Hepatitis C virus: life cycle in cells, infection and host response, and analysis of molecular markers influencing the outcome of infection and response to therapy

Lynn B. Dustin\textsuperscript{1}, Barbara Bartolini\textsuperscript{2}, Maria R. Capobianchi\textsuperscript{2}, Mauro Pistello\textsuperscript{3*}

\textsuperscript{1} Kennedy Institute for Rheumatology and Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom

\textsuperscript{2} Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy.

\textsuperscript{3} Virology Unit, Pisa University Hospital, and Virology Section and Retrovirus Center, Department of Translational Research, University of Pisa, Pisa, Italy

(Text: 3616 words)

* Corresponding author:

Mauro Pistello

Centro Retrovirus e Sezione Virologia

Dipartimento Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia

Università di Pisa

Via San Zeno 37

I-56127, Pisa, Italy

Phone: + 39 050 221 3781

Fax: + 39 050 221 3524

E-mail: mauro.pistello@med.unipi.it
Abstract

Hepatitis C virus (HCV) is a major global health burden accounting for around 170 million chronic infections worldwide. Since its discovery, which dates back to about 30 years ago, many details of the viral genome organization and the astonishing genetic diversity have been unveiled but, owing to the difficulty of culturing HCV in vitro and obtaining fully susceptible yet immunocompetent in vivo models, we are still a long way from the full comprehension of viral life cycle, host cell pathways facilitating or counteracting infection, pathogenetic mechanisms in vivo, and host defenses. Here, we illustrate the viral life cycle into cells, describe the interplay between immune and genetic host factors shaping the course of infection, and provide details of the molecular approaches currently used to genotype, monitor replication in vivo, and studying the emergence of drug-resistant viral variants.

(137 words)

Keywords: Hepatitis C virus; Cell culture-derived HCV; Pathogenesis; Host response; Broadly-reactive neutralizing antibodies; Genotype; Quantitative molecular assays; Drug resistance; Monitoring drug resistance; Direct antiviral agents.
HCV: A momentous virus for Virology

The Hepatitis C virus (HCV) was identified in 1989. This year marks a departure from traditional virology, based on isolation, cultivation, and biochemical studies, to modern virology that uses molecular biology and biotechnology to discover, characterize, and monitor viruses. HCV is indeed the first infectious agent discovered thanks to molecular biology techniques that, owing to the difficulty to replicate the virus in vitro, have been extensively used to define the molecular aspects of HCV biology.

Today HCV is making history again. Recently developed direct-acting antivirals (DAAs) eliminate infection in over 90% treated individuals and are changing the idea that antivirals, in general, can at most block viral replication and slow disease progression. Poorly tolerated interferon (IFN)-based therapeutic regimens are being rapidly replaced with IFN-free DAA regimens, and tissue damage in patients with advanced stages of disease is stabilized and possibly reversed [1]. Further, detailed study of HCV’s dependence on host factors has permitted development of host-directed antiviral therapies. This review provides an overview of some key aspects of viral interaction at cellular and host levels and illustrates current methods to monitor viral replication and genotyping with particular emphasis on fundamentals and recent clinical findings important to determine susceptibility or resistance to DAAs.

HCV life cycle and host-cell interactions in vitro

HCV belongs the Flaviviridae, a large family of enveloped, single-stranded RNA viruses that is organized into the genera Hepacivirus, Flavivirus, Pestivirus, and Pegivirus [2], and that includes many viruses transmitted by arthropods and growing matter of health concern [3]. The HCV life cycle is only partly understood; difficulties in establishing an in vitro model of replication and the complex network of cell surface molecules used to mediate viral entry
have delayed comprehension of various molecular mechanisms [4, 5]. Briefly, as shown in Figure 1, the HCV virion circulates in the bloodstream either as free-particle or surrounded by host low-density lipoproteins [6], attaches onto the target cell membrane by sequential binding of various receptor molecules, and enters into the cell by a clathrin-mediated endocytosis process. Disruption of the viral capsid in the endocytic compartment releases the 9.6 kb single-stranded RNA genome of positive polarity into the cytoplasm. The RNA genome is then directly translated at the rough endoplasmic reticulum (ER) in a single polyprotein precursor of about 3,000 amino acid residues that is eventually cleaved by cellular and viral proteases into ten mature products [7, 8]. These proteins, enlisted in the order they are encoded, include the structural core and envelope glycoproteins E1 and E2, and the following nonstructural proteins: p7 viroporin and nonstructural protein 2 (NS2) that participate in virus assembly and release; NS3 and NS4A, the protease complex that, as described in Chapters 3 and 4 of this Theme Section, is actively targeted by the protease inhibitor class of DAAs; NS4B, a membrane-associated protein that mediates virus–host interactions; NS5A, a zinc-binding and proline-rich hydrophilic phosphoprotein involved in HCV RNA replication and targeted by NS5A inhibitor DAAs; and NS5B, the RNA-dependent RNA polymerase targeted by nucleoside and non-nucleoside polymerase inhibitor DAAs. New virions are assembled in an ER-derived compartment and released by exocytosis following a Golgi-dependent secretory pathway. Along this process the virus undergoes maturation and becomes surrounded by endogenous lipoproteins that, as described below, are believed to help immune escape [4, 5]. Binding to host lipoproteins and envelope without clearly discernable surface features confer to HCV virions low buoyant density and broad size range (40–80 nm diameter) [5].

Lack of a reliable in vitro method to study HCV replication was due to scarce adaptability of primary hepatic cells to in vitro propagation, no availability of viral isolates
adapted to in vitro culture, and large use of cell-to-cell transmission to disseminate infection to neighbor cells. This mechanism has complicated identification of cellular receptors necessary for viral entry and is believed to facilitate immunological escape, virus persistence, and resistance to DAAs [9-12]. Also, receptor usage appears to depend upon cell type and infection via free-particle or cell-to-cell transmission [4, 13].

The cell culture derived HCV (HCVcc) and the HCV trans-complemented particles (HCV_TCP) are among the most used methods to study replication of HCV replication in vitro [4]. HCVcc uses JFH1, a HCV genotype 2a strain isolated from a Japanese patient with fulminant hepatitis and replicates in Huh-7, a human cell line from hepatocellular carcinoma [14, 15]. HCVcc generates infectious virus and, using either native or inter-genotype recombinant JFH1 variants, has allowed identifying some HCV entry factors, defining virion structure and biochemical properties, and testing DAA potency. HCV_TCP, described in detail elsewhere [16, 17], employs pseudotyped HCV virions generated in packaging cells transfected with viral proteins provided by different constructs. HCV_TCP can be theoretically obtained from any isolate but support only single-round infection and are unable to spread.

HCVcc, HCV_TCP, and basically all in vitro methods use Huh-7 cells that, although permissive to HCV replication, differ from primary hepatocytes for different restriction mechanisms, diverse localization of HCV receptors, and absence of the cell polarity observed in hepatic tissue. As a result, viral entry, assembly, release, and cell-to-cell spread observed in vivo is not completely reproduced in vitro [5]. HepG2 cell clones and hepatoma cells derived from primary hepatocytes are permissive to HCV replication in vitro and should allow better understanding of virus-host cell interplay. On this regard, a growing body of evidence shows that host genetics impact disease progression, immune response, and antiviral therapy [18, 19]. Nucleotide polymorphism of IFN and IFN-stimulated genes, for instance, strongly correlates with disease and therapy outcome to the point that host-targeting antivirals have
become an attractive field of drug research [20].

The natural history of infection

An estimated 130-200 million people worldwide are persistently infected with HCV, up to 4 million new infections occur annually, and the majority of infected persons are unaware of their infection status [21-23]. HCV spreads primarily through percutaneous contact with infected blood. Before identification, many people became HCV-infected as a result of unsafe injection practices, blood or blood products. Blood testing greatly reduced the risk of iatrogenic exposure in developed countries; however, unsafe medical procedures remain an important source of new infections particularly in resource-poor settings. In many developed countries, most infections now occur amongst people who use injected or intranasal drugs. Specific populations, notably human immunodeficiency virus (HIV)-positive men who have sex with men, are at increased risk of sexual transmission. Vertical transmission and transmission through piercing or tattooing are also possible [23, 24].

HCV causes hepatic inflammation and fibrosis that may progress sub-clinically over decades. Long-term sequelae include cirrhosis, end-stage liver disease, and hepatocellular carcinoma (HCC). In the Western world, chronic HCV infection is the leading indication for liver transplant and the leading cause of end-stage liver disease, HCC, and liver-related death [23, 25, 26]. Individual outcomes are highly variable, with many patients experiencing minimal changes while others progress rapidly [23]. Fibrosis progression is uneven and may accelerate with longer duration of infection; comorbid conditions such as HIV infection accelerate disease progression [22]. A large meta-analysis reported the risk of cirrhosis at 7-18% after 20 years and 41% after 30 years of infection [27]. Cirrhotic patients are at high risk for hepatic decompensation (27.7-39.5% risk over five years) and HCC (2.8-7.4% in the first year, and 8-16.1% over five years) [28]. Factors that increase the risks of fibrosis, cirrhosis,
and HCC include male sex, increasing age, alcohol use, and HIV co-infection.

Most infected individuals have no symptoms during the acute infection, although 15-
30% may experience non-specific symptoms [22]. Because most acute HCV infections are
sub-clinical, it is difficult to calculate how many patients clear HCV without treatment [22, 23]. This typically occurs in the first six months after exposure and is estimated at between
<20% and about 50% in different populations [23]; spontaneous clearance is affected by host
genetics, race, age, sex, and comorbidities such as HIV [29-32].

The host response and the outcome of HCV infection

Innate immunity

Soon after establishing infection in hepatic foci, HCV undergoes an exponential “ramp-up” phase of replication [33]; the rate of increase decreases abruptly when cells in the liver
express a host of IFN-stimulated genes (ISGs) that limit HCV replication and spread [34].

Innate immunity is a first line of defense against HCV infection [35] and stimulates adaptive
immunity. HCV RNA binds to retinoic acid-inducible gene I, activating mitochondrial
antiviral signaling (MAVS) proteins; double-stranded RNA bound to Toll-like receptor-3
induces signaling via TIR domain-containing adaptor inducing IFN-β (TRIF). Both pathways
activate NFκB and IRF3 translocation to the nucleus. Here, they promote expression of IFNs
and ISGs to inhibit viral replication, plus proinflammatory cytokines and chemokines to
recruit and activate immune cells. HCV’s NS3-4A protease specifically cleaves MAVS and
TRIF to dampen IFN induction [36, 37]. HCV may use several additional strategies to reduce
innate antiviral responses (reviewed in [36, 37]). ISG expression in HCV-infected
hepatocytes, even those with evidence of MAVS cleavage, demonstrates that these
mechanisms do not completely abolish innate immunity [38, 39]. Hepatocytes preferentially
express IFN-λ following HCV infection [40]. Dendritic cells, Kupffer cells, and other
nonparenchymal cells also recognize viral molecular patterns, contributing to IFN and cytokine production and response without themselves harboring replicating HCV [34, 36].

Role of adaptive immunity in the outcome of infection

Innate antiviral responses can limit HCV replication and spread, but rarely mediate elimination of infection without action by the adaptive immune response. Indeed, a hallmark of HCV control is the arrival in the liver of T-lymphocytes that produce IFN-γ. Elevated blood levels of transaminases, indicating hepatocyte cell death, are seen as viral loads decline. Chronic infection is defined as infection lasting more than 6 months; spontaneous clearance is rare but not unheard of after this point. Some key immunologic features of spontaneous clearance and chronic infection are summarized in Table 1.

In resolving infections, adaptive immunity rapidly mounts a cell-mediated response targeting multiple HCV epitopes and high-titer, broadly-reactive neutralizing antibodies (bNAbs) [41, 42]. By targeting multiple epitopes, T-lymphocytes reduce viral opportunities for immune escape. HCV’s error-prone replication strategy permits rapid evolution, and immune responses select for variants that escape recognition. Some immune escape mutations are not tolerated because they impair viral fitness [43]. A second characteristic of effective anti-HCV immunity is the preservation of polyfunctional T-lymphocyte activity. CD8+ T-lymphocytes (and other immune cells) are dependent on help from HCV-specific CD4+ T-lymphocytes; these are readily detected early after HCV infection regardless of its outcome. In resolving infection, HCV-specific CD4+ T-lymphocytes support CD8+ T-lymphocyte survival, proliferation, and antiviral activity. Effector T-lymphocytes accumulate in the liver and slow HCV replication through cytokine release (IFN-γ, TNF-α) and killing of infected cells. T-lymphocyte responses persist long after the virus has been cleared, and mediate protection, albeit imperfect, against chronic infection in subsequent exposures. As
regards humoral immunity, bNAbs binding viral E2 and, to a lesser extent, E1 glycoproteins are produced at high titer and within the first few months of infection. This results in blocking HCV infection of its target cells. Key viral neutralization targets – i.e. conserved domains required for hepatocyte infection - are hidden behind glycans, lipoproteins, and hypervariable decoy domains. bNAbs bind the essential domains rather than the decoys [9, 44]. bNAbs may contribute to clearance because HCV must continuously infect new target cells to maintain even an established infection [45].

In contrast to the broad and sustained T-lymphocyte responses in resolving HCV infection, T-lymphocytes in persisting HCV infection may target a more limited set of epitopes; often, an initially broad response narrows. Thus, fewer viral sequence changes are required for immune escape. HCV that persists in chronic infection often shows evidence of immune-mediated selection for variants that avoid recognition by CD8+ T-lymphocytes [34]. Where viral epitope sequences remain unchanged, HCV-specific T-lymphocyte responses are characterized by progressive loss of function. CD4+ T-lymphocyte responses fail through a mechanism independent of epitope escape [34, 42]. CD8+ T-lymphocytes, lacking CD4+ T-lymphocyte help, lose effector functions, express markers associated with exhaustion, and stop proliferating. Inflammatory T-lymphocytes, frequently not HCV-specific, infiltrate the liver and may mediate tissue damage [46]. Finally, patients with chronic infection also express neutralizing antibodies, but these may arise later and may be isolate-specific, often targeting hypervariable epitopes with high potential for immune escape [9, 34].

Role of host genetics in the outcome of infection

HCV infection is more likely to persist in people bearing a set of unfavorable polymorphisms in the IFN-λ locus; the same alleles are associated with failure of IFN-α-based antiviral therapy [40]. High ISG expression in the infected liver is also a poor
prognostic indicator for IFN-α-based HCV treatment [47]. The cluster of IFN-λ locus polymorphisms includes a frame-shift in the IFN-λ4 gene; the favorable allele abolishes IFN-λ4 protein expression [40]. It has been proposed that IFN-λ4 might regulate hepatocyte IFN responsiveness, perhaps through negative feedback mechanisms. Alternatively, IFN-λ4 (or a linked polymorphism) may support prolonged innate immune activation and thereby interfere with maturation of an adaptive immune response [48]. Whether IFN-λ acts strictly via innate immunity, or influences adaptive immunity, is uncertain. Additional important polymorphisms are in the HLA locus. These may influence the outcome of infection through selection of immunodominant epitopes [43], cross-reactive responses [49], and interactions with natural killer cells [50].

Importance of viral load and genotyping in the outcome of infection and therapy

HCV viral load

Monitoring of the course of infection and therapeutic response is based on HCV RNA measurement in plasma or serum of patients and, under anti-HCV treatment, is aimed at optimizing therapy duration, and prompting early discontinuation to prevent potential side effects and reduce unnecessary costs. Baseline viral load, extent and sharpness of viremia decay in the early phases of treatment (4 and 12 weeks), and undetectable HCV RNA at the end of treatment represent key parameters guiding IFN-treatment.

With DAAs and according to current guidelines, HCV viral load monitoring during therapy remains crucial for patient management with regard to futility rules and assessment of therapy efficacy [51-53]. In addition, due to the rapid decay expected in almost all patients treated with DAAs, HCV RNA monitoring is also used to assess patient adherence.

The methods to measure HCV viral load have greatly evolved since their initial
establishment. Today automated real-time reverse transcriptase-polymerase chain reaction
(RT-PCR) and transcription-mediated amplification (TMA) platforms from different vendors
are widely used throughout western countries (Table 2) [54,56]. These systems accurately
quantify HCV RNA within a broad linear range, with a lower limit of detection (LLOD)
sometimes even below the lower limit of quantification (LLOQ).

Despite good inter-assay agreement of linear range, there are important differences
concerning LLOD, LLOQ and low HCV RNA concentration, which are crucial for clinical
evaluation. Since decision to prolong or stop DDA therapy is often taken with a single
measurement, accurate quantification is important. To reduce uncertainty, several strategies
have been devised. For instance, with the Roche High Pure System/COBAS TaqMan assay
virological response has been set at 25 IU/ml, the LLOQ of this assay. Depending on their
LLOQ, other assays use lower levels [52-55]. Thus, the threshold and the number of patients
achieving virological response may differ depending on the assay and influence clinical
management [56-62]. For instance, patients receiving first generation DAA (Telaprevir)
combined with PegIFN and RBV and with HCV RNA undetectable at week 4 were used to
identify patients eligible for shortened treatment (24 vs 48 weeks) [63]. Based on this
criterion, in the OPTIMIZE study, for instance, 34% or 72% of patients would have been
eligible for shorter treatment if HCV RNA was measured with Abbott RealTime or Roche
High Pure System/COBAS TaqMan [59]. Thus, current guidelines recommend considering
assay performances and performing virological monitoring in the same laboratory for patient
management [51, 61].

As mentioned, HCV must continuously infect new target cells to maintain even an
established infection [45]. It is assumed therefore that clearance from each infected cell
occurs when viral replication has been halted for a sufficient time. However, even when HCV
RNA is not detected with the most sensitive assay, it is possible that minute, undetected
amounts of virus are still present. This “residual viremia”, firstly demonstrated for HIV with
highly sensitive tests developed \textit{ad hoc}, with enhanced sensitivity, may indicate suboptimal
treatment and enhanced risk of virological failure [64]. To prevent this occurrence in HCV,
ultrasensitive versions using increased input sample volume and modified calibration curve
have been developed from commercial assays [65]. Preliminary data on patients receiving
first generation DAA-based therapy suggest that early achievement of HCV RNA values
undetectable with such ultrasensitive tests is predictive of sustained virological response [66].
Further studies are warranted to determine whether assays with enhanced sensitivity are
necessary for clinical management of patients treated with new DAAs.

HCV core antigen (HCV Ag) is also gaining importance for effective monitoring of
new generation DAAs. Architect HCV Core Antigen Test, one of most used systems,
quantitates down to 0.06 pg/mL HCV Ag, roughly corresponding to 700 IU/mL HCV RNA.
This marker proved useful in IFN-based therapy [67, 68] and good predictor of sustained
virological response in first generation DAA-based therapy [69, 70]. This analysis is less
expensive and time consuming compared to molecular assays, and should be considered
whenever high analytical sensitivity is not a must [68, 69].

\textbf{HCV genotyping}

HCV shows enormous genomic sequence variability. Currently there are seven
confirmed genotypes that are organized in 67 confirmed, 20 provisionally assigned, and 21
unassigned subtypes; median variability among genotypes and subtypes is approximately
33\%, and 10\%, respectively [71]. Because type and duration of treatment also depends on the
genotype, HCV genotyping is mandatory in patients eligible for antiviral therapy [72].
Further, owing to important barriers to resistance, genotyping is also important for DAA-
based therapies. As long as highly and broadly effective all oral combination therapies will be
available, it is conceivable the importance of HCV genotyping will decline in the future [72, 73].

Sequencing of conserved genomic regions is the gold standard for HCV genotyping, but this method is limited to high-level laboratories; reverse hybridization or genotype-specific real-time RT-PCR are easier-to-perform and routinely used but, particularly first generation assays that targeted the 5’ untranslated region (5’UTR), can misclassify isolates especially at subtype level. A consistent improvement has been achieved by including coding regions in other targets, e.g. NS5B and core protein, possessing non-overlapping sequences amongst genotypes and subtypes [73].

Analysis of HCV resistance

Because of high replication rate and no proofreading activity of the viral polymerase, HCV is highly variable and each possible single mutation and combination of mutations may arise every day in a given infected individual. Genome plasticity and drug-driven selection create the conditions for the emergence of resistant variants [33] and, as a consequence, most mutations associated with resistance are located within the drug target regions (Figure 2) [74-76]. Despite the reduced fitness, such variants rapidly overgrow wild-type viruses and during this process they may accumulate additional, fitness-restoring, mutations [76]. Single drug, drug family and genotype/subtype often influence the emerging mutations. In turn, each DAA class displays different genetic barrier to resistance and cross-resistance between drugs inhibiting NS3 protease and NS5A is frequently observed.

Direct sequencing of PCR products has been the method of choice for investigating the presence of mutations conferring antiviral resistance. Unfortunately, this approach analyzes the predominant species and, as observed with HIV-1, variants below 20% may escape detection despite being crucial during the initial phases of resistance development [78]. Next
generation sequencing (NGS) detects and quantitates variants present at frequencies as low as 0.5% [79] and, therefore, permits early detection of resistance mutations, definition of their kinetics, and progressive disappearance after treatment suspension [80-83]. Although there are no commercial kits, many laboratories analyze NS3-4A, NS5A, and NS5B regions with NGS but its use in clinical practice is still limited and requires expert guidance for interpretation.

Natural variants carrying resistance-associated mutations have been repeatedly found by conventional and NGS analyses but, with the exception of searching for Q80K mutation in patients infected with genotype 1a and to be enrolled for treatment with Simeprevir, there is no agreement on the usefulness of performing resistance testing before DAA-based therapy [84-86]. Even the use of resistance testing in failing cases is questioned since: i. The emergence of resistant variants does not account for all virological failures; ii. The resistant variants rapidly decline (but do not always disappear) after stopping treatment [86, 87]; iii. The different classes and combination of drugs at disposal enormously increase the genetic barrier to resistance.

According to most recent guidelines and since NS5A resistance mutations can persist for over two years post-treatment [87], resistance testing is recommended for patients who need urgent treatment and have failed previous treatment with NS5A inhibitors. In contrast, the utility of routine testing for NS5B mutations is questionable. Resistance to nucleotide analogues targeting NS5B (i.e. Sofosbuvir) is rare and S282T, the only mutation (so far) associated with Sofosbuvir resistance, confers fitness disadvantage. As mentioned, however, unfit variants continue to evolve during treatment and select for compensatory mutations that counterbalance fitness loss.
Conclusions

Understanding the HCV life cycle and host factors that hinder or allow persistence of infection is crucial to develop post-exposure and prophylactic measures for the global control of HCV. Only a fraction of the global patient population has been diagnosed and, in spite of aforementioned remarkable advances in antiviral therapy, less than 1% has been treated [88-90] and those who have been treated remain vulnerable to re-infection [91]. Therapy alone is therefore not sufficient to eliminate the global burden of HCV infection and chronic liver disease in the near future. In contrast, individuals who have mounted a successful immune response against HCV have a substantial degree of protection upon subsequent exposures. This suggests that effective immunological strategies to protect against persistent infection are feasible [42, 89] and likely capable to face HCV’s tremendous genetic diversity [71].

Transparency declaration

The authors declare no conflicts of interest and acknowledge the NIH grants R01 AI060561 and R01 AI089957 (awarded to LBD), Fondo Ricerca corrente (MRC), and FAS Salute 2016 “UNAVIR: Malattie Virali Rare: una strategia innovativa per combatterle con un unico agente antivirale”, CUP B32I14001060002 (MP).

All authors wrote, revised and commented on the manuscript at all stages.
References


20. Baugh JM, Garcia-Rivera JA, Gallay PA. Host-targeting agents in the treatment of


40. Laidlaw SM, Dustin LB. Interferon lambda: Opportunities, risks, and uncertainties in the fight against HCV. Front Immunology 2014; 5: 545.


44. Cashman SB, Marsden BD, Dustin LB. The humoral immune response to HCV: Understanding is key to vaccine development. Front Immunol 2014; 5: 550.


60. Vermehren J, Aghemo A, Falconer K, Susser S, Lunghi G, Zeuzem S et al. Clinical significance of residual viremia detected by two real-time PCR assays for response-


64. Sahu GK. Potential implication of residual viremia in patients on effective antiretroviral therapy. AIDS Res Hum Retroviruses 2015; 31: 25-35.


68. Vermehren J, Susser S, Berger A, Perner D, Peiffer KH, Allwinn R et al. Clinical utility of the ARCHITECT HCV Ag assay for early treatment monitoring in patients with


78. Thielen A, Martini N, Thiele B, Däumer M. Validation of HIV-1 drug resistance testing


and persistence of DAA resistance associated mutations in patients failing HCV


90. Thomas DL. Global control of hepatitis C: Where challenge meets opportunity. Nat

Legend to figures

Figure 1. The HCV replication cycle. The seven steps of the viral life cycle, indicated in the white boxes, are the following: Attachment, the viral particle, surrounded with lipoproteins, binds the target cells by interacting with several receptors some, most of which shown in figure, considered essential other accessory; Entry: following attachment, the virus enters through clathrin-mediated endocytosis; Uncoating: the cellular and viral membranes fuse and the capsid is disorganized with a process triggered by the low pH of the endosome. After uncoating the positive-strand RNA genome is released into the cytoplasm; Translation: the genomic RNA is directly translated in a polyprotein precursor that is then cleaved into single proteins by both host and viral proteases; Replication: the non-structural proteins and some host factors form a replication complex that synthesized multiple copies of the HCV RNA genome via a minus-strand replicative intermediate; Assembly and maturation: packaging of viral progeny takes place in the endoplasmic reticulum from which the virion acquires the envelope with E1 and E2 glycoproteins. Maturation and association with endogenous lipoproteins to form lipoviral particles immediately follow; Release: virions are released from the cells most likely by exocytosis or transmitted to other cells via a cell-free mechanism.

Figure 2. A schematic of the mutations conferring resistance to NS3, NS5A and NS5B inhibitors. Numbers refer to the amino acid positions correlated to resistance in various HCV genotypes.
Table 1. Immunologic characteristics of resolving and persisting HCV infections

<table>
<thead>
<tr>
<th></th>
<th>Resolving infection</th>
<th>Persisting infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-cell responses</td>
<td>Broadly focused: limits viral escape options</td>
<td>Restricted number of epitopes facilitates viral escape</td>
</tr>
<tr>
<td>Duration of T-cell</td>
<td>Rapid, sustained even after clearance</td>
<td>Wanes over time</td>
</tr>
<tr>
<td>response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCV specific</td>
<td>Persist</td>
<td>Disappear</td>
</tr>
<tr>
<td>CD4+ T-cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCV-specific</td>
<td>• Proliferate and expand</td>
<td>• Lose proliferative capacity</td>
</tr>
<tr>
<td>CD8+ T-cells</td>
<td>• Polyfunctional: produce IFNγ, TNFα</td>
<td>• Fewer polyfunctional cells</td>
</tr>
<tr>
<td></td>
<td>• Express perforin</td>
<td>• Express markers of exhaustion</td>
</tr>
<tr>
<td>Neutralizing</td>
<td>• Early</td>
<td>• Isolate-specific</td>
</tr>
<tr>
<td>antibody</td>
<td>• High titer</td>
<td>• Viral sequence evolution outpaces antibody reactivity</td>
</tr>
<tr>
<td></td>
<td>• Broadly-reactive</td>
<td></td>
</tr>
<tr>
<td>IFNλ. SNPs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs12979860</td>
<td>C</td>
<td>T</td>
</tr>
<tr>
<td>rs368234815</td>
<td>TT</td>
<td>ΔG</td>
</tr>
<tr>
<td>rs8099917</td>
<td>T</td>
<td>G</td>
</tr>
</tbody>
</table>
Table 2. Overview and features of automated assays marketed and licensed to quantitate HCV RNA in plasma or serum samples

<table>
<thead>
<tr>
<th>Test name</th>
<th>Manufacturer</th>
<th>Technology used</th>
<th>Level of automation</th>
<th>LLOD&lt;sup&gt;a&lt;/sup&gt; (IU/ml)</th>
<th>LLOQ&lt;sup&gt;b&lt;/sup&gt; (IU/ml)</th>
<th>Linear range (IU/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artus Hepatitis C QS-RGQ</td>
<td>Qiagen</td>
<td>Real time RT-PCR</td>
<td>Moderate; extraction and amplification/detection in separate instruments; a few manual steps</td>
<td>15</td>
<td>20</td>
<td>up to 1.77x10&lt;sup&gt;7&lt;/sup&gt;</td>
</tr>
<tr>
<td>CobasAmpliprep/CobasTaqMan v2.0</td>
<td>Roche</td>
<td>Real time RT-PCR</td>
<td>High; extraction and amplification/detection in separate instruments; sample loading can be fully automated</td>
<td>15</td>
<td>15</td>
<td>up to 1.7x10&lt;sup&gt;8&lt;/sup&gt;</td>
</tr>
<tr>
<td>Abbott RealTime HCV</td>
<td>Abbott</td>
<td>Real time RT-PCR</td>
<td>High; extraction from primary tube; amplification/detection in a separate instrument; a few manual steps</td>
<td>12</td>
<td>12</td>
<td>up to 1.0x10&lt;sup&gt;8&lt;/sup&gt;</td>
</tr>
<tr>
<td>Versant HCV RNA 2.0</td>
<td>Siemens</td>
<td>Real time RT-PCR</td>
<td>High; extraction from primary tube; amplification/detection in a separate instrument</td>
<td>15</td>
<td>15</td>
<td>up to 1.0 x 10&lt;sup&gt;8&lt;/sup&gt;</td>
</tr>
<tr>
<td>Aptima HCV Quant Dx Assay</td>
<td>Hologic</td>
<td>TMA&lt;sup&gt;c&lt;/sup&gt;</td>
<td>Fully automated; extraction/amplification/detection all in one instrument, starting from primary tube</td>
<td>4</td>
<td>12</td>
<td>up to 1.0x10&lt;sup&gt;8&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

<sup>a</sup> Lower limit of detection;  
<sup>b</sup> Lower limit of quantification;  
<sup>c</sup> Transcription-mediated amplification.