 2.
In Alg. 2 I is the identity matrix, diag{v} is a diagonal matrix whose diago-
nal elements are the components of vector v, and ⊗ is the Kronecker product.
Moment matching properties and performance improvements associated with
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Function UKF weights computation
Data: α, β, γ
Result: ωσ, ωm, Ωc

ωσ =
√
α2(na + γ);

λ = α2(na + γ)− na;
ωm(0) = λ(na + λ)−1;
ωc(0) = λ(na + λ)−1 + (1− α2 + β);
ωm(i),ωc(i) = [2(na + λ)]−1, i = 1, ..., 2na;
∆ = (I2na+1 − 11×2na+1 ⊗ ωm);
Ξ = diag{ωc};
Ωc = ∆Ξ∆T ;

end
Algorithm 2: UKF weights computation

Function UKF algorithm
Step UKF prediction

Data: x̂k−1|k−1, Pk−1|k−1, fk−1(·)
Result: x̂k|k−1, Pk|k−1
(x̂k|k−1, P̄k|k−1) = UT (x̂k−1|k−1, Pk−1|k−1, fk−1(·));
Pk|k−1 = P̄k|k−1 +Qk−1;

end
Step UKF correction

Data: x̂k|k−1, Pk|k−1, hk(·)
Result: x̂k|k, Pk|k
(ŷk|k−1, S̄k, P

xy
k ) = UT (x̂k|k−1, Pk|k−1,hk(·));

Sk = Rk + S̄k;
Lk = P xy

k S−1
k ;

ek = yk − ŷk|k−1;
x̂k|k = x̂k|k−1 + Lkek;
Pk|k = Pk|k−1 − LkSkLTk ;

end
end

Algorithm 3: UKF algorithm

the choice of the parameters α, β and γ are discussed in [33], [21].
The UT is used within the UKF as shown in Alg. 3, with the same notation
of Alg. 1.
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The main advantage associated with the use of the UKF is that it does not
require the computation of derivatives, hence it can be used with models that
include discontinuous functions, always present in the case of AUVs models
(e.g. the propulsion system model); in addition, it offers a good trade-off
between estimation accuracy and computational efficiency. However, even if
the computing units which are nowadays available on AUVs could afford the
load required by the UKF, to the authors’ knowledge very few reports of its
use in the field of underwater robotics can be found in literature [6], [17].

5. Results

In this chapter the main results obtained by comparing the considered
navigation algorithms will be presented. Firstly, the main sensors the AUV is
equipped with will be briefly described in terms of modelling and specifications.
Subsequently, the comparison between the navigation algorithms will analyzed
in detail.

5.1. Sensor modelling
This Section deals with the modelling of the sensors mounted on the

Typhoon class AUVs and presented in Section 2, illustrating the mathematical
models used to describe their functioning.

GPS Adafruit module; working frequency 10Hz. The GPS provides the co-
ordinates of the vehicle, given as latitude and longitude. In order to exploit
such measurements within the navigation filter it is necessary to operate a
preliminary conversion to determine the corresponding inertial frame coor-
dinates. Standard functions are available to comply with this purpose (e.g.
[31]). Denoting with fGPS(·) the general conversion function, the character-
istic equation of the sensor can be expressed as:[

ηmeas,GPS1x
ηmeas,GPS1y

]
=
[
xmeas,GPS

ymeas,GPS

]
= fGPS

(
llmeas + δll,ON

)
, (13)

where llmeas is the vector containing the GPS latitude and longitude measure-
ments. Note that, because of the nonlinearity of the transformation fGPS(·),
the resulting measurement noise is not characterized by the same spectral
properties of the noise δll affecting the raw GPS data;
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Evologicsr S2CR 18/34 USBL; working frequency 0.2Hz. The USBL trans-
ducer measures the position of a transmitting compatible modem with respect
to itself [23], [28]:

ηmeas,USBL1 = η1 + δUSBLη1
, (14)

with added δUSBLη1
measurement noise;

STSr DTM Digital Pressure Transmitter (DPT); working frequency 10Hz.
This sensor measures the local pressure following the equation:

pmeas = ploc + bp + δp , (15)

being ploc the local pressure, and bp and δp bias and measurement noise. The
pressure measurement is then converted into a depth measure according to
the basic hydrostatic equation:

pmeas − patm = ρgzmeas , (16)

where patm is the local atmospheric pressure (measured by the DPT during
the initialization phase), ρ is the water density and g is the norm of the
gravitational acceleration; hence, the measured depth can be expressed as:

ηmeas1z = zmeas = z + δz . (17)

Note that the DPT added bias cancels in the subtraction (16).

Xsensr MTI IMU; working frequency 100Hz. The mounted Inertial Measure-
ment Unit is composed of a three-axis accelerometer, a three-axis gyroscope
and a three-axis magnetometer. Each sensor has been modelled separately:

• Accelerometer: measures the proper acceleration of the vehicle, biased
by the gravitational acceleration gE. The measure is expressed in the
body frame as follows:

ameas =
(
RN
b

)T
(η̈1 − gE) + ba + δa , (18)

where ba and δa are, respectively, added bias and measurement noise;

• Gyroscope: this sensor measures the angular velocity of the AUV in the
body frame according to the following model:

νmeas2 = ν2 + bν2 + δν2 . (19)
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In addition to the measurement noise δν2, a bias bν2 is present; in
contrast with the accelerometer bias (which is constant), the gyroscope
bias considerably varies over time; hence, it has to be estimated and
compensated in real-time;

• Magnetometer: measures the local magnetic field around the sensor,
expressed in the body frame:

mmeas = W
(
RN
b

)T
HN + Hd + δm . (20)

The measure of the Earth’s magnetic field HN is affected by the mea-
surement noise δm and by the effects of magnetic disturbances, mod-
elled as an additional bias Hd (Hard Iron effect) and by a matrix W
(Soft Iron, scale factor and misalignment errors) [32], which have to
be compensated before the employment of the sensor.

The raw data coming from the IMU have been fused using the nonlinear
complementary filter proposed by Mahony et al. in 2008 [24], to obtain a
reliable estimation of the orientation of the vehicle:

ηmeas2 = η2 + δη2 , (21)

being δη2 measurement noise.

Teledyne Explorerr Doppler Velocity Log (DVL); working frequency 10Hz.
This sensor measures the linear velocity of the vehicle [28]; the following
model has been used:

νmeas1 = ν1 + bν1 + δν1 , (22)
where the measured quantity νmeas1 is the sum of the true value ν1, of the
bias error bν1 and of the measurement noise δν1.
The sensor set each AUV is equipped with is slightly different; see Table 2
for the list of the devices mounted on each vehicle.

5.2. Comparison between the navigation algorithms
The proposed navigation filter has been experimentally validated exploit-

ing the data acquired during suitable sea tests held in Biograd Na Moru
(Croatia) in October 2014 during the international workshop Breaking the
Surface (BtS 2014, Figure 1) [25] in the framework of the FP7 European
ARROWS project.
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Typhoon class AUV sensor sets
Sensor TifOne TifTu
GPS 3 3

USBL Localizable Modem Localizing Transducer
Depth Sensor 3 3

IMU 3 3

DVL 3 7

Table 2: TifOne and TifTu sensor sets

Figure 6: Layout of the autonomous mission: square-shaped path with vertices placed in
WP1, WP2, WP3, WP4 and WP5

Waypoint Name Latitude [◦] Longitude [◦] Depth [m]
WP1 43.932571◦ N 15.445007◦ E 0.0 m
WP2 43.932358◦ N 15.445458◦ E 0.0 m
WP3 43.932071◦ N 15.445167◦ E 0.0 m
WP4 43.932272◦ N 15.444689◦ E 1.5 m
WP5 43.932642◦ N 15.445087◦ E 1.5 m

Table 3: Waypoints for TifOne mission
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The Typhoon AUV TifOne, navigating in dead reckoning, is required to per-
form an autonomous mission consisting in navigating through five waypoints
which form the square-shaped path shown in Figure 6.
The path through the first three waypoints WP1-WP3 has to be followed on
surface, while the desired depth for the last two legs of the square is of 1.5 m.
The total path measures 179 m, and it is followed clockwise; the AUV stops
to execute each 90◦ turn and to submerge, while the desired speed for the
legs is constant and fixed at 0.6 or 0.8 m/s (depending on the test). Table
3 summarizes the coordinates of the five waypoints; the buoy B2 visible in
Figure 6 represents the USBL transducer mounted on TifTu, which is moored
at the coordinates 43.932533◦ N, 15.444468◦ E. The demonstration held at
BtS 2014 is a preliminary test of cooperative navigation between these two
AUVs, as the position of TifOne is measured through the USBL mounted
on TifTu. Localization data are made available to TifOne through acoustic
communication.
The validation of the proposed UKF-based navigation filter has been exe-
cuted offline: the behaviour of the filter has been validated in a Matlabr

environment using the data acquired by the sensors mounted on the vehicle
during the execution of the autonomous mission. The goal of these simula-
tions is to compare the performances of the proposed filter to the ones of the
standard EKF-based navigation filter, comparing their outputs to the cor-
responding quantities measured by the sensors; furthermore, different sensor
configurations have been analysed, and the effects of the presence (or the
absence) of particular sensors on the output of the filters are shown. In
particular, the following sensor combinations have been considered:

• Configuration I: AUV equipped with IMU and depth sensor, exploiting
the GPS signal while on surface;

• Configuration II: AUV equipped with IMU, depth sensor and DVL,
exploiting the GPS signal while on surface;

• Configuration III: AUV equipped with IMU, depth sensor and DVL,
exploiting the GPS signal while on surface and the USBL while under-
water.

Several tests have been conducted on the field during a two days timespan;
the results here proposed refer to two tests assumed as case study.
Figures 7-9 show the position (x-axis and y-axis) estimated by the two filters
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Figure 7: Test 1: position estimation comparison between the two navigation filters in
Configuration III
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Figure 8: Test 1: position estimation comparison between the two navigation filters in
Configuration II
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Figure 9: Test 1: position estimation comparison between the two navigation filters in
Configuration I
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with different sensor configurations during the first test; as expected, the
performance of both the EKF and the UKF deteriorates as the number of
available sensors is reduced.
For what concerns the comparison between the two strategies, it is easily
visible that both offer similar performance while the vehicle navigates on
surface, regardless of the sensor configuration: this is because the GPS sig-
nal is always available and its fixes are predominant in the correction step of
the filters.
A relevant difference in the behaviour of the two navigation filters is shown
when the AUV navigates underwater: in this case, the contributions given
by the USBL and by the DVL become fundamental to achieve limited error
estimates. When the available set of sensors is reduced, the performance gap
between the two navigation strategies becomes larger, showing the superior-
ity of the proposed UKF-based filter compared to the standard EKF-based
solution.
To better support this thesis, Figure 10 reports the distance (expressed in
metres) between

[
ηUSBL1x ηUSBL1y

]T
, which contains the x-axis and y-axis po-

sition of the USBL fixes, and
[
ηEKF1x ηEKF1y

]T
,
[
ηUKF1x ηUKF1y

]T
, evaluated at

the time instants where each USBL fix is acquired: in Configuration III the
estimation error is almost the same for both filters; in Configuration II the
UKF behaves slightly better, while in Configuration I, with the reduced set
of sensor, the accuracy improvement offered by the proposed filter is relevant.
It is clearly visible that, when the DVL integration is not available, the EKF
shows a position error of more than 10-15 m, while the error obtained with
the proposed UKF-based strategy remains much lower (less than 6 m). More
particularly, the UKF-based navigation algorithm turns out to be more robust
than the EKF-based one especially when the prediction part of the filter be-
comes predominant if compared to the correction part. In other words, the
new approach provides better results if reduced sets of sensors are employed
and reduced measurements are available.

In particular, considering Configuration III, the limited error (<2 m) be-
tween the estimated position and the USBL fixes indicates that the vehicle
model used within the filter is consistent with the AUV physical behaviour.
For the sake of completeness, in Figure 14 the measured and estimated vehicle
orientations (roll, pitch and yaw) are reported for sensor set Configuration I
(test 1). Only the results related to Configuration I are reported because this
is the most critical one. As it can be seen, the behaviour of the two navigation
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Figure 10: Test 1: position error between the output of the filters and the USBL fixes
during underwater navigation for Configurations I, II and III
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Figure 11: Test 2: position estimation comparison between the two navigation filters in
Configuration III
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Figure 12: Test 2: position estimation comparison between the two navigation filters in
Configuration II
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Figure 13: Test 2: position estimation comparison between the two navigation filters in
Configuration I
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filters is quite the same in terms of orientations, mainly due to the accuracy
of IMU sensors.

Figure 14: Test 1: orientation estimation comparison between the two navigation filters
in Configuration I

The same results are reported for the second test: Figures 11-13 show the
performances of the two solutions with different sensor sets, while Figure 15
compares the estimated position with the USBL fixes.

Analogously, in Figure 16 the measured and estimated vehicle orientations
(roll, pitch and yaw) are reported for sensor set Configuration I (test 2). Also
in this case, the accuracy of the two navigation filters in terms of orientations
turns out to be very similar.

The two tests reported (along with the others performed and the results
of which are not shown here) allow to establish the repeatability of the be-
haviour of the navigation filters. As in the previous case, the UKF-based
navigation algorithm turns out to be more robust than the EKF-based one
especially when reduced sets of sensors are employed and reduced measure-
ments are available. Under this circumstance, the prediction part of the filter
becomes predominant if compared to the correction part. Furthermore, such
improvement is also due to the intrinsic difficulties faced by the EKF in the
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Figure 15: Test 2: position error between the output of the filters and the USBL fixes
during underwater navigation for Configurations I, II, III
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Figure 16: Test 2: orientation estimation comparison between the two navigation filters
in Configuration I

case of nonlinear and/or discontinuous systems. For these reasons, the UKF-
based approach turns out to be promising to assure lower estimation errors
in complex navigation and cooperation tasks.

6. Conclusion

In this paper the authors presented an innovative navigation system espe-
cially designed for AUVs. This strategy exploits a new navigation algorithm
based on the Unscented Kalman Filter (UKF). The innovative approach al-
lows to achieve a very effective trade-off between accuracy and computational
load. The proposed navigation strategy has been experimentally validated
offline exploiting real sensor data acquired by TifOne and TifTu, the two Ty-
phoon class AUVs developed and built by the MDM Lab of the University of
Florence, during the FP7 European ARROWS project tests performed at the
international workshop Breaking the Surface 2014. These tests constitute a
preliminary experiment of cooperative navigation between the two vehicles.
The achieved results are promising, showing encouraging improvements in
estimating the vehicle dynamics with respect to the standard navigation sys-
tem, based on the Extended Kalman Filter (EKF), especially in the case of
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discontinuous and strongly nonlinear systems.
Important further developments are scheduled for the future. Firstly, the
new UKF-based navigation filter will be simulated online within a complete
model of vehicle and environment. Subsequently, the innovative system will
be implemented on the Typhoon AUV and tested online in the water. This
way, the performance of the new approach in terms of accuracy will be care-
fully investigated in different scenarios.

Acknowledgements

This work has been partially supported by the Italian THESAURUS
project (funded by PAR FAS Regione Toscana, Linea di Azione 1.1.a.3)
and by the European ARROWS project, that has received funding from the
European Union’s Seventh Framework Programme for research, technologi-
cal development and demonstration under grant agreement no 308724. The
authors would like to thank the Organizers of the international workshop
Breaking the Surface 2014 and, in particular, Prof. Zoran Vukić and Prof.
Nikola Mišković from the Laboratory for Underwater Systems and Technolo-
gies (LABUST) of the Faculty of Electrical Engineering and Computing of
the Zagreb University (Croatia).

References

[1] Allotta B., Bartolini F., Costanzi R., Monni N., Pugi L., Ridolfi A.,
Preliminary design and fast prototyping of an autonomous underwater
vehicle propulsion system, in Proceedings of the Institution of Mechan-
ical Engineers, Part M: Journal of Engineering for the Maritime Envi-
ronment, Jan. 27 (2014); DOI 10.1177/1475090213514040.

[2] Allotta B., Costanzi R., Meli E., Pugi L., Ridolfi A., Vettori G., Co-
operative localization of a team of AUVs by a tetrahedral configuration,
Robotics and Autonomous Systems, Vol. 62, N. 8, pp. 1228-1237, Aug.
(2014).

[3] Allotta B., Costanzi R., Monni N., Pugi L., Ridolfi A., and Vettori
G., Design and Simulation of an Autonomous Underwater Vehicle, in
Proceedings of the European Congress on Computational Methods in
Applied Sciences and Engineering (ECCOMAS), Vienna, Austria, Sept.
10-14 (2012).

31



[4] Antonelli G., Underwater Robots, Springer Tracts in Advanced Robotics,
Springer-Verlag, 2nd edition, Heidelberg (2006).

[5] Arrichiello F., Antonelli G., Aguiar A.P., Pascoal A., Observability
Metric for the Relative Localization of AUVs Based on Range and
Depth Measurements, IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), San Francisco, CA, USA (2011).

[6] Barisic M., Vasilijevic A., Nad D., Sigma-Point Unscented Kalman Filter
Used For AUV Navigation, 20th Mediterranean Conference on Control
& Automation (MED), Barcelona, Spain, Jul. 3-6 (2012).

[7] Bahr A. Leonard J., Fallon M., Cooperative Localization for Autonomous
Underwater Vehicles The International Journal of Robotics Research,
Vol. 28, pp. 714-728 (2009).

[8] Bhar A., Walter M., Leonard J., Consistent Cooperative Localization
in Proceedings of the IEEE International Conference of Robotics and
Automation (ICRA), Kobe, JPN (2009).

[9] Bar-Shalom Y., Li X.R., Kirubarajan T., Estimation with Applications
to Tracking and Navigation: Theory Algorithms and Software, Wiley,
Jul. (2001).

[10] Breivik M., Fossen T. I., Giudance-Based Path Following for Au-
tonomous Underwater Vehicles, in Proceedings of the OCEANS’05,
Washington D.C., USA (2005).

[11] Caffaz A., Caiti A., Casalino G., Turetta A., The Hybrid Glider/AUV
Folaga, IEEE Robotics and Automation Magazine, Vol. 17, pp. 31-44,
Mar. (2010).

[12] Carlton J.S.,Marine Propellers and Propulsion, 2nd ed., Elsevier (2007).

[13] Cheng X., Shu H., Liang Q., Du D.H.-C., Silent Positioning in Under-
water Acoustic Sensor Networks, IEEE Trans. on Vehicular Technology,
Vol. 57, N. 3, May (2008).

[14] Evensen G., editor, Data Assimilation, Springer Verlag, Heidelberg, Ger-
many (2009).

32



[15] Fjellstad O.-E., Fossen T.I., Position and Attitude Tracking of AUV’s: A
Quaternion Feedback Approach, IEEE Journal of Oceanic Engineering,
Vol. 19, N. 4, pp. 512-518, Oct. (1994).

[16] Fossen T. I., Guidance and Control of Ocean Vehicles, 1st ed., John
Wiley & Sons, Chichester UK (1994).

[17] Hajiyev C., Ata M., Dinc M., Soken H.E., Fault tolerant estimation of
autonomous underwater vehicle dynamics via robust UKF, 13th Interna-
tional Carpathian Control Conference, pp. 203-208, May 28-31 (2012).

[18] Siciliano B., Khatib O., Handbook of Robotics, Springer Handbooks,
Napoli and Stanford (2008).

[19] Isbitiren G., Akan O.B., Three-Dimensional Underwater Tracking With
Acoustic Sensor Networks, IEEE Trans. on Vehicular Technology, Vol.
60, N. 8, Oct. (2011).

[20] Julier S.J., Uhlmann J.K., A New extension of the Kalman Filter to
Nonlinear Systems, in Proceedings of the SPIE Signal Processing, Sensor
Fusion and Target Recognition VI Conference, Vol. 3068, Jul. 28 (1997).

[21] Julier S.J., Uhlmann J.K., Unscented Filtering and Nonlinear Estima-
tion, in Proceedings of the IEEE, pp. 401-422 (2004).

[22] Kalman R.E., A New Approach to Linear Filtering and Prediction Prob-
lems, Trans. of the ASME Journal of Basic Engineering, Vol. 82, Series
D, pp 35-45 (1960).

[23] Larsen M., Synthetic Long Baseline Navigation of Underwater Vehi-
cles, in Proceedings of MTS/IEEE OCEANS 2000, Providence, RI, USA
(2000).

[24] Mahony R.E., Hamel T., Pflimlin J.M., Nonlinear Complementary Fil-
ters on the Special Orthogonal Group, IEEE Trans. on Automatic Con-
trol, Vol. 53, N. 5, pp 1203-1218 (2008).

[25] Official website of the international workshop Breaking the Surface:
http://bts.fer.hr

33



[26] Petres C., Pailhas Y., Patron P., Petillot Y., Evans J., Lane D., Path
planning for autonomous underwater vehicles, IEEE Trans. on Robotics,
Vol. 23, pp. 331-341 (2007).

[27] Pivano L., Johansen T.A., Smogeli Ø.N., A Four-Quadrant Thrust Con-
troller for Marine Propellers with Loss Estimation and Anti-Spin: The-
ory and Experiments, Marine Technology, Vol. 46, N. 4, pp. 229-242,
Oct. (2009).

[28] Rigby P., Pizarro O., Williams S., Towards Geo-referencing AUV Navi-
gation Through Fusion of USBL and DVL Measurements, in Proceedings
of MTS/IEEE OCEANS 2006, Boston, MA, USA (2006).

[29] Ristic B., Arulampalam S., Gordon N., editors, Beyond the Kalman
Filter, Artech House Publishers, Boston, MA, USA (2004).

[30] Sayed A.H., editor, Adaptive Filters, Wiley and Sons, Hoboken, NJ,
USA.

[31] University of Wisconsin, Green Bay website: http://www.uwgb.edu

[32] VectorNav Technologies: http://www.vectornav.com

[33] Wan E.A., Merwe R.V.D., The Unscented Kalman Filter, Wiley, pp.
221-280 (2001).

[34] Allotta B., Costanzi R., Fanelli F., Ridolfi A., Single axis FOG aided
attitude estimation algorithm for mobile robots, Mechatronics, DOI:
http:// dx.doi.org/10.1016/j.mechatronics.2015.06.012 (2015).

[35] Allotta B., Costanzi R., Ridolfi A., et al., The ARROWS project: adapt-
ing and developing robotics technologies for underwater archaeology, in
Proceedings of IFAC Workshop on Navigation Guidance and Control of
Underwater Vehicles (NGCUV 2015), Girona, Spain, (2015).

34


