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ABSTRACT

Background/objectives: Increased endogenous glucose production is a hallmark of type 2 diabetes. Evidence from animal models has
suggested that a likely cause of this is increased mRNA expression of glucose 6-phosphatase and phosphoenolpyruvate carboxykinase (encoded
by G6PC, PCK1 and PCK2). But another contributing factor may be decreased liver glucokinase (encoded by GCK).
Methods: We examined expression of these enzymes in liver biopsies from 12 nondiabetic and 28 diabetic individuals. Diabetic patients were
further separated into those with HbA1c lower or higher than 7.0.
Results: In diabetic subjects with HbA1c> 7.0, we found that gluconeogenic enzymes were expressed normally, but GCK was suppressed more
than 60%. Moreover, HbA1c and fasting glucose were negatively correlated with GCK, but showed no correlation with G6PC, PCK1, or PCK2.
Conclusion: These findings suggest an underlying dysregulation of hepatic GCK expression during frank diabetes, which has implications for the
therapeutic use of glucokinase activators in this population.

� 2014 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

A characteristic feature of type 2 diabetes is increased endogenous
glucose production, largely due to increased hepatic glucose pro-
duction (HGP) [1e4]. Two rate-limiting enzymes of HGP are glucose 6-
phosphatase catalytic subunit (encoded by G6PC) and phosphoenol-
pyruvate carboxykinase (encoded by PCK1 and PCK2). As the
expression of these enzymes is suppressed by insulin, it has been
widely held that patients with type 2 diabetes (T2D) would have
increased expression of G6PC and PCK, due to hepatic insulin resis-
tance. However, it has been challenging to correlate expression of
these enzymes with diabetes or glycemia in humans [5,6].
Another determinant of hepatic glucose homeostasis is glucokinase
(encoded by GCK). G6PC and GCK act in opposition to regulate the
intracellular levels of free glucose; thus, the coordinated regulation of
these two enzymes ultimately determines the gradient and flux of
glucose into or out of the hepatocyte [7]. An increased ratio of G6PC/
GCK, as occurs during fasting, causes glucose efflux to the blood-
stream, whereas a decreased ratio causes increased influx.
Previous work has indicated that GCK activity is decreased in type 2
diabetes [8e12]. Although mutations in the GCK gene cause maturity
onset diabetes of the young type 2 (MODY2), GCK mutations are not
found in the etiology of classical T2D. Thus, the decrease in GCK
activity is likely due to transcriptional or posttranslational effects.
However, the expression of liver GCK during T2D has not yet been
established.
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In this study, we investigated the contribution of GCK, G6PC, and PCK
expression to glycemia in diabetes. We examined liver tissue from 40
obese subjects: 12 had normal glucose tolerance (NGT) and 28 had
type 2 diabetes.

2. MATERIALS AND METHODS

2.1. Subjects and liver biopsies
A liver biopsy was obtained during surgery in 28 type 2 diabetic and 12
nondiabetic subjects undergoing bariaric surgery. The liver samples
were collected in RNA-Later (Ambion Inc., Applied Biosystems, Austin,
TX, USA), and stored at�20 �C for total RNA extraction. Before surgery
in each subject, after an overnight (12e14 h) fast, peripheral blood
samples were obtained for determination of the routine blood chem-
istry plasma glucose, insulin and HbA1c concentrations. The diabetic
patients were asked to discontinue oral antidiabetic agents
(metformin � sulfonylureas) 48e72 h before the study.
The protocol was approved by the local ethics committee. The nature
and purpose of the study were carefully explained to all participants
before they provided written consent to participate.
2.2. Analytical procedures
Plasma glucose was measured by the glucose-oxidase technique
(Analox GM-9), plasma insulin by electro-chemiluminescence (on a
COBAS e411 instrument, Roche, Indianapolis, USA).
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2.3. Gene expression
RNA was extracted using Trizol (Life Technologies), cDNA was syn-
thesized using reverse transcriptase (Applied Biosystems), and
quantitative PCR was performed using SyBr Green (BioRad).

2.4. Statistical analyses
Data are given as mean � SEM or median and [interquartile range].
Group differences were analyzed by Kruskall-Wallis and Manne
Whitney tests. P value <0.05 was considered statistically significant.

3. RESULTS

3.1. Patient characteristics
The anthropomorphic and metabolic characteristics of the patients are
shown in Table 1. T2D patients for whom HbA1c was available were
further separated into two groups, those with HbA1c <7.0% (53 mmol/
mol), and those >7.0%. Diabetic patients were older than NGT sub-
jects, and the high HbA1c group had lower average BMI than the other
two groups.

3.2. Glucokinase expression is reduced in T2D
In T2D patients overall, we identified a 43% reduction in GCK
expression relative to NGT (0.57 � 0.09 vs 1.00 � 0.17, p ¼ 0.028).
However, we saw no change in expression of G6PC, PCK1, or PCK2
(data not shown). When diabetic subjects were subdivided into HbA1c
categories, we found that the high HbA1c group showed a substantial
reduction in GCK compared to the NGT or low HbA1c groups
(Figure 1A). There were no significant changes in G6PC, PCK1, or PCK2
expression among the three groups (Figure 1A). We also examined the
glucose 6-phosphate transporter (encoded by SLC37A4), which was
also not different between groups (Figure 1A).

3.3. Glucokinase expression is negatively correlated with HbA1c
Next we examined the association of gene expression with measures
of glycemia. We found that GCK was significantly negatively correlated
with HbA1c and fasting glucose (Figure 1BeC). In contrast, G6PC,
PCK1, PCK2, and SLC37A4 were not associated with HbA1c
(Figure 1DeG) or fasting glucose (data not shown). Overall, these data
suggest that progressive worsening of glycemia in type 2 diabetes is
significantly associated with suppression of GCK, but not with
expression of other gluconeogenic enzymes.

4. DISCUSSION

This study aimed to investigate contributors to the increase in HGP
during diabetes. Consistent with prior reports, we find that liver
Table 1 e Clinical characteristics.

NGT All T2D T2D
HbA1c <7.0%

T2D
HbA1c >7.0%

N (F/M) 12 (12/0) 28 (7/21) 7 (3/4) 17 (3/14)
Age (years) 39.5 � 2.5 51.2 � 1.3*** 48.4 � 1.9** 50.9 � 1.9**
BMI (kg/m2) 50.4 � 2.1 37.9 � 1.6*** 45.8 � 1.4 36.9 � 2.0***,x

FPG (mmol/L) 5.24 � 0.21 10.46 � 0.74*** 6.5 � 0.5* 11.9 � 0.95***,xx

FPI (pmol/L) 129.9 [45.5] 119.1 [95.6] 168.6 [89.3] 111.6 [108.6]
HbA1C (%)

a 5.8 � 0.2 8.4 � 0.37** 6.3 � 0.2* 9.3 � 0.3**,xxx

*P < 0.05, **P < 0.01, ***P < 0.001 versus NGT and xP < 0.05, xxP < 0.01,
xxxP < 0.001 vs T2D HbA1c<7.0%, by ManneWhitney test.
a Available for 5 out of 12 NGT subjects and 24 out of 28 T2D patients.

MOLECULAR METABOLISM 4 (2015) 222e226 � 2014 The Authors. Published by Elsevier GmbH. This is an op
www.molecularmetabolism.com
expression of gluconeogenic enzymes alone cannot explain this
phenotype [5,6]. On the other hand, our data indicate that suppression
of hepatic GCK in diabetes patients: (i) explains the decreased GCK
activity observed in previous studies [8e12], and (ii) contributes to
hyperglycemia quantitatively. The fact that defective hepatic GCK is
sufficient to impair glycogen synthesis and increase gluconeogenesis
was previously established in studies of liver metabolism in MODY2
patients [13]. Moreover, it has been shown that restoration of hepatic
GCK activity in Zucker diabetic fatty rats causes normalization of
plasma glucose and suppression of endogenous glucose production
[14].
GCK is regulated by posttranslational and transcriptional mechanisms
[7]. Posttranslational regulation by glucose occurs through the
glucokinase regulatory protein, which binds to GCK and causes its
nuclear sequestration and protein stabilization. Dissociation of the two
proteins occurs at high glucose concentrations, causing cytoplasmic
translocation and accelerated degradation of GCK [7,15]. One of the
limitations of our study was the lack of sufficient tissue to perform
immunoblots. However, we found compelling evidence that frank
diabetes is associated with a disruption in the transcriptional control
of GCK, which is carried out by insulin [16]. Major mediators of in-
sulin’s effect on GCK are the FOXO transcription factors. FOXOs are
known for their role in promoting HGP during fasting [17]. Under
normal conditions, FOXOs are inactivated by insulin, through AKT-
mediated phosphorylation and nuclear exclusion. Thus, a widely
held explanation for excessive glucose production during diabetes is
inappropriate activation of the hepatic FOXO pathway, due to insulin
resistance. Two critical aspects of how FOXO promotes glucose
production are by promoting G6PC [17] and suppressing GCK [18e
21]. This suggests that activated FOXOs may be responsible for
excessive GCK suppression in diabetes. Consistent with this possi-
bility, FOXO target IGFBP1 was significantly elevated in the high HbA1c
patients (data not shown). How, then, can we reconcile the fact that
G6PC was not also elevated? One possible explanation is that FOXOs’
effect on GCK is more potent than its effect on G6PC, as we have
previously observed in mice [21]. It is also possible that post-
translational modifications of FOXO that are induced by hyperglyce-
mia, such as acetylation, affect some targets more than others
[22,23].
In addition to its role in glucose homeostasis, hepatic GCK also plays
a critical role in promoting de novo lipogenesis (DNL), a fact that has
hindered the development of glucokinase activators as diabetes
therapy [24]. Indeed, previous work has shown that liver GCK
expression is positively associated with liver triglyceride content and
a marker of DNL in humans [25]. Based on these findings, sup-
pression of GCK e as we observed in our severely diabetic patients
e might be expected to reduce lipogenic flux. This may seem
paradoxical, as diabetic patients typically demonstrate hyper-
triglyceridemia. However, we observed no correlation of GCK to
plasma triglyceride levels in our subjects (data not shown). A po-
tential explanation is that DNL contributes to only a portion of
circulating triglyceride levels [26e28], the major fraction originating
from reesterification of free fatty acids; the latter substrate circulates
in increased amounts in type 2 diabetic patients due to insulin
resistance of lipolysis [29,30].
There has been a long-standing interest in developing antidiabetic
glucokinase activators [24]. Given the narrow therapeutic window
of these molecules, it may be important to increase our under-
standing of GCK dysregulation in the progression of T2D. This may
be particularly valuable in designing individualized therapeutic
regimens [4].
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Figure 1: Liver biopsies. (A) Gene expression in subjects with normal glucose tolerance (NGT) (n ¼ 12) or type 2 diabetes with HbA1c < 7.0% (n ¼ 7) or HbA1c > 7.0% (n ¼ 17).
**p < 0.01 vs NGT and xxp < 0.01 vs T2D HbA1c < 7.0%, by ManneWhitney test. (BeG) Correlations between gene expression and HbA1c or fasting glucose levels.
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