An elastic-interface model for buckling-driven delamination growth in composite panels under bending

S. Bennati, N. Dardano, P.S. Valvo
University of Pisa, Department of Civil and Industrial Engineering

Introduction

Delamination of composite laminates can have multiple causes, such as manufacturing defects, high interlaminar stresses, low-energy impacts, etc. Delamination cracks propagate under both static and fatigue loads [1]. We analyse the delamination growth promoted by local buckling in a laminate subjected to four-point bending [2].

Mathematical problem

The model is described by a set of 10 differential equations + 30 b.c.

\[
\begin{align*}
E_{ij} v_1''(z) + B K_z (v_1(z) - v_2(z)) - \frac{1}{2} H_1 E_{ij} w_1''(z) &= 0 \\
E_{ij} v_2''(z) + B K_z (v_2(z) - v_1(z)) + \frac{1}{2} H_2 v_1''(z) &= 0 \\
E_{ij} w_1''(z) &= B K_z (w_1(z) - w_2(z)) + \frac{1}{2} H_2 v_2''(z) \\
E_{ij} w_2''(z) &= -B K_z (w_1(z) - w_2(z)) + \frac{1}{2} H_2 v_1''(z) \\
E_{ij} v_1''(z) + P_4 v_1''(z) &= 0 \\
E_{ij} v_2''(z) &= 0 \\
E_{ij} w_1''(z) &= 0 \\
E_{ij} w_2''(z) &= 0 \\
E_{ij} v_1''(z) &= 0 \\
E_{ij} w_2''(z) &= 0
\end{align*}
\]

A general analytical solution is deduced for the differential problem. The b.c. are non-linear with respect to the axial force in the buckled sublaminates, \(P_4 \). By taking the latter quantity as a representation parameter, numerical solutions are determined for specific problems.

Mechanical model

The mechanical model considers the specimen as an assemblage of sublaminates, modelled as beams, partly connected by an elastic interface.

Applied bending moment vs. \(P_4 \)

Delamination growth

Equilibrium path

Essential references
