Thermodynamic scaling of relaxation: insights from anharmonic elasticity

S. Bernini\(^\dagger\), F. Puosi\(^\S\), D. Leporini\(^\ddagger\)

\(^1\) Dipartimento di Fisica “Enrico Fermi”, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
\(^2\) Dipartimento di Fisica “Enrico Fermi”, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy and IPCF-CNR, UOS Pisa, Italy

E-mail: dino.leporini@unipi.it

Abstract. We investigate by Molecular Dynamics simulations of a molecular liquid the thermodynamic scaling (TS) of the structural relaxation time \(\tau_\alpha\) in terms of the quantity \(T\rho^{\gamma_{ts}}\) where \(T\) and \(\rho\) are the temperature and the density, respectively. The liquid does not exhibit strong virial-energy correlations. We propose how to evaluate both the characteristic exponent \(\gamma_{ts}\) and the TS master curve by resorting to experimentally accessible quantities characterising the anharmonic elasticity and no details about the microscopic interactions. In particular, we express the TS characteristic exponent \(\gamma_{ts}\) in terms of the lattice Grüneisen parameter \(\gamma_L\) and the isochoric anharmonicity \(\delta_L\). An analytic expression of the TS master curve of \(\tau_\alpha\) with \(\delta_L\) as the key adjustable parameter is found. The comparison with the experimental TS master curves and the isochoric fragilities of thirty-four glassformers is satisfying. In a few cases, where thermodynamic data are available, we tested against the available thermodynamic data: i) the predicted characteristic exponent \(\gamma_{ts}\), ii) the isochoric anharmonicity \(\delta_L\), as drawn by the best-fit of TS of the structural relaxation. A linear relation between the isochoric fragility and the isochoric anharmonicity \(\delta_L\) is found and favourably compared to the experiments with no adjustable parameters. A relation between the increase of the isochoric vibrational heat capacity due to anharmonicity and the isochoric fragility is derived.

PACS numbers: 64.70.Q-, 62.10.+s, 07.05.Tp

Keywords: supercooled liquids, elasticity, relaxation, molecular-dynamics simulations

Submitted to: J. Phys.: Condens. Matter

\(^\dagger\) Present address: Jawaharlal Nehru Center for Advanced Scientific Research, Theoretical Sciences Unit, Jakkur Campus, Bengaluru 560064, India.
\(^\S\) Present address: Sciences et Ingénierie des Matériaux et Procédés (SIMaP), UMR CNRS 5266, Grenoble INP, UGA 1130 Rue de la Piscine, BP 75, 38402 Saint-Martin d’Hères Cedex, France
1. Introduction

Temperature-density scaling [1, 2, 3, 4, 5, 6, 7], also known as “thermodynamic scaling” (TS), is an impressive advance in the understanding of the progressive solidification of a supercooled liquid on approaching the glass transition (GT) [8, 9]. TS states that the dependence of the relaxation and the transport of liquids and polymeric systems on the temperature (T) and the density (ρ) may be considered on an equal footing by the scaling quantity $T \rho^{-\gamma_{ts}}$, leading to a material-dependent master curve [1, 2, 3, 4, 5, 6, 7]:

$$\log \tau_\alpha, \log \eta = F_{TS}(T \rho^{-\gamma_{ts}})$$

(1)

where τ_α and η are the structural relaxation time and the viscosity, respectively. In Eq.1 both the form of the master curve F_{TS} and the exponent γ_{ts} are system-specific. TS has been usually examined for processes involving very long time scales with a few exceptions [10, 11, 12, 13]. It applies to van der Waals liquids, polymers, ionic liquids [5, 6, 7, 14, 15, 16], liquid crystals [17] and plastic crystals [18] but not to all of the hydrogen-bonded liquids since the equilibrium structure of the liquid and its degree of hydrogen bonding are expected to change when temperature and pressure are changed [19].

TS is attractive for encompassing the changes of both temperature and density so that it represents a severe test of theory and models of the structural arrest occurring at the glass transition (GT). As to the microscopic origin, one hypothesis is that it is strictly related to the intermolecular potential. Indeed, for a liquid having a pairwise additive intermolecular potential described by an inverse power law (IPL) $v(r) \propto r^{-n}$, all the reduced thermodynamic and dynamic properties can be expressed in terms of the variable $\rho^{n/3}/T$ [20]. Therefore, the conformity of real materials to TS may result from their intermolecular potential being approximated by an IPL, at least in some definite range of intermolecular distance [21]. On a more general ground, Dyre and coworkers proved that liquids with strong correlation of the fluctuations of the virial pressure (W) and the potential energy (U), the so called strongly correlating liquids, exhibit TS. In this scheme the quantity $3\gamma_{ts}$ is interpreted as the exponent of an effective IPL potential [22, 23, 24]. Even if sufficient, strong virial-energy correlations are not necessary for TS. Indeed, TS is observed in experiments concerning a few hydrogen-bonded liquids (e.g. glycerol and sorbitol) [5] and molecular-dynamics (MD) simulations of supercooled metallic liquids [25] and polymers [13]. All these systems are not strongly correlating liquids since glassformers with competing interactions have poor virial-energy correlations [26, 27]. In particular, polymers exhibit competition between the distinct bonding and non-bonding interactions [13, 28, 29].

Derivations of the TS master curve of the structural relaxation have been reported [13, 30, 31, 32, 33]. An approach considers the structural relaxation as thermally activated with a density dependent activation energy $\tau_\alpha(T, \rho) \sim \exp[E_A(\rho)/T]$ [30]. Assuming $E_A(\rho) \propto \rho^{\gamma_{ts}}$, TS is recovered. However, such a picture is in contrast with the fact τ_α is not an exponential function of $T \rho^{-\gamma_{ts}}$ [5]. Casalini et al. used the entropy model of Avramov [34] to derive an expression of the relaxation time in terms of the pressure and the temperature [31, 32]. It accurately fits the experimental data of several glass-forming liquids and polymers with three adjustable parameters, having taken γ_{ts} from the experiment.
Another expression, with the same number of adjustable parameters, based on an entropic model recently formulated by Mauro et al. [35] has been investigated [33]. Very recently, consideration of the TS scaling of the fast mobility, namely the mean square amplitude of the rattling motion of a particle trapped in the cage of the first neighbours, yields a TS master curve of the structural relaxation with two adjustable parameters [13].

Viscous liquids close to GT manifest transient elasticity at short times followed by flow at longer times. As a way to reveal the transitory elastic response in a liquid, a sudden, homogeneous, strain step γ_{xy} is applied and the relaxation of the shear stress $\sigma_{xy}(t)$ is followed in time [36]. It is observed that the time-dependent elastic modulus $G(t) = \sigma_{xy}(t)/\gamma_{xy}$ reaches a plateau G_p, persisting up to the structural relaxation time τ_α [37]. The intermediate-time elastic modulus G_p of polymers has the remarkable property, first suggested by Tobolsky in 1960 [38], that it is largely contributed by non-bonding interactions with minor role by stiffer bonds, a feature confirmed by MD simulations [39]. Microscopically, transient elasticity and flow correspond to the temporary trapping of a particle in the cage of the closest neighbours and the subsequent escape process, respectively. The presence of rattling and escape processes in liquids and relationships between them were first proposed by Maxwell [40] and Frenkel [41, 42, 43], see a recent review [44], and later by Tobolsky et al. deriving relations between viscosity and shear modulus [45].

In a solid-like approach of the vibrational properties of a liquid a central role is played by the anharmonicity. Due to anharmonicity, the phonon frequencies depend on the volume and the temperature, as well as the vibration amplitude [44, 46, 47, 48, 49, 50]. Anharmonicity plays an important role in glass formation. Indeed, there is a known correlation between the anharmonicity and fragility [51, 52, 53, 54, 55] and it is also shown that the anharmonicity contributes to the fast relaxation [53]. The role of vibrational anharmonicity as key ingredient of the relaxation has been noted [54, 56, 57, 58]. In the framework of TS, anharmonicity was also taken into consideration. Some works tried to derive an expression for the TS master curve and explain the meaning of the material dependent exponent basing on the entropy model, the difference between isobaric and isochoric heat capacity and the thermodynamic definition of the Grüneisen parameter γ_T [31], although the identification of the scaling exponent γ_{ts} with the Grüneisen constant is not trivial [59]. For simple liquids it was concluded that $\gamma_{ts} \lesssim 2\gamma_T$ [60].

The presence of elastic modes in supercooled liquids has been considered since long time ago. According to Frenkel [41, 42, 43], the only difference between a liquid and a solid glass is that the liquid does not support all transverse modes as the solid, but only those with frequency $\omega > 1/\tau_\alpha$. In the spirit of the Debye theory the number N_t of transverse modes with $\omega > 1/\tau_\alpha$ in a system with N particles is $N_t = 2N[1 - (\omega_D\tau_\alpha)^{-3}]$, where $\omega_D \sim 10^{13}$ rad/s is the Debye frequency [44]. Since in a viscous liquid the relaxation time τ_α fairly exceeds the picosecond timescale, the inequality $\omega_D\tau_\alpha \gg 1$ follows and $N_t \simeq 2N$, i.e. the number of transverse modes is essentially the same that exist in a solid glass. Consistent with Frenkel’s viewpoint, extended, fast modes have been indicated in several studies concerning liquids [61, 62, 63, 64, 65, 66, 67, 68]. Even in the presence of local order [69, 70], the major role of the extended elastic modes in setting the mean square amplitude of the rattling motion...
of a trapped particle in the cage of the neighbours has been revealed [71, 72].

The prominent role of elasticity in the relaxation process is investigated by the so-called elastic models, see refs. [73, 74] for excellent reviews and refs. [75, 76, 77, 55, 78, 79, 80, 44, 81, 82, 83, 84, 85, 86, 37, 87, 39, 88] for recent related papers. In particular, both MD simulations [37, 87] and extended comparison with experiments [87] suggest strong correlation between the structural relaxation and transient elasticity. The related master curve has the form [37, 87]:

\[
\log \tau_\alpha = \tilde{\Upsilon}_0 + \tilde{\Upsilon}_1 X + \tilde{\Upsilon}_2 X^2
\]

where

\[
X = \frac{G_p T_g}{G_{pg} T}
\]

\(G_{pg}\) is the modulus at the glass transition, \(\tilde{\Upsilon}_1 = 3.4(2)\), \(\tilde{\Upsilon}_2 = 10.3(8)\) are suitable universal constants independent of the kinetic fragility, and \(\tilde{\Upsilon}_0 = 2 - \tilde{\Upsilon}_1 - \tilde{\Upsilon}_2\) to comply with the usual definition \(\tau_\alpha = 100\ s\) at the glass transition. Eq.2 has been validated in the whole supercooled region by MD simulations on polymers [37] and ionic liquids [87], as well as comparison with the experimental data concerning several glassformers in a wide fragility range \((20 \leq m \leq 115)\) including van der Waals and hydrogen-bonded liquids, metallic glasses and the strong glassformer silica (the latter over about fifteen decades of viscosity with no adjustable parameters) [87]. Eq.2 follows from an elastic cavity model [87], relating the linear elasticity with the fast mobility, and consideration of the universal master curve between the latter and the structural relaxation [89, 90, 91, 92, 93, 94, 95, 12, 96, 97, 71, 67].

Building on the elastic scaling of the structural relaxation, Eq. 2, we interpret TS as related to the temperature/density dependence of the shear elasticity due to anharmonicity. The study examines the matter by Molecular-Dynamics (MD) simulations of a model molecular liquid and compares the MD findings with the available experimental data. The model under study exhibits limited changes of the local structures in virtue of the high packing of the investigated states [69, 71, 98]. Notably, our model liquid does not manifest strong virial-energy correlations [24], as previously noted [28, 13] and recently reported for a very similar model [29].

The paper is organized as follows: Sec.2 illustrates basic results about anharmonic elasticity, Sec.3 gives details about the MD simulations, Sec.4 discusses the results of the MD simulations and the comparison with the experimental data. Finally, Sec.5 summarizes the conclusions.
2. Anharmonic elasticity

2.1. General aspects

The vibrational frequencies in harmonic solids do not depend on either the density or the temperature since the normal frequencies have no dependence on volume or strain \[46\]. In addition, purely harmonic solids do not exhibit thermal expansion and temperature dependence of the elasticity \[47\]. Real solids are never purely harmonic since the general conditions to ensure the absence of terms beyond the second order in the displacements from the lattice potential energy are rather stringent \[48\].

To deal with anharmonic response, we consider vibrational modes with frequency \(\nu_i \). Under infinitesimal changes of temperature and density one has:

\[
\frac{d \ln \nu_i}{d \ln \rho} - \frac{\delta_i d \ln T}{d \ln \rho} = \gamma_i
\]

where \(\gamma_i \) is the isothermal Grüneisen parameter \[99, 49\]:

\[
\gamma_i = -\frac{\partial \ln \nu_i}{\partial \ln V} \bigg|_T
\]

and \(\delta_i \) is defined as:

\[
\delta_i = -\frac{\partial \ln \nu_i}{\partial \ln T} \bigg|_V
\]

The parameter \(\delta_i \) accounts for the isochoric changes of frequency and is recast as:

\[
\delta_i = -Ta_i
\]

where the (intrinsic) isochoric mode anharmonicity \(a_i \) is defined as \[100\]:

\[
a_i = \frac{\partial \ln \nu_i}{\partial T} \bigg|_V
\]

It can be shown that \[100, 101\]:

\[
a_i = \alpha(\gamma_i - \gamma_{iP})
\]

where \(\alpha \) is the thermal expansion coefficient

\[
\alpha = -\frac{\partial \ln \rho}{\partial T} \bigg|_P
\]

and the isobaric Grüneisen parameter of the i-th mode is defined as:

\[
\gamma_{iP} = -\frac{\partial \ln \nu_i}{\partial \ln V} \bigg|_P
\]

Because the measured isobaric parameters are in general higher than the isothermal ones, the \(a_i \) parameters are usually negative so that \(\delta_i > 0 \), namely in an isochoric experiment the mode frequency often decreases with increasing temperature.

Eq.4 incorporates two distinct kind of anharmonicity, the extrinsic anharmonicity, i.e., volume-dependent properties such as the Grüneisen parameter and the related thermal expansion, as well as the intrinsic anharmonicity yielding temperature-dependence at constant volume (corresponding to explicit temperature dependence of the vibrational frequencies) \[102\]. Extrinsic anharmonicity is usually managed by quasi-harmonic approximation (QHA)
Thermodynamic scaling

In the QHA approximation, it is assumed that the solid behaves like a harmonic solid at a given volume, i.e. phonons are well-defined, but the phonon frequencies depend on volume. The frequencies do not depend explicitly on temperature, so that heating at constant volume does not change them. QHA yields $\delta_i = 0$, i.e. $\gamma_i = \gamma_{iP}$ according to Eq. 7 and Eq. 9 [100]. Like in the harmonic approximation, the energy needed to remove an atom from the crystal is infinite in QHA - therefore, diffusion and melting cannot be explained within this approximation [50]. QHA breaks down at high temperatures where phonon-phonon interactions and explicit temperature dependence of the vibrational frequencies become prominent.

2.2. Lattice Grüneisen parameter γ_L

Our major interest will be limited to long-wavelength acoustic modes. We will not make distinction between transverse and longitudinal modes, i.e. all the acoustic frequencies are taken with the same volume dependence and then equal Grüneisen parameter. In the Debye model [99] this assumption results in a volume-independent Poisson ratio [46]. The Grüneisen parameter restricted to the acoustic modes is usually referred to as lattice Grüneisen parameter [104]. To make it explicit, henceforth, we set the subscript $i = L$ from Eqs. 4 through Eq. 11. The lattice Grüneisen parameter γ_L is dominated by the intermolecular forces [105, 106, 107]. In contrast, the usual thermodynamic Grüneisen parameter γ_T is contributed by both intra- and inter-molecular interactions [99]. For metals and ionic crystals $\gamma_T \approx \gamma_L$ [104]. However, for molecular systems a large difference between these two Grüneisen parameters can exist. This is due to the very different values of the intra- and inter-molecular Grüneisen parameters and their relative weight at different temperatures. Normally, intrachain covalent bonds vibrations (high frequency, short wave length) have very low values of the Grüneisen parameter, while interchain anharmonic vibrations involving van der Waals bonds (low frequency, long wave length) have very high values of the Grüneisen parameter. γ_L is affected by the local order [106] and is a weak function of temperature [107, 104, 108] with no (see poly(chlorotrifluoroethylene) in Ref. [104]) or small [109] step across the glass transition, with the notable exception of poly(vinyl acetate) [108]. In contrast, γ_T is strongly temperature dependent. At low temperature, where only acoustic inter-molecular modes are...

Figure 1. Isochoric-anharmonicity parameter of glassy PMMA and PS [103].
excited, \(\gamma_T \sim \gamma_L \), whereas \(\gamma_T \ll \gamma_L \) at high temperature where optical, quasi-harmonic vibrations dominate [110]. The ratio \(\gamma_L / \gamma_T \) is related to the ratio of the total heat capacity at constant volume \(C_V \) and the intermolecular contribution \(C_{\text{inter}} \) [105, 106, 104]:

\[
\frac{\gamma_L}{\gamma_T} = \frac{C_V}{C_{\text{inter}}} \tag{12}
\]

At high temperature \(\gamma_T \sim 1 \) and \(C_{\text{inter}} / C_V \) is of the order of \(10^{-20} \% \), so that \(\gamma_L / \gamma_T \sim 5 \) to 10, e.g. \(\gamma_L = 4.0 \) for poly(methylmethacrylate) and \(\gamma_L = 9.0 \) for isotactic poly(propylene) [104].

2.3. Isochoric anharmonicity \(\delta_L \)

The isochoric anharmonicity parameter \(\delta_L \), defined by Eq.6 with \(i = L \), if treated perturbatively, is mainly affected by cubic and quartic anharmonicity associated to three-phonon and four-phonon processes, respectively [111]. \(\delta_L \) changes mildly across the glassy regime of several polymeric glassformers [103], see Fig.1 for two selected examples. Fig.1 suggests that under isochoric conditions \(\nu \sim T^{-\delta_L} \) with nearly constant \(\delta_L \). We may figure out that the vibrational mode with frequency \(\nu \) follows by a suitable effective confining potential \(u_{\text{eff}}(q) \) where \(q \) is a generalized coordinate. Assuming \(u_{\text{eff}}(q) \propto q^{\beta} \) with \(\beta > 0 \) yields \(\nu \propto E^{1/2-1/\beta} \) where \(E \) is the associated total energy [112]. With \(E \sim \langle E \rangle \sim T \) one obtains:

\[
\delta_L = \frac{1}{\beta} - \frac{1}{2} \tag{13}
\]

For harmonic potential \((\beta = 2) \), \(\delta_L = 0 \) as expected, whereas \(\delta_L > 0 \) implies \(\beta < 2 \). In particular, with \(\delta_L \sim 0.36 \), see Fig.1, one has \(\beta \sim 1.16 \) suggesting moderate anharmonicity in the glassy phase of polymers.

For molecular liquids the parameter \(\delta_L \) has been derived as [101]:

\[
\delta_L = 1 - \alpha T - \frac{1}{n} \tag{14}
\]

Eq.14 predicts \(\delta_L < 1 \) and relies on the modified Van der Waals equation of state due to Flory which deals with both polymers [113] and liquids [114]. The positive parameter \(n \) is the ratio between the inner pressure \(P_i \) and the cohesive energy density c.e.d. [115, 116].

In a solid-state approach the isochoric anharmonicity parameter \(\delta_L \) may be related to the constant volume heat capacity. To show that, we start from the expression [117]:

\[
C_V^{\text{vib}} = 3Nk_B \left[1 - \frac{2T}{\bar{\nu}} \frac{d\bar{\nu}}{dT} + \frac{T^2}{\bar{\nu}^2} \left(\frac{d\bar{\nu}}{dT} \right)^2 - \frac{T^2}{\bar{\nu}} \frac{d^2\bar{\nu}}{dT^2} \right] \tag{15}
\]

where \(k_B \) and \(\bar{\nu} \) are the Boltzmann constant and the geometrically averaged phonon frequency, respectively and the derivatives are taken at constant volume. Eq.15 is derived by the free energy of a harmonic solid in the high-temperature approximation and takes into account the isochoric frequency change with the temperature due to the intrinsic anharmonicity. When extended to viscous liquids, Eq.15 represents the total heat capacity, i.e. \(C_V \simeq C_V^{\text{vib}} \), if the configurational contribution \(C_V^{\text{conf}} \) is negligible [117, 44]. Reminding the relation \(C_V = T \partial S / \partial T |_V \), support to the inequality \(C_V^{\text{conf}} \ll C_V^{\text{vib}} \) is offered by liquid silica where
the configurational entropy is much smaller than the vibrational entropy \([118]\). By plugging Eq. 6 with \(i = L\) in Eq.15 and neglecting the temperature dependence of \(\delta_L\) we get:

\[
C_{V}^{\text{vib}} = 3Nk_B(1 + \delta_L)
\]

(16)

The breakdown of the Dulong-Petit law which is seen in Eq.16 is a known effect of the anharmonicity \([44]\). An alternative treatment of the isochoric anharmonicity derives the relation \(d \ln \bar{\nu}/dT\big|_V = -\alpha/2(q - 1)\), where \(q\) is the logarithmic derivative of the average Grüneisen parameter with respect to volume, and recasts Eq. 15 as \([119]\):

\[
C_{V}^{\text{vib}} = 3Nk_B[1 + \alpha(q - 1)T]
\]

(17)

In the present context \(T \simeq T_g\). Referring to Eq. 7 and Eq. 9, we see that Eq. 16 and Eq. 17 yield similar results provided that \(\gamma_{LP} \simeq \gamma_L + q - 1\). Usually \(q \sim 2\) \([119]\). Further comparison between Eq.16 and Eq.17 is deferred to Sec.4.4.3.

2.4. Anharmonic modulus

We now restrict Eq. 4 to acoustic shear waves and assume \(\gamma_L\) and \(\delta_L\) as constant quantities. Integration of Eq.4 and consideration of the dispersion law \(\omega = (G_p/\rho)^{1/2}k\) yields the temperature-density scaling of the shear modulus \(G_p\):

\[
G_p = A \rho^{2\gamma_L + 1/3} T^{2\delta_L}
\]

(18)

where \(A\) is a constant. Under isothermal conditions Eq.18 is an alternative form of the so-called Birch’s law relating the velocity of elastic waves to density \([120]\). Under isobaric conditions Eq.10 and Eq.18 yield

\[
G_p(T) \sim \exp \left[-C \left(\frac{T}{T_g}\right)\right]
\]

(19)

where, in the QHA spirit, the weak power-law dependence due to the isochoric anharmonicity has been neglected. The parameter \(C\) is given by

\[
C = (2\gamma_L + 1/3)\alpha T_g
\]

(20)

All the quantities in the right hand side of Eq.20 are attainable by experiments. For polymers \(\alpha T_g \simeq 0.164\) \([121]\) and \(\gamma_L\) is in the range \(4 - 10\) \([104, 107]\) so that \(1.4 \lesssim C \lesssim 3.3\). The exponential decay of the elastic modulus with temperature, Eq.19, has been considered in supercooled metallic melts \([122, 86]\). In particular, Krausser et al find \(C = (2 + \lambda)\alpha T_g\) \([86]\) where \(\lambda\), the steepness of the short-ranged repulsion, is a fitting parameter, whereas Harmon et al considered \(C\) as fitting parameter \([122]\). In supercooled metallic melts \(C\) is found in the range \(0.6 - 3.3\) \([86]\) as well as \(C = 1.29\) \([122]\). The fact that the parameter \(C\) controlling the temperature influence on the elastic modulus under isobaric conditions is quite similar in polymers and supercooled metallic melts suggests similarities between their extrinsic anharmonicities. Finally, we note that the lattice Grüneisen parameter \(\gamma_L\) is also affected by the steepness of the short-ranged repulsion \([106]\), so that Eq.20 is consistent with the findings of Krausser et al \([86]\).

Thermodynamic scaling
3. Methods

A coarse-grained polymer model of a melt of 667 linear, unentangled chains with three monomers per chain is considered. The chains are fully-flexible, i.e. bond-bending and bond-torsions potentials are not present. Non-bonded monomers at distance \(r \) belonging to the same or different chains interact via the truncated Lennard-Jones (LJ) potential:

\[
U_{LJ}(r) = \begin{cases}
\varepsilon \left[\left(\frac{\sigma^*}{r} \right)^{12} - 2 \left(\frac{\sigma^*}{r} \right)^{6} \right] + U_{\text{cut}} & \text{if } r \leq r_{\text{cut}} \\
0 & \text{otherwise}
\end{cases}
\]

where \(\sigma^* = \sqrt{2} \sigma \) is the position of the potential minimum with depth \(\varepsilon \), and the value of the constant \(U_{\text{cut}} \) is chosen to ensure \(U_{LJ}(r) = 0 \) at \(r = r_{\text{cut}} = 2.5 \sigma \). The bonded monomers interact by a stiff potential \(U_b \) which is the sum of the LJ potential and the FENE (finitely extended nonlinear elastic) potential \[123\]:

\[
U_{FENE}(r) = -\frac{1}{2} k R_0^2 \ln \left(1 - \frac{r^2}{R_0^2} \right)
\]

\(k \) measures the magnitude of the interaction and \(R_0 \) is the maximum elongation distance. The parameters \(k \) and \(R_0 \) have been set to \(30 \varepsilon / \sigma^2 \) and \(1.5 \sigma \) respectively \[124\]. The resulting bond length is \(r_b = 0.97 \sigma \) within a few percent. All quantities are in reduced units \[125\]: length in units of \(\sigma \), temperature in units of \(\varepsilon / k_B \) and time \(\tau_{MD} \) in units of \(\sigma \sqrt{m/\varepsilon} \) where \(m \) is the monomer mass. We set \(m = k_B = 1 \) Periodic boundary conditions are used. \(NVT \) ensemble (constant number of particles, volume and temperature) has been used for equilibration runs, while \(NVE \) ensemble (constant number of particles, volume and energy) has been used for production runs for a given state point. The simulations were carried out using LAMMPS molecular dynamics software (http://lammps.sandia.gov) \[126\]. Several states with different number density \(\rho \) and temperature \(T \) are studied. Different time steps are chosen in order to ensure an energy drift of about 1 % in NVE runs. In particular, the following \([\rho; T_1, T_2, ...]\) pairs are simulated with time step \(3 \times 10^{-3} \): \([0.98; 0.5], [0.984; 0.3, 0.31, 0.32, 0.33, 0.34, 0.36, 0.4, 0.5, 0.6], [0.995; 0.6], [1; 0.4, 0.7], [1.015; 0.6], [1.020; 0.5, 0.7], [1.033; 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.8, 0.9], [1.035; 0.6], [1.039; 0.5], [1.04; 0.7], [1.05; 0.5], [1.052; 0.5], [1.055; 0.6], [1.056; 0.7], [1.071; 0.7], [1.075; 0.6], [1.086; 0.6, 0.63, 0.7, 0.75, 0.8, 0.9, 1], [1.09; 0.7, 0.75, 0.8], [1.095; 0.6], [1.1; 0.95]. The following \([\rho; T_1, T_2, ...]\) pairs are simulated with time step \(1 \times 10^{-3} \): \([1; 1, 1.2, 1.4, 1.6], [1.05; 1.3, 2], [1.025; 1.44, 2.02, 2.6]\).

For each state we averaged over at least sixteen different runs. The equilibration procedure involves runs with time lengths \(\Delta t_{eq} \) exceeding at least three times the average reorientation time of the end-end vector \[127\].

4. Results and discussion

4.1. General Aspects

4.1.1. Mobility, relaxation and elastic scaling

We define the monomer displacement in a time \(t \) as:

\[
\Delta r_i(t) = r_i(t) - r_i(0)
\]
where $\mathbf{r}_i(t)$ is the vector position of the i-th monomer at time t. The mean square displacement (MSD) $\langle r^2(t) \rangle$ is expressed as:

$$\langle r^2(t) \rangle = \left\langle \frac{1}{N} \sum_{i=1}^{N} \| \Delta \mathbf{r}_i(t) \|^2 \right\rangle$$

(24)

where brackets denote the ensemble average and N is the total number of monomers. In addition to MSD the incoherent, self part of the intermediate scattering function (ISF) is also considered:

$$F_s(q,t) = \left\langle \frac{1}{N} \sum_{j=1}^{N} e^{i q \cdot \Delta \mathbf{r}_j(t)} \right\rangle$$

(25)

ISF was evaluated at $q = q_{max}$, the maximum of the static structure factor (7.06 $\leq q_{max} \leq$ 7.35). Fig.2 shows illustrative examples of the monomer MSD (top) and ISF (middle). At very short times (ballistic regime) MSD increases and ISF starts to decay. At later times, when the temperature is lowered and/or the density is increased, a quasi-plateau region occurs in both MSD and ISF, and an inflection point is seen at $t^* \simeq 1.023$ in the log-log MSD plot, see Fig.2 (top). t^* is state-independent in the present model [89]. The inflection point signals
the end of the exploration of the cage by the trapped particle and the subsequent early escapes. We define the fast mobility of the monomers of the linear chains as the MSD at t^* [89]:

$$\langle u^2 \rangle = \langle r^2(t = t^*) \rangle$$

The fast mobility is the mean square amplitude of the position fluctuations of the tagged particle in the cage of the neighbours. The inflection point in the log-log MSD plot disappears if $\langle u^2 \rangle > \langle u^2_m \rangle = 0.125$ signalling the absence of significant cage effect by the neighbours of the tagged particle. The structural relaxation time τ_α, the average escape time from the cage, is defined by the relation $F_s(q_{\text{max}}, \tau_\alpha) = e^{-1}$.

The off-diagonal xy component of the stress tensor is defined by [37]:

$$\sigma_{xy} = \frac{1}{V} \left[\sum_{i=1}^{N} \left(m v_{x,i} v_{y,i} + \frac{1}{2} \sum_{j \neq i} r_{x,ij} F_{y,ij} \right) \right]$$

where $V = N/\rho$ is the volume of the system, $v_{\alpha,i}$ is the α component of the velocity of the i-th monomer, $r_{\alpha,ij}$ is the α component of the vector joining the i-th monomer with the j-th one and $F_{\alpha,ij}$ is the α component of the force between the i-th monomer and the j-th one. The shear stress correlation function is defined by [128]:

$$G_{xy}(t) = \frac{V}{k_B T} \langle \sigma_{xy}(t_0) \sigma_{xy}(t_0 + t) \rangle$$

where the brackets $\langle \ldots \rangle$ denote the canonical average. The average value of $G_{xy}(t)$, $G_{yz}(t)$ and $G_{zx}(t)$ will be denoted as $G(t)$. Fig.2 (bottom) plots the modulus $G(t)$. At short times ($t \lesssim 0.5$) $G(t)$ is characterized by oscillations due to the bond length fluctuations [39]. For longer times ($t \gtrsim 0.5$) the oscillations of $G(t)$ vanish, force equilibration takes place [37], and the modulus $G(t)$ approaches a plateau-like region. The persistence of the elastic response is due to the cage effect, namely the trapping period of each monomer in the cage of the first neighbours which is terminated by the structural relaxation time τ_α [129]. Beyond τ_α, $G(t)$ relaxes according to the polymer viscoelasticity. We are not interested here in this long-time
Thermodynamic scaling

Figure 4. Correlation plot of the virial and the configurational energy per particle from MD simulations of states with same density and different temperatures. All the quantities are in reduced MD units.

decay which has been addressed by other studies [130]. We define the finite frequency shear modulus G_p as [37, 87, 39]:

$$G_p \equiv G(t^*)$$

(29)

Fig. 3 shows the elastic scaling of the structural relaxation (top) and the cage rattling amplitude (bottom) in agreement with other studies [37, 87]. For MD simulations it is convenient to recast Eq. 2 as [37, 87]:

$$\log \tau_\alpha = \Gamma_0 + \Gamma_1 \left(\frac{G_p}{T} \right) + \Gamma_2 \left(\frac{G_p}{T} \right)^2$$

(30)

4.1.2. Virial-energy correlations In the case of pair potentials, the virial W, i.e., the configurational contribution to pressure, is given by [131]:

$$W = \frac{-1}{3} \sum_{i>j} w(|r_i - r_j|)$$

(31)

where $w(r) = rv'(r)$, v' being the derivative of the pair potential $v(r)$. For an IPL potential, $v(r) \propto r^{-n}$, one has $w(r) = -n v(r)$ and the virial is proportional to the potential energy $U = \sum_{i>j} v(|r_i - r_j|)$:

$$W = \frac{n}{3} U$$

(32)

Eq. 32 states that in IPL systems, irrespective of the physical state, the scatter plot of the instantaneous potential energy and virial shows perfect correlation with slope $n/3$. As pointed out in the Introduction, liquids with strong virial-energy correlations exhibits TS with $\gamma_{ts} = n/3$ [22, 23, 24]. Figure 4 plots the instantaneous virial and potential energy fluctuations of the liquid of trimers according to our MD simulations. The degree of correlation is quantified by the correlation coefficient R:

$$R = \frac{\langle \Delta W \Delta U \rangle}{\sqrt{\langle (\Delta W)^2 \rangle} \sqrt{\langle (\Delta U)^2 \rangle}}$$

(33)
where Δ denotes the deviation from the average value of the given quantity and $\langle \ldots \rangle$ denotes the thermal averages. We find low correlation, $R \sim 0.45 - 0.52$, depending on the state. In contrast, in the case of RB chains the correlation is high, $R > 0.8$ (not shown), as in previous studies on linear chains with rigid bonds [28, 132]. The drop of the virial-energy correlations by replacing rigid bonds with semirigid ones in linear chains has been noted [28, 29, 13].

4.2. Temperature-density scaling of the elastic response

Fig. 5 shows that, in the range of interest, the elastic modulus exhibits power-law dependence on both the temperature (top panel) and the density (middle panel). The combined master curve is of the form predicted by Eq.18 (bottom panel) with $\gamma_L = 6.19$ and $\delta_L = 0.595$. The best-fit value $\gamma_L = 6.19$ is within the range of the reported experimental values and close to, e.g., $\gamma = 6.1$ in poly(chlorotrifluoroethylene) and $\gamma = 6.4$ in poly(vinylidene fluoride) and polyethylene (low density) [104].
4.3. Temperature-density scaling of the structural relaxation

The temperature-density dependence of the elastic modulus, Eq.18, and the elastic scaling in G_p/T of the structural relaxation, Eq.30, suggest that the TS characteristic exponent is given by:

$$\gamma_{ts} = \frac{2 \gamma_L + 1/3}{2 \delta_L + 1} \quad (34)$$

For the liquid of trimers under study Eq.34 yields $\gamma_{ts} = 5.80$ with $\gamma_L = 6.19$ and $\delta_L = 0.595$, according to Fig.5. Fig.6 presents the TS scaling of the structural relaxation of all the investigated states by the MD simulations and tests Eq.34. It shows that $\gamma_{ts} = 5.80$ collapses all the data concerning the structural relaxation time in a well-defined master curve.

4.4. Comparison with the experiments

This Section compares the findings of the MD simulations with a wide set of experimental data concerning TS of the structural relaxation. The task is rather ambitious in that the experimental TS extends up to relaxation times as long as $\sim 10^2$ s, whereas MD simulations are limited to fractions of microseconds. The comparison with the experiments is twofold. First, we test Eq.34 on a few glassformers. The limited set of systems scrutinized is due to the scarcity of experimental data, especially concerning δ_L. Second, we extensively compare the prediction concerning the TS master curve of the structural relaxation with thirty-four different glassformers.

4.4.1. Test of Eq.34

Table 1 provides the predicted scaling exponent γ_{ts}^{PW} according to Eq.34 for some glassformers, i.e. the polymers poly(methyl methacrylate) (PMMA) and polystyrene (PS), and the molecular liquid o-tephenyl (OTP). Consideration of further systems was hampered by the absence of available data concerning γ_L and/or δ_L. Particular care was
Table 1. Comparison between the experimental value of the TS exponent $\gamma_{\text{ts}}^{\text{exp}}$ and the predictions of both the present work ($\gamma_{\text{ts}}^{\text{PW}}$, Eq.34, and the one of Ref.[7] ($\gamma_{\text{ts}}^{\text{CR}}$) for the polymers poly(methyl methacrylate) (PMMA) and polystyrene (PS) and the molecular liquid o-tetphenyl (OTP).

The physical quantities used to calculate $\gamma_{\text{ts}}^{\text{PW}}$ are listed. MD data are also listed for comparison. δ_{Lg} is the anharmonicity parameter, Eq.6 with $i = L$, evaluated at T_g. For PMMA and PS $\delta_L = \alpha_l/\alpha_g \delta_{\text{Lg}}$. For OTP δ_L was evaluated at T_g via Eq.14. See text for further details.

<table>
<thead>
<tr>
<th>T_g(K)</th>
<th>δ_{Lg}</th>
<th>α_l/α_g</th>
<th>δ_L</th>
<th>γ_L</th>
<th>$\gamma_{\text{ts}}^{\text{PW}}$</th>
<th>$\gamma_{\text{ts}}^{\text{CR}}$</th>
<th>$\gamma_{\text{ts}}^{\text{exp}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>1.75c</td>
<td>0.595</td>
<td>6.19</td>
<td>5.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMMA</td>
<td>378</td>
<td>0.34</td>
<td>1.90d</td>
<td>0.67</td>
<td>4.0e</td>
<td>3.6</td>
<td>2.8 \pm 0.34</td>
</tr>
<tr>
<td>PS</td>
<td>373</td>
<td>0.334</td>
<td>2.75d</td>
<td>0.92</td>
<td>4.4e</td>
<td>3.2</td>
<td>2.1 \pm 0.3</td>
</tr>
<tr>
<td>OTP</td>
<td>243</td>
<td></td>
<td>0.32</td>
<td>3.3g</td>
<td>4.2</td>
<td>4.05 \pm 0.3</td>
<td>4</td>
</tr>
</tbody>
</table>

a Ref.[103]
b Ref.[7]
c Ref.[133]
d Ref.[121]
e Ref.[104]
f $\gamma_{\text{PMMA}} = 1.94$ according to more accurate data [134]
g from Brillouin light scattering at 0.95 T_g [135]

devoted to derive the parameter δ_{L}. For polymers, we extrapolated at T_g the experimental data in the glassy state, see Fig.1, and multiplied the resulting value for the ratio of the expansion coefficients in the liquid and the glassy state α_l/α_g. The procedure relies on the assumption that the major contribution to the changes of δ_{L} from the glassy to the liquid regime are due to the increased thermal expansion, see Eq.7 and Eq. 9 since, as noted in Sec.2, the lattice Gr"uneisen parameter of polymers are weakly affected by the glass transition [107, 104].

For OTP, to the best of our knowledge, no data are available to derive δ_{L} according to the procedure adopted for polymers. As an alternative, we resorted to Eq.14 with $\alpha T_g = 0.182$ [136] and $n = 2$, as expected for Van der Waals liquids and found for benzene [137].

Table 1 compares $\gamma_{\text{ts}}^{\text{PW}}$, Eq.34, with the experimental value of the TS exponent $\gamma_{\text{ts}}^{\text{exp}}$ and the prediction according to Ref.[7] ($\gamma_{\text{ts}}^{\text{CR}}$). The results are encouraging but less accurate than the ones by the thermodynamic method of Ref.[7]. We notice that the MD results and the experimental values for PMMA and PS concerning the anharmonicity, i.e. the ratio α_l/α_g, δ_{L} and γ_{L}, are rather close, suggesting that the MD model, even if rather crude, captures the key aspects. We find that $\gamma_{\text{ts}}^{\text{PW}}$, Eq.34, overestimates $\gamma_{\text{ts}}^{\text{exp}}$. To date, we are unable to understand if this is due to limitations of Eq.34 or poor quality of the available experimental data. Going into more details, we see that the deviations of our prediction, $\gamma_{\text{ts}}^{\text{PW}}$, from $\gamma_{\text{ts}}^{\text{exp}}$ are limited for PS and within 5% for OTP. Instead, the TS exponent of PMMA $\gamma_{\text{ts}}^{\text{PW}}$ is close to $\gamma_{\text{ts}}^{\text{CR}}$, but they both differ from the experimental value. All in all, since we cannot rule out that the anharmonicity parameters which are needed to evaluate γ_{ts} from Eq.34 are affected by not
4.4.2. **Elastic TS master curve** We now derive the TS master curve of the structural relaxation. To this aim, we consider Eq.2 and Eq.3. Setting $\tau_\alpha(T_g) = 100$ s, one finds $\tilde{\Upsilon}_0 = 2 - \tilde{\Upsilon}_1 - \tilde{\Upsilon}_2 = -11.70(1)$ [87]. Now, let us define

$$Y = T^\rho - \gamma_{ts}$$

Resorting to Eq.18 and Eq.34 recasts Eq.3 in terms of Y as:

$$X = \left(\frac{Y_g}{Y}\right)^{2\delta_L+1}$$

(36)

where Y_g is the value of Y at the glass transition. Plugging Eq.36 into Eq.2 one has

$$\log \tau_\alpha = \tilde{\Upsilon}_0' + \tilde{\Upsilon}_1 \left(\frac{Y_g}{Y}\right)^{2\delta_L+1} + \tilde{\Upsilon}_2 \left(\frac{Y_g}{Y}\right)^{2(2\delta_L+1)}$$

(37)

In Eq.37 rigorously $\tilde{\Upsilon}_0' = \tilde{\Upsilon}_0$. However, we consider $\tilde{\Upsilon}_0'$ mildly adjustable in the range $0.5 \leq \tilde{\Upsilon}_0' \leq \tilde{\Upsilon}_0 + 0.5$ to account for small errors in the determination of the glass transition. Taking Y_g from the experiment, the total number of adjustable parameters of Eq.37 is two ($\tilde{\Upsilon}_0'$ and the isochoric anharmonicity parameter δ_L).

Notably, the shape of the master curve given by Eq.37 does not depend explicitly on the lattice Gr"uneisen parameter γ_L. Remind that, instead, the latter controls the change of the elastic modulus with the temperature under isobaric conditions, see Eq.19 and Eq.20.

The master curve Eq.37 allows to derive a compact expression of the isochoric fragility:

$$m_v = \frac{\partial \log \tau_\alpha}{\partial (Y_g/Y)} \bigg|_{Y_g}$$

(38)

Plugging Eq.37 into Eq.38 leads to:

$$m_v = (\tilde{\Upsilon}_1 + 2\tilde{\Upsilon}_2)(2\delta_L + 1)$$

(39)

Eq.39 establishes a linear relation between the isochoric fragility and the anharmonicity parameter δ_L, where $\tilde{\Upsilon}_1$ and $\tilde{\Upsilon}_2$, the characteristic parameters of Eq.2, are regarded as universal quantities [87]. It is consistent with the known increase of the fragility with the anharmonicity [51, 52, 53, 54, 55]. This aspect becomes even clearer by considering the usual isobaric kinetic fragility:

$$m = \frac{\partial \log \tau_\alpha}{\partial (T_g/T)} \bigg|_{T_g}$$

(40)

A compact expression of the fragility m is obtained by first deriving the temperature dependence the elastic modulus $G_p(T)$ from Eq.18 with $\rho(T) = \rho_g \exp[-\alpha(T - T_g)]$, plugging the expression into Eq.3, and the result into Eq.2. From the definition Eq.40 one has:

$$m = (\tilde{\Upsilon}_1 + 2\tilde{\Upsilon}_2) \left[1 + 2\delta_L + \left(2\gamma_L + \frac{1}{3}\right) \alpha T_g\right]$$

(41)
Table 2. Best-fit values of the parameters of the TS master curve Eq.37 (δ_L and $\tilde{\gamma}'_0$, adjusted in the range $\tilde{\gamma}'_0 - 0.5 \leq \tilde{\gamma}'_0 \leq \tilde{\gamma}'_0 + 0.5$ with $\tilde{\gamma}'_0 = -11.70(1) [87]$) for the glassformers in Fig.7, Fig.8, Fig.9. The experimental characteristic exponent γ_{ts}, the experimental isochoric fragility m_v^{exp}, Eq.38, and the best-fit value m_v^{fit}, evaluated via Eq.39, are also listed. The glassformers are listed in increasing order of the isochoric fragility m_v^{exp}.
Eq. 41 relates the kinetic fragility to parameters all related to the anharmonicity and predicts:

\[m \geq m_{\text{min}} = \tilde{\Upsilon}_1 + 2\tilde{\Upsilon}_2 = 24 \pm 1.6, \text{ assuming } \delta_L = \alpha = 0 \text{ for harmonic liquids.} \]

By the way, by replacing Eq. 34 into Eq. 41, the isobaric fragility reduces to the expression derived by Casalini and Roland [142]:

\[m = m_v[1 + \gamma_{ls} \alpha T_g] \quad (42) \]

Fig. 7, Fig. 8, and Fig. 9 show the comparison of the theoretical TS master curve of the structural relaxation, Eq. 37, with TS of thirty-four different glassformers, including van der Waals liquids and polymers in a wide range of isochoric fragilities \((24 \leq m_v \leq 112)\). The best-fit parameters \((\delta_L, \tilde{\Upsilon}_0)\), adjusted in the range \(0.5 \leq \tilde{\Upsilon}_0 \leq \tilde{\Upsilon}_0 + 0.5\) are listed in Table 2. The quality of the fit provided by Eq. 37 - having two adjustable parameters - is generally good with nice agreement around the glass transition. This is interpreted by noting that Eq. 37 stems from Eq. 2 which covers the GT region too [87]. Some disagreement between the experimental and the theoretical TS master curves occurs for short relaxation times. The accuracy of Eq. 37 is found to be comparable to the one of ref. [13] with the same number of adjustable parameters. Fig. 10 plots the distribution of the best-fit values of the anharmonicity parameters \(\delta_L\). The distribution peaks around 0.5 and, apart from two exceptions, does not exceed the unit value. Interestingly, a number of glassformers approaches the harmonic value \(\delta_L = 0\).

Fig. 11 correlates the experimental isochoric fragilities \(m_v^{\text{exp}}\) and the isochoric anharmonicity parameter \(\delta_L\), as drawn by the best-fit of Eq. 37 to the experimental TS master
Figure 8. TS master curve $\log \tau_\alpha$ vs $T \rho^{-\gamma_t}$ of selected glassformers (squares) with intermediate isochoric fragility. Other details as in Fig.7.

Figure 9. TS master curve $\log \tau_\alpha$ vs $T \rho^{-\gamma_t}$ of selected glassformers (squares) with higher isochoric fragility. Other details as in Fig.7.
curves, see Table 2. The correlation is good (Pearson correlation coefficient $R = 0.89$) and in good agreement with Eq.39 which has no adjustable parameters. We see that the isochoric fragility increases with the anharmonicity, as accounted for by the isochoric anharmonicity parameter δ_L. The finding that the anharmonicity enhances the fragility parallels many other similar conclusions [51, 52, 53, 54, 55].

To proceed, we compare in Table 3 the anharmonicity parameters δ_L, as drawn by thermodynamics, see Table 1, and from TS, see Table 2. The comparison is limited to PMMA, PS and OTP. We always find $\delta_{Ld} < \delta_{Ls}$ with better agreement for PMMA.

4.4.3. Vibrational isochoric heat capacity Anharmonicity affects the heat capacity, see Sec.2.3. Here, we compare the vibrational isochoric heat capacity as predicted by the present work, Eq. 16, and the alternative approach of Ref. [119] leading to Eq.17 where $T = T_g$ is set. Eq. 16 and Eq.17 predict that the relative change of C_v^{vib} due to the anharmonicity is δ_L and $\alpha T_g (q - 1)$, respectively. Since $q \sim 2$ [119], we compare δ_L and αT_g in Table 3 for
Table 3. Anharmonicity parameter from thermodynamics, δ_{L}^{td}, see Table 1, and from TS of the structural relaxation, δ_{L}^{ts}, see Table 2. The quantity αT_g at ambient pressure is also listed with data from the references listed in Table 2, apart from PMMA [121] and PVAc, OTP and PS [117].

<table>
<thead>
<tr>
<th></th>
<th>δ_{L}^{td}</th>
<th>δ_{L}^{ts}</th>
<th>αT_g</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB62</td>
<td>0.103</td>
<td></td>
<td>0.19</td>
</tr>
<tr>
<td>vitamin E</td>
<td>0.127</td>
<td></td>
<td>0.13</td>
</tr>
<tr>
<td>PCB54</td>
<td>0.204</td>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td>PCB42</td>
<td>0.381</td>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td>PVAc</td>
<td>0.486</td>
<td>0.585</td>
<td>0.22</td>
</tr>
<tr>
<td>OTP</td>
<td>0.32</td>
<td>0.585</td>
<td>0.17</td>
</tr>
<tr>
<td>PMMA</td>
<td>0.67</td>
<td>0.766</td>
<td>0.19</td>
</tr>
<tr>
<td>PS</td>
<td>0.92</td>
<td>1.37</td>
<td>0.21</td>
</tr>
</tbody>
</table>

systems with different isochoric fragility m_v. They are relatively close for systems with low isochoric fragility, e.g. vitamin E and PCB54. However, considering a larger range of m_v, it is seen that the quantity αT_g changes mildly, less than about 60%, whereas δ_L exhibits much stronger variation. The nearly constant value of αT_g is well known in polymer physics where the ”quasi-universal” value $\alpha T_g = 0.164$ is reported [121]. The above analysis suggests that, in order to discriminate between the predictions of Eq. 16 and Eq.17, one has to consider glassformers with high isochoric fragility. We are aware that further analysis, beyond the purpose of the present paper, is needed to better assess Eq. 16 and Eq.17. Nonetheless, we cannot refrain from one remark. By combining Eq.16 and Eq.39, one establishes a relation between the isochoric fragility m_v and the increase ΔC_V^{vib} with respect to the harmonic value due to the presence of anharmonicity:

$$\Delta C_V^{vib} = \frac{3 N k_B}{2} \left[\frac{m_v}{m_{v_{min}}} - 1 \right]$$ \hspace{1cm} (43)

with $m_{v_{min}} = \frac{1}{2} \bar{\gamma}_1 + 2 \bar{\gamma}_2$ the minimum isochoric fragility for harmonic liquids. It is tempting to note that Eq.43 is reminiscent of the well-known correlation between the kinetic fragility and the size of the jump of the isobaric thermal capacity observed by traversing the glass transition from below, a process leading to anharmonicity increase [174].

5. Conclusions

The present paper presents a scheme to evaluate both the TS characteristic exponent γ_{ts} and the master curve by resorting to experimentally accessible quantities characterising the anharmonic elasticity and no details about the microscopic interactions. Two central parameters are identified, i.e. the lattice Grüneisen parameter γ_L and the isochoric anharmonicity δ_L. Our analysis suggests that their variations are rather limited across states of
the TS region, thus setting the characteristic TS exponent γ_{ts} and the shape of the TS master curve.

We express the exponent γ_{ts} in terms of γ_L and δ_L. We also find an analytic expression of the TS master curve of the structural relaxation where the adjustable parameter is the isochoric anharmonicity δ_L together with a narrowly varied vertical shift. The comparison with the experimental TS master curves of thirty-four glassformers, including van der Waals liquids and polymers, is convincing and good agreement is generally seen close to the glass transition where elastic response is well developed. We tested against the available experimental data concerning three glassformers - two polymers (PMMA, PS) and one molecular liquid (OTP) -: i) our prediction of the characteristic exponent γ_{ts} in terms of parameters characterizing the anharmonic elasticity, ii) the isochoric anharmonicity δ_L, as drawn by the best-fit of TS of the structural relaxation. The results are encouraging, but they suffer from the scarcity and the uncertainty of data concerning the anharmonic elasticity in the liquid state.

The elastic interpretation of TS predicts a linear relation between the isochoric fragility and the isochoric anharmonicity with no adjustable parameters. It agrees rather favourably with the experimental data under consideration. A related expression concerning the usual isobaric fragility m is presented. It predicts $m \geq 24 \pm 1.6$.

As side outcome of our treatment of the anharmonic elasticity, a relation between the increase of the isochoric vibrational heat capacity due to anharmonicity and the isochoric fragility is derived.

Acknowledgments

S. Capaccioli is warmly thanked for helpful discussions and the critical reading of the manuscript. A generous grant of computing time from IT Center, University of Pisa and Dell Italia is gratefully acknowledged.

[54] P. Bordat, F. Affouard, M. Descamps, and K. L. Ngai. Does the interaction potential determine both the
[99] B. Reynard, G. D. Price, and P. Gillet. Thermodynamic and anharmonic properties of forsterite,

Thermodynamic scaling

