12 months in subtype B and KSB patients, respectively (P < 0.001). In contrast, KRG treatment did not affect the \(\text{gdnf} \) expression in non-B. However, the proportion of sequences with premature stop codon was similar among 3 subtypes (0.5–2.0%). Sequence identity over 6 years was significantly higher in KSB (97.8 ± 1.1%) than subtype B (96.1 ± 1.6%) (P < 0.01) and non-B (96.8 ± 1.5%) (P < 0.01). The sequence identity 97.8 ± 1.1% was also higher than 96.4 ± 2.0% in KSB control (P < 0.01). Taken collectively, 23 long-term slow progressors (LTPs) was detected in KRG treated patients only (P < 0.01) and its proportion was higher in KSB patients than in non-B patients (P < 0.01).

Conclusions: Decrease of CD4 and proportion of \(\text{gdnf} \) are affected by subtypes and KRG treatment. Faster decrease of CD4 in non-B patients than in KSB patients is supported by significantly lower \(\text{gdnf} \) and higher variation in non-B than KSB.

P37

Aberrent expression of ERVWE1 endogenous retrovirus and overexpression of TET dioxygenases are characteristic features of semenomas

Katerina Trejbalova\(^1\), Martina Benesova\(^1\), Dana Kucerova\(^1\), Zdenka Vernerson\(^2\), Rachel Amouroux\(^3\), Petra Hajkova\(^1\), Jiri Hejnar\(^1\)

1) Institute of Molecular Genetics, Dpt. of Viral and Cellular Genetics, Prague 4, Czech Republic; 2) Third Faculty of Medicine, Charles University In Prague, Department of Pathology, Prague, Czech Republic; 3) Medical Research Council Clinical Sciences Centre, Imperial College London, London, Great Britain

Correspondence: Katerina Trejbalova

Retrovirology 2016, 13(Suppl 1): P37

Background: Germ cell tumors and particularly semenomas reflect the epigenomic features of their parental primordial germ cells, including the genomic DNA hypomethylation and expression of pluripotent cell markers. Because the DNA hypomethylation might be a result of TET dioxygenase activity, we examined expression of TET1–3 enzymes and the level of their product, 5-hydroxymethylcytosine, in a panel of histologically characterised semenomas and non-seminomatous germ cell tumors. Simultaneously, we analysed the expression of ERVWE1 endogenous retrovirus whose spliced form codes for envelope glycoprotein called Syncytin-1. Syncytin-1 has fusogenic ability and its expression is restricted to placenta under physiologic conditions.

Results: We found highly increased expression of TET1 dioxygenase in most semenomas and a strong TET1 staining in semenoma cells. Lactate dehydrogenase 1 and 2 mutations were not detected suggesting the enzymatic activity of TET1. The levels of 5-methylcytosine and 5-hydroxymethylcytosine in semenomas were found decreased in comparison to non-seminomatous germ cell tumors and healthy testicular tissue. Seminomas further displayed significant increase in both spliced and non-splsced forms of ERVWE1 in comparison to healthy controls. Importantly, the promoter of ERVWE1 in semenomas contained low levels of DNA methylation.

Conclusions: We propose TET1 expression as a marker of semenoma and mixed germ cell tumor. Furthermore, the endogenous retrovirus ERVWE1 was consistently overexpressed in semenomas. In contrast to the CpG island methylator phenotype observed in a fraction of tumors of various types, we suggest the anti-methylator phenotype in semenomas is maintained by TET1 demethylation activity.

P38

Life history of the oldest lentivirus: characterisation of ELVgv integrations and the TRIM5 selection pattern in dermopteran

Daniel Elleder\(^1\), Tomas Hron\(^1\), Helena Farkasova\(^1\), Abinash Padhi\(^2\), Jan Paces\(^3\)

1) Institute of Molecular Genetics, Prague, Czech Republic; 2) Center for Virology, Glasgow, Great Britain; 3) Center for Virology, Glasgow, Great Britain

Correspondence: Daniel Elleder

Retrovirology 2016, 13(Suppl 1): P38

Endogenous retroviruses are genomic elements formed by germline infiltration by originally exogenous viruses. These molecular fossils provide valuable information about the evolution of the retroviral family. Lentiviruses are an extensively studied genus of retroviruses infecting a broad range of mammals. Despite a wealth of information on their modern evolution, little is known about their origins. This is partially due to the scarcity of their endogenous forms. Recently, an endogenous lentivirus, ELVgv, was discovered in the genome of the Malayan colugo (order Dermoptera). This represents the oldest lentiviral evidence available and promises to lead to further insights into the history of this genus.

In this study, we analysed ELVgv integrations at several genomic locations in four distinct colugo specimens covering all the extant dermopteran species. We confirmed ELVgv integrations in all the specimens examined, which implies that the virus originated before the dermopteran diversification. Using a locus-specific dermopteran substitution rate, we estimated that the proviral integrations occurred 21–40 million years ago. Using phylogenetic analysis, we estimated that ELVgv invaded an ancestor of today's Dermoptera more than 60 million years ago. We also provide evidence of selective pressure on the TRIM5 anti-viral restriction factor, something usually taken as indirect evidence of past retroviral infection. Interestingly, we show that TRIM5 was under strong positive selection only in the common dermopteran ancestor and that this period could coincide with ELVgv activity. In summary, we describe the evolutionary history of the oldest known lentiviral lineage and propose its coevolution with the TRIM5 host restriction factor.

P39

Characterisation of a highly divergent endogenous retrovirus in the equine germ line

Henan Zhu, Robert Gifford, Pablo Murcia

MRC-University of Glasgow Centre for Virus Research, Glasgow, Great Britain

Correspondence: Henan Zhu

Retrovirology 2016, 13(Suppl 1): P39

The general profile of endogenous retroviruses (ERVs) in the domestic horse (Equus cabalus) genome has been described, but a thorough Characterisation is lacking. We used an in silico approach based on data mining and phylogenetic analysis to profile equine ERVs in depth. We identified a total of 1384 ERV loci in the horse genome that disclosed a robust phylogenetic relationship to retroviral reverse transcriptase (RT) genes. Through phylogenetic and genomic analyses of these loci we derived an overview of equine ERV diversity. We inferred that there are at least 8 distinct, major lineages of ERVs in the equine germ line, and recovered consensuses proviral genome structures for each of these. One highly divergent ERV lineage, which we provisionally refer to as EqERV-u1, was observed to be unique to the family Equidae. We show that EqERV-u1 is intermediate to Alpha- and Betaretroviruses in phylogenetic trees, and identify 46 distinct EqERV-u1 proviruses, including 17 with intact genomes. Interestingly, we observed two distinct genome structures among intact EqERV-u1 copies: a classical (type I) structure in which a gag gene is located between the pro and pol coding domains, and a type II structure—unique to EqERV-u1—in which a dUTPase gene occurs upstream of gag. We dated the activity of the EqERV-u1 lineage over time using a molecular clock-based approach, revealing that it has been active relatively recently (i.e. within the past 1–5 million years), even though it may have entered the equid germ line >18 million years ago. Analysis of published E. cabalus transcriptome data revealed that one EqERV-u1 provirus on chromosome 29 is highly conserved and tissue-specific. This provirus exhibits the unusual type II genome structure.

P40

The emergence of pandemic retroviral infection in small ruminants

Maria Luisa Carrozza\(^1\), Anna-Maria Niewiadomska\(^2\), Maurizio Mazzini\(^2\), Mounir Abi-Said\(^3\), Joseph Hughes\(^5\), Stéphane Hué\(^4\), Robert Gifford\(^5\)

1) Scuola Normale Superiore, Pisa, Italy; 2) Aaron Diamond AIDS Research Center, New York City, NY, United States; 3) University of Pisa, Pisa, Italy; 4) Lebanese University, Al Faran, Lebanon; 5) MRC-University of Glasgow Centre for Virology, Glasgow, Great Britain, London School of Hygiene and Tropical Medicine, London, Great Britain

Correspondence: Robert Gifford

Retrovirology 2016, 13(Suppl 1): P40

Maria Luisa Carrozza, Anna-Maria Niewiadomska, Maurizio Mazzini, Mounir Abi-Said, Joseph Hughes, Stéphane Hué, Robert Gifford

Retrovirology 2016, 13(Suppl 1): P40
During the 20th century a confluence of socio-epidemiological fac-
tors combined to facilitate the emergence of retroviral pathogens in human beings. One influence of any such factors on the emergence of retroviral infections in non-human species has not been evaluated to the same extent. Small ruminant lentiviruses (SRLVs) cause chronic, persistent infections in populations of domest-
ic sheep (Ovis aries) and goats (Capra hircus) throughout the world. Here, we trace the origins and history the SRLV pandemic. To investi-
gate the ancient history of SRLVs, we performed a serology and DNA sequencing-based investigation of SRLVs diversity in the Fertile Cres-
cent region, where domestication of sheep and goats is thought to have originally occurred. Screening of 886 sheep and goats in Jordan and Lebanon revealed a relatively high prevalence of infection (~21 %) and an elevated level of viral genetic diversity compared to other regions of the world. Furthermore, using sequences obtained via this screen, we show that currently circulating SRLV genotypes reveal evi-
dence of ancient, inter-genotype recombination. These data support the hypothesis that SRLVs disseminated out of Western Asia during the early Neolithic period. However, by using phylogenetic and phylo-
geographic approaches to analyze SRLV sequences sampled from 600 distinct infections in 30 different countries, and spanning a period of 64 years, we show that pandemic spread of SRLVs did not occur until the 20th century. We integrate the findings of our analysis with histori-
cal and epidemiological evidence to propose a geographic sequence and timeline for the emergence of the SRLV pandemic. We identify the 20th century. We integrate the findings of our analysis with histori-
cal and epidemiological evidence to propose a geographic sequence and timeline for the emergence of the SRLV pandemic. We identify the
colonial expansion of European nations during the ‘Age of Imperialism’ (~1870–1950), and the associated development of novel agricultural systems, as having played a key role in enabling the global spread of SRLV infection.

P41
Near full-length genome (NFLG) characterisation of HIV-1 subtype B identified in South Africa
Adetayo Obasa, Graeme Jacobs, Susan Engelbrecht
Stellenbosch University, Department of Pathology, Cape Town, South Africa
Correspondence: Adetayo Obasa
Retrovirology 2016, 13(Suppl 1): P41

Background: The first reported cases of HIV-1 infection in South Africa occurred in 1982, which was initially spread by MSM. Almost 7 million people are living with HIV-1 infection in South Africa and 2 separate epidemics have been described. The majority of these infections are caused by HIV-1 subtype C, spread through heterosexual contact. The minor subtype B epidemic in South Africa was, in the past, transmitted via MSM. We recently described the detection of new BC URFs circulat-
ing in the country. This indicates that both epidemics are still co-cir-
culating in South Africa, but only 6 HIV-1 subtype B NFLG sequences have been previously characterised.

Methods: Ten samples were selected for NFLG amplification. Seven of the samples were obtained from the late 1980s, while the other three samples were from more recent infections. The NFLG amplification was performed using a PCR protocol designed to target two overlapping 5.5 kb fragments. There after samples were sequenced using conventional “Sanger” sequencing and next-generation sequencing (NGS) using the illumina MiSeq platform. The samples were subtyped using the REGA, COOMET, RIP and jPAMM online tools. Multiple sequence alignments were done using MAFFT and then codon aligned. Maxi-
mum likelihood phylogenetic trees were constructed in Geneious 9 and MEGA.

Results: The six 1980s samples were obtained from MSM in the Western Cape South Africa. The others obtained were from a 16 year old heterosexual teenager in Gauteng, one woman from the Eastern Cape and one woman from the Western Cape. Two of the subtype B NFLG sequences obtained cluster with reference subtype B strains from the 1980s. Three sequences cluster more closely with reference strains from the late 1990s. Another sequence was identified as a unique BC recombinant strain.

Discussion: We have detected and characterised HIV-1 subtype B strains circulating in South Africa since the early 1980s to 2000s. This subtype B epidemic crossed over into the heterosexual population, as indicated by infection of both children and women in the differ-
ent provinces of South Africa of concern is the characterisation of the newly described subtype BC URF strains. We will continue to monitor the HIV-1 subtype B epidemic in the heterosexual population in South Africa.

P42
Acquisition of Vpu-mediated tetherin antagonism by an HIV-1 group O strain
Katharina Mack1, Kathrin Starz1, Daniel Sauter1, Matthias Geyer2, Frederic Bibollet-Ruche3, Christina Stürzel3, Marie Leoiz4, Jean Christophe Plan-
tier3,5, Beatrice H. Hahn3, Frank Kirchhoff3
1Institute of Molecular Virology, Ulm, Germany; 2Max Planck Institute of Molecular Physiology, Department of Physical Biochemistry, Dort-
mund, Germany; 3University of Pennsylvania, Department of Medicine, Philadelphia, PA, United States; 4CHU Charles Nicolle, Laboratoire de Virologie, Rouen, France; 5Université de Rouen, EA 2656 GRAM, Rouen, France
Correspondence: Katharina Mack
Retrovirology 2016, 13(Suppl 1): P42

The restriction factor tetherin inhibits the release of enveloped viruses and imposes a barrier for efficient spread of HIV in the human popu-
lation. The direct precursors of HIV-1, SIVcpz and SIVgor, use their Nef protein to antagonize the tetherin orthologue of their respec-
tive hosts. Because of a five amino acid deletion in its cytoplasmic tail, human tetherin is resistant to SIV Nef. Overcoming this hurdle may have been a prerequisite for effective spread of HIV-1 in humans. Pandemic HIV-1 group M strains acquired Vpu-mediated anti-tetherin activity during human adaptation to overcome this hurdle. In con-
trast, HIV-1 group O Vpu do usually not counteract human tetherin. Instead, the accessory Nef protein of group O viruses evolved the abil-
ity to target a region adjacent to the deletion to antagonize tetherin in humans. Here, we demonstrate that the infectious molecular clone of HIV-1 O RBF206 utilizes both Nef and Vpu to antagonize human teth-
erin. Using FACS analyses and virus release assays, we show that the RBF206 Vpu is as efficient as the group M NL4-3 Vpu in reducing cell surface levels of human tetherin and promoting virus release. Unlike that of NL4-3, the RBF206 Vpu also efficiently antagonizes the second shorter isoform of humans tetherin that lack the first 12 amino acids. In the NL4-3 context, both Nef and Vpu reduce cell surface levels of human tetherin in infected PBMCs and promote virus release in 293T cells. Our data suggest that HIV-1 group O is still adapting to human tetherin and further illustrate the enormous capacity and plasticity of Vpu and Nef proteins in counteracting cellular defense mechanisms.

P43
The human endogenous retrovirus type K is involved in cancer stem cell markers expression and in human melanoma malignancy
Ayest Aragav-Dubiboba 1, Emanuela Balestrieri 1, Annalucia Serafinno 1, Ilaria Bucili 1, Chiara Cipriani 1, Corrado Spadafora 2, Paolo Sinibaldi-Vallebona 2, Claudia Matteucci 1
1University of Rome Tor Vergata, Department of Experimental Medicine and Surgery, Rome, Italy; 2National Research Council, Institute of Transla-
tional Pharmacology, Rome, Italy
Correspondence: Claudia Matteucci
Retrovirology 2016, 13(Suppl 1): P43

Increasingly scientific evidence underline retroelements and in par-
cular human endogenous retroviruses (HERVs) as important players of the disease. We previously demonstrated that HERV-K activation and viral particles production were associated to aggressiveness and immune evasion of metastatic melanoma cells. However, mela-

oma consists of heterogeneous cell populations whose biological