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Abstract:  1 

 2 

Aluminium (Al) represents a widespread environmental pollutant, with severe toxic impacts 3 

on plants. In this study we documented for the first time the structural and functional 4 

responses induced by two concentrations of AlCl3 (10-2 M and 10-1 M) in the polytene 5 

chromosomes that characterize the chromatin organization in the embryo suspensor cells of 6 

Phaseolus coccineus. 7 

Polytene chromosomes showed signs of dose-dependent genotoxicity following AlCl3 8 

treatments with a significant increase of both chromatin stickiness and chromatin 9 

fragmentation. Polytene chromosomes specifically reacted to AlCl3 also in terms of DNA and 10 

RNA puffing activity: with respect to the control, the treatments promoted ex-novo and/or 11 

inhibited puff formation along chromosome arms, suggesting a fine modulation of the 12 

differential genome activity in response to the treatments. The nuclei of suspensors from 13 

control and treated seeds showed nucleoli mainly arranged by more than one NOR-bearing 14 

chromosome. In addition, AlCl3 treatments affected the frequency of nucleoli organized by 15 

singular organizer chromosomes, with an increase in the frequencies of nucleoli organized by 16 

chromosome II and a reduction in the frequencies of those organized by chromosomes I or V. 17 

These results confirm that, also in our system, nucleolus may react as stress response 18 

organelle.  19 

 20 
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 3 

Introduction 1 

 2 

One of the most relevant problems for aquatic and terrestrial organisms, as well as for crop 3 

production, is represented by toxic metals. Aluminium (Al), a so called “light metal”, 4 

constitutes just over 8% of the earth's crust, representing the most abundant metal, but it is 5 

poorly bio-available in neutral and weakly acidic soil; when released and solubilised into soil 6 

solutions in acid conditions, Al toxicity has long been documented (Rout et al. 2001; Kochian 7 

et al. 2015).  8 

The toxic effects of Al have been recognized at different levels of plant organization. Al-9 

sensitive higher plants show a marked root growth inhibition, as the primary effect, due to 10 

tissue injury and modifications to the root apex caused by the inorganic Al monomers and 11 

polycations, that can directly explicate their toxicity by binding components of the cell wall 12 

and of the plasma membranes (Liu et al. 2008; Li et al. 2015). 13 

Al causes a rapid decrease in both cell wall viscosity and elasticity, particularly in the root 14 

apex, partially changing chemical structure of the cell wall and inhibiting cell expansion (Ma 15 

et al. 2004). Negatively charged pectin component may be one of the most important Al 16 

binding sites (Horst et al. 2010). Notwithstanding this, in Arabidopsis it seems that 17 

hemicelluloses are the major cell wall component able to interact with Al (Yang et al. 2011). 18 

This interaction may inhibit the activity of xyloglucan endotransglucosylase, the enzyme 19 

involved in the cell wall loosening (Fry et al. 1992). Al symplastic interaction with the plasma 20 

membrane mainly occurs with phospholipids and provokes structural and functional changes 21 

leading to a severe cytotoxicity, inducing oxidative stress and lipid peroxidation (Yamamoto 22 

et al. 2001, 2003; Ahn & Matsumoto 2006). Other effects of soluble Al, especially those 23 

observable on the aerial part of the plant, seem to be mainly ascribed to the indirect effects of 24 



 4 

Al, interfering with water absorption and with the uptake and transfer of some essential 1 

nutrients within the plant body (Rout et al. 2001; Ozyigit et al. 2013).  2 

Many reports have described other specific Al effects in a large number of cellular processes 3 

(Panda & Matsumoto 2007), influencing the dynamics of the cytoskeleton (Frantzios et al. 4 

2005) with effects on vesicle movement and chromosome segregation, growth and cell 5 

division (Doncheva et al. 2005) and synthesis of callose (Lian et al. 1998). Additionally, 6 

changes on chromosome morphology, aberrations and disturbance in the nucleolar cycle 7 

during mitosis have been also reported (Yi et al. 2010; Zangh et al. 2014). As a result of Al-8 

induced stress, changes in gene expression have been described (Sivaguru et al. 2003; Eticha 9 

et al. 2010) with the identification of several genes involved in the response of tolerant plants.  10 

In this work, we studied the cytological effects resulting from AlCl3 treatments in a highly 11 

differentiated system, the embryo suspensor of Phaseolus coccineus. The P. coccineus 12 

suspensor, structured in about two hundred cells, persists until the cotyledonary embryo stage, 13 

after having undergone autolysis, considered to be a typical example of the so-called 14 

developmental programmed cell death (PCD) (Lombardi et al. 2007). As in other plant 15 

species, P. coccineus suspensor cells are involved in endoreduplication phoenomena, 16 

especially at the micropilar end of the organ, where about 20 cells become giant, in the end 17 

reaching a DNA content of 8192C (Brady 1973). Endoreduplication, amplifying the whole 18 

cell genome, provides a mechanism to increase the level of gene expression per nucleus 19 

(Larkins et al. 2001). This activity is related to the formation of unpaired polythene 20 

chromosomes (2n = 22) in a permanent prophase stage. 21 

In P. coccineus suspensor cells, some polytene chromosome regions may be engaged in 22 

“DNA puffing”, which is considered to be the result of disproportionate localized DNA 23 

replication (DNA amplification). In addition, massive transcription processes may be 24 

cytologically detectable as regions in which the chromatin is decondensed and expands in 25 
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“RNA puffs” (Frediani & Simonini 1980). DNA and RNA puff frequency differently 1 

characterize the embryo developmental stages and may variate depending on metabolic 2 

demand during seed development and on environmental factors (Tagliasacchi et al. 1993).  3 

Due to their structure and size, polytene chromosomes can be considered a cytogenetic model 4 

system, allowing the evaluation, in vivo and in vitro, of structural and functional chromatin 5 

changes following stressful conditions (Nagl 1970; Sholes & Paige 2015). On this basis, the 6 

aim of our work was to study the cytological response of the P. coccineus embryo suspensor 7 

following AlCl3 treatment at two different concentrations. Since it has been well documented 8 

that stress perception at cellular level may influence nucleolus organization and dynamic 9 

(Boulon et al. 2010), we also focused our attention on the assessment of possible 10 

perturbations involving nucleolus and in its cytological organization.  11 

 12 

Materials and Methods 13 

Plant Material and AlCl3 Treatments 14 

Developing seeds of Phaseolus coccineus L. were collected from fruits taken from plants 15 

grown in the open air at the Botanical Garden of the University of Pisa (Italy). 11 mm-long 16 

seeds, mainly containing embryos at the early cotyledon stage, were considered in this study. 17 

The actual developmental stage of the embryo suspensor was assessed on histological 18 

sections. Briefly, 10 seeds randomly selected were dissected and the portion containing the 19 

embryo suspensor was fixed and processed according to Bartoli et al. (2016). Semi-thin 20 

sections were stained with toluidine blue O (TBO, 0.05 % in 0.1 M benzoate buffer at pH 4.4) 21 

for histological investigations. Having verified the homogeneity of the developmental stage of 22 

the suspensor in the seed pool, the seeds were kept for 24 hours in distilled water (the control 23 

samples) or in aqueous solution of AlCl3 (Sigma-Aldrich) at two different concentrations (10-2 24 
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M and 10-1 M). The Al concentrations were selected to be applied for a short time but relevant 1 

to assess the impact of the metal to our system, reproducing acute exposure. 2 

Both the treated and the control seeds were fixed in ethanol and acetic acid (3:1, v/w) for 2 3 

hours and the embryo suspensors were then excised under a dissecting microscope.  4 

Cytological Chromosome Staining 5 

Fifty embryo suspensors from the Al-treated and the control seeds were macerated with a 5% 6 

aqueous solution of pectinase (Sigma-Aldrich) at 37 °C for 40 minutes and then squashed 7 

under a cover slip in a drop of 45% acetic acid. The slides were frozen with dry ice, and the 8 

coverslips removed. The slides obtained were then stained with Giemsa (Merk) solution at 2% 9 

in stock solution in phosphate buffer at pH 8, for a general observation of the squashes, and 10 

the best slides were processed with the Feulgen method according to Giorgetti and Ruffini 11 

Castiglione (2016) for specific DNA staining. The samples were then air-dried, mounted in 12 

DPX (Fluka) and analysed using a Leitz Diaplan light microscope (Wetzlar, Germany). 13 

Images of each slide were captured using a Leica DFC 420 camera (Leica Microsystems, 14 

Germany) and polytene chromosomes were identified as described by Nagl (1967). At least 15 

20 slides for both the control and the Al-treated suspensors were considered for the present 16 

investigation.  17 

AgNOR Staining  18 

AgNOR staining was used as a rapid method for visualizing ribosomal gene activities. Ten 19 

embryo suspensors, isolated from the treated and control seeds, were fixed and squashed as 20 

previously described. The squashes were air dried and then subjected to AgNOR staining, 21 

according to Howell and Black (1980) with minor modifications. Briefly, the squashes were 22 

treated with freshly prepared silver colloidal solution (1 part by volume of 2% gelatin in 1% 23 

formic acid and two parts by volume of 50% aqueous silver nitrate solution) in a closed 24 

coupling jar for 30 min at 37 °C, while ensuring that a dark environment was maintained 25 
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throughout the reaction time. The slides were washed thoroughly with distilled water, 1 

counterstained with Giemsa solution (2% stock solution in phosphate buffer, pH 6.8) and 2 

dehydrated. After drying, the slides were cleared in xylene, mounted in DPX and observed. 3 

The number of nucleoli organized by single and multiple NOR-bearing chromosomes (I, II, 4 

V) in both embryo suspensor cells from control and AlCl3 treated seeds were evaluated by 5 

captured images. Twenty randomly selected polytene nuclei were analysed for each treatment 6 

and for control. 7 

Data Analysis 8 

The data acquired were statistically processed by analysis of variance (ANOVA) following 9 

post-hoc multiple comparison (Bonferroni test). 10 

 11 

Results and Discussion  12 

 13 

In this work we have assessed the structural and functional responses induced by 10-2 M and 14 

10-1 M concentrations of AlCl3 on a highly differentiated and high-resolution cytogenetic 15 

system: the polytene chromosomes of the embryo suspensor of P. coccineus.  16 

Figure 1A shows a schematic drawing of the immature 11 mm long seed of P. coccineus (at 17 

the early cotyledonary stage) with the embryo proper and the suspensor. A representative 18 

image of the embryo suspensor is reported in Figure 1B: the fully developed suspensor 19 

appears to be formed by giant cells organized in a knob at the micropilar side, connected to 20 

the embryo proper by means of smaller sized cells of the neck region. Polytene chromosomes 21 

and chromosomal NORs in the embryo suspensor giant cells are shown in Figure 1 C, D, E. 22 

Figure 1F illustrates the ideogram of the polytene chromosomes of P. coccineus. The 23 

satellited chromosomes I and V and the submetacentric chromosome II bear ribosomal 24 

cistrons (Nagl 1967; Forino et al. 1979). These chromosomes are differently involved in the 25 
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formation of the nucleolus depending on the embryo developmental stage, because they 1 

possess functional and structural heterogeneous ribosomal cistrons (Pierotti et al. 1998).  2 

The cytogenetic analysis of these chromosomes showed signs of dose-dependent genotoxicity 3 

following AlCl3 treatments. This toxicity was basically detectable as chromatin stickiness that 4 

gives the chromatin a trabecular meshwork appearance (Figure 2 A, B) and chromatin 5 

fragmentation with microsphere extrusion (Figure 2 C, D), mainly from telomeric regions. As 6 

reported in Table I, AlCl3 10-2M induced chromatin stickiness in more than 18% and 7 

chromatin extrusion in more than 17% of the analyzed chromosomes, while the treatment 8 

with AlCl3 10-1M induced a significant increase of both types of genotoxic damage (40.6% 9 

and 70.3% respectively). Stickiness and chromatin microsphere extrusions are not ordinary 10 

features in suspensor cells, but they provide significant evidence of Al-induced genotoxic 11 

effects. Chromatin stickiness is characterized by severe chromosome clustering during any 12 

phase of the cell cycle (Ritambhara & Kumar 2010). As a consequence, it is a type of 13 

chromatin aberration which is easily detectable, including in such a differentiated and peculiar 14 

system such as polytene nuclei. As far as chromatin extrusion is concerned, it may be a 15 

secondary effect related to a necessary genome rearrangement following a stress condition 16 

(Aguilera & Gómez-González 2008) such as the Al treatment, or simply the result of 17 

clastogenic activity of the metal on DNA (Yi et al. 2010). Even if Al cannot directly catalyze 18 

redox reactions, however, the soluble forms Al3+ may trigger oxidative stress occurrence, as 19 

reported in different plant systems (Yamamoto et al. 2003), which generate hydrogen 20 

peroxide and other reactive oxygen species, which are key modulators of DNA fragmentation 21 

(Ruffini Castiglione et al. 2014). However, ROS could act as signaling molecules, stimulating 22 

or repressing specific genes involved in defence, repair and compensation processes following 23 

stress exposures (Bartoli et al. 2013). Changes in puffing activity can be considered one of the 24 

hallmarks of stress response in animal polytene chromosome systems (Singh & Singh 2015). 25 
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In Phaseolus too, as early as the 1970s, it was suggested that there was a correlation between 1 

structural changes in polytene chromosomes and temperature disturbance, as an expression of 2 

changes in gene activity (Nagl 1970). From our studies, we have recorded that AlCl3 3 

treatments induced significant perturbations in the puffing activity and in nucleolus-4 

organizing polytene chromosomes features and behaviour. Figure 3 depicts the puffing 5 

activity of the polytene NOR-bearing chromosomes in the embryo suspensor cells from the 6 

control and treated immature seeds. Compared to the control, AlCl3 treatments induced 7 

significant reorganization events in the chromatin of NOR-bearing chromosomes. We 8 

observed the amplification of specific chromosome regions (i.e. the splitting of the apical 9 

portions of the NOR; Figure 3C, H, I), putatively interpreted as a specific cytogenetic reaction 10 

to Al stress. We also noted different degrees of condensation of specific chromosome regions 11 

(Figure 3B, C, D, E, H), which is a sign of a differential transcriptional activity of the loci 12 

clustered on these chromosome portions.  13 

Table II reports the puffing frequencies resulting from the detailed analysis of cytologically 14 

detectable DNA and RNA puffs in the whole set of polytene chromosomes. Several 15 

differences in the puffing activity of the DNA were detectable following the AlCl3 treatments, 16 

often with heterogeneous behaviour of the single chromosomes and/or of the different regions 17 

within the same chromosome. Chromosome pair II (band A), pair IV (bands A, B) and IX 18 

(band E) displayed an increasing trend of the puffing activity while pair I exhibited a decrease 19 

in puffing activity (band B) compared to the control. In some cases, specific chromatin 20 

regions of certain chromosome pairs were induced by the treatment to ex-novo puffing (e.g. 21 

band E of chromosome pair I, band D of chromosome pair II, band D of chromosome VII), in 22 

parallel with other chromosome regions involved in DNA puffing in the control samples and 23 

that stopped this activity following AlCl3 treatments (e.g. band B of chromosome VII, bands 24 



 10 

B and E of chromosome VIII). On the contrary, chromosome X and XI seemed not 1 

particularly affected by the treatments concerning DNA puffing. 2 

With reference to RNA puffing (Table II), in this case too, we have observed significant 3 

changes depending on the two AlCl3 treatments. The RNA puffing frequencies varied widely 4 

among different regions, also in the same chromosome pair. In almost all the chromosomes of 5 

the complement at least one or more regions were characterized by the loss of RNA puffing 6 

activity, which was instead detected in control samples. These are: band G of chromosome I; 7 

band A, E of chromosome III; band G, I, L of chromosome IV; band C, F, G, H of 8 

chromosome VI; band A, B of chromosome VII; band E of chromosome VIII; band A, B, C, 9 

F of chromosome IX; band A of chromosome X and band A of chromosome XI. Some ex 10 

novo concentration-dependent RNA puffing was recordable as well in some specific 11 

chromosome regions of three different chromosomes: III (band B and C), V (band C), VIII 12 

(band C). In addition, other chromosome regions, which were already engaged in RNA 13 

puffing, were positively induced in control samples, especially at the AlCl3 higher 14 

concentration (e.g. band E of chromosome I; bands A and F of chromosome II; band B of 15 

chromosome VI; bands A and F of chromosome VIII). 16 

These results confirm the high responsiveness of the polytene chromosomes to Al and 17 

demonstrate that this metal may interfere strongly with the stage-specific chromatin activity 18 

of the embryo suspensor, disturbing chromosome puffing differently, inhibiting puffing 19 

formation and resulting in specific new puffs. We may speculate that these results partly 20 

depend on both a significant structural/functional chromatin injury and on a differential 21 

activation of specific stress-responsive genetic loci elicited by Al treatments and probably 22 

involved in the stress defence. In our highly differentiated system of study, we cannot exclude 23 

that some ex-novo puffing activities may be related to stress-induced copy number variation 24 

of specific genes as reported for maize. In this species a greater gene copy number of Al 25 
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tolerant gene MATE1 is the basis for higher MATE1 expression levels, resulting in increased 1 

Al tolerance (Maron et al. 2012).  2 

We also focused our attention on the assessment of possible perturbations involving nucleolus 3 

and its cytological organization. Figure 4 shows nucleoli organized by both multiple and 4 

single NOR-bearing chromosomes, as obtained by squashing embryo suspensor basal cells. 5 

The stress perception at cytological level can be accompanied by nucleolar dysfunctions, the 6 

nucleolus being a well recognized stress sensor, able to coordinate stress response (Forino et 7 

al. 2012; Bellani et al. 2014). Little information is available about the effects of Al on plant 8 

nucleoli: in root tip cells of Vicia faba and Allium cepa the nucleolus showed an altered 9 

distribution and loss of argyrophilic material from the nucleus to the cytoplasm, as well as an 10 

abnormal nucleolar cycle during mitosis (Zhang et al. 2009; Qin et al. 2010).  11 

In our highly differentiated system, at the cotiledonary stage, the nucleolus was basically 12 

organized by more than one NOR-bearing chromosome (Figure 4 and Table III) and this 13 

functional trait did not significantly change following AlCl3 treatments (Table III). In 14 

contrast, significant differences appeared when the frequencies of distinct NOR-bearing 15 

chromosomes, active in nucleoli formation, were taken into account. In the control samples, 16 

chromosome I was the most engaged in the formation of nucleoli organized by just one 17 

chromosome (Table III) while chromosomes II and V were similarly involved in the 18 

nucleolus organization. AlCl3 treatments affected the activity of chromosome V in nucleolus 19 

organization, reducing its contribution by 50% in respect to the control, already at the lowest 20 

concentration. Interestingly, chromosomes I and II underwent a considerable AlCl3 dose 21 

dependent disturbance in the nucleolus organization contribution, showing, however, an 22 

opposite behaviour. The percentage of chromosome I in nucleolus formation passes from 23 

39.47% in the control to 18.66% and 4.61% at AlCl3 10-2 and 10-1 M respectively, while 24 

chromosome II goes from 29.94% in the control to 66.98% and 80.83% at AlCl3 10-2 and 10-1 25 
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M respectively (Table III). The treatments with AlCl3 therefore induced a differential 1 

behaviour of the three NOR-bearing chromosomes in terms of nucleolar organization. 2 

Chromosome II, which is generally not very active in the organization of the nucleolus during 3 

embryogenesis and which bears short ribosomal genes (Tagliasacchi et al. 1993), was rather 4 

active in the treated samples, while the chromosome I, usually the most active during the 5 

suspensor life span and bearing the longest ribosomal genes (Tagliasacchi et al. 1993), 6 

showed decreased activity. This peculiar behaviour can be correlated with the different 7 

sensitivity of ribosomal genes on the different NORs that characterizes the two chromosome 8 

pairs I and II. Moreover it cannot be excluded that genes other than ribosomal ones and 9 

associated with NORs, may be differently modulated and whose expression correlates with Al 10 

toxicity and/or tolerance. 11 

On the whole, the results of the present study give new and interesting insights into the effects 12 

of Al on polytene chromosomes of the P. coccineus embryo suspensor. These peculiar 13 

chromosomes were specifically responsive to the AlCl3 treatments and showed, from a 14 

cytological point of view, signs of dose-dependent genotoxicity, genome rearrangements, and 15 

changes in functional activity in terms of DNA and RNA puffing. In the P. coccineus embryo 16 

suspensor, the puffing activity occurs in a stage-specific way, with a recognizable cytological 17 

pattern. Consequently, the observed changes in the puffing pattern cannot be a random 18 

phenomenon but must be specifically due to Al exposure and probably related to a differential 19 

expression of Al tolerance genes. AlCl3 strongly influenced the nucleolus organization in 20 

terms of number and type of chromosomes involved in its constitution. Therefore, also in P. 21 

coccineus, the nucleolus seems to have a central regulatory role between ribosome 22 

biosynthesis and cellular metabolism during stress condition. 23 

 24 

 25 
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Figure captions 1 

 2 

Figure 1. The embryo suspensor of Phaseolus coccineus. (A) Schematic drawing of the 3 

median longitudinal section of an 11 mm long seed showing the embryo proper (ep) at 4 

cotyledonary developmental stage, its suspensor (s) and the endosperm (en); the seed 5 

micropyle (m) and the funiculus (f) are also indicated. Scale bar = 2 mm. (B) Median 6 

longitudinal section of an ovule stained with toluidine blue O, showing the embryo suspensor 7 

with the giant basal cells constituting the knob region (k) and the cells close to the embryo of 8 

the neck region (n); the embryo proper (ep) and the endosperm (en) are also indicated. Scale 9 

bar = 100 µm. (C) Histological section of the basal portion of the suspensor, stained with 10 

toluidine blue O, showing a polytene nucleus (nn) with the nucleolus organized by a NOR-11 

bearing chromosome (arrow). Scale bar = 50 µm. (D) A squash preparation of suspensor cells 12 

showing the complete set of polyploid chromosomes: centromeres, NOR domains and other 13 

heterochromatic areas on chromosomes are heavily purple stained after Feulgen method 14 

staining. Scale bar = 50 µm. (E) A squash preparation, stained by Feulgen method, showing a 15 

distinct nucleolus organized by different NOR-bearing chromosomes. Scale bar = 25 µm. (F) 16 

Ideogram of the chromosome complement of P. coccineus exhibiting cytogenetic mapping of 17 

heterochromatic and euchromatic regions (according to Nagl 1967) and the distribution of 18 

NORs (according to Durante et al. 1977). 19 
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Figure 2. Genotoxic effects induced by AlCl3 treatments in polytene chromosomes of P. 21 

coccineus embryo suspensor cells. (A, B) Chromatin with a trabecular meshwork appearance 22 

(arrows) in chromosomes of embryo suspensor cells after AlCl3 10-2 M (A) and AlCl3 10-1 M 23 

(B) treatments. (C, D) Chromatin fragmentation and microsphere extrusion from telomeric 24 
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regions (arrows) in chromosomes of embryo suspensor cells after AlCl3 10-2 M (C) and AlCl3 1 

10-1 M (D) treatments. The chromosomes are stained by Feulgen method. Scale bars = 10 µm.  2 

 3 

Figure 3. Polytene NOR-bearing chromosomes in P. coccineus embryo suspensor cells from 4 

control and treated seeds. (A, B, C) chromosome I showing the satellite (A, arrow), an 5 

inactive NOR (B, arrow) at the lowest AlCl3 concentration and the doubling of the NOR with 6 

DNA puff formation, (C, arrow), at the higher AlCl3 concentrations. (D, E, F) chromosome II 7 

evidencing an active NOR (D, arrow) and, in treated samples, a partially active NOR with 8 

trabecular meshwork chromatin (E, arrow) and a NOR with a well-defined RNA puff (F, 9 

arrow). (G, H, I) Chromosome V exhibiting a NOR with a RNA puff (G, arrow) and, 10 

following AlCl3 treatments, a tripartite and inactive DNA puff on the NOR (H, arrow) and 11 

characterized by NOR splitting and RNA puff (I, arrow). The chromosomes are stained by 12 

Feulgen method. Scale bars = 25 µm. 13 

 14 

Figure 4. Representative examples of AgNOR-stained squashes from embryo suspensor cells 15 

belonging to P. coccineus control seeds. (A) A single large nucleolus organized by multiple 16 

NOR-bearing chromosomes. (B) Small nucleoli organized by distinct NOR bearing 17 

chromosomes (chromosome II, at the top; chromosome V, bottom). The chromosomes are 18 

counterstained by Giemsa staining. Scale bars = 25 µm. 19 
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Table I. Chromatin damages (expressed as percentages) in the polytene chromosomes of 
embryo suspensor cells from control (C) and AlCl3 treated seeds. (mean ± SE). Means 
followed by different letters within the same row are significantly different (p< 0.01). 

C AlCl3 Genotoxic effects 
 10-2 M  10-1 M  

 Chromatin stickiness (%) 4.5±0.7 c 18.4±1.2 b 40.6±2.8 a 

 
Chromatin fragmentation with 
microspheres extrusion (%) 

5.2±0.5 c 17.5±2.4 b 70.3±5.2 a 
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 1 
Table III. Percentages of nucleoli organized by single and multiple NORs bearing 
chromosomes in embryo suspensor cells from control (C) and AlCl3 treated seeds. (mean ± 
SE). Means followed by different letters within the same row are significantly different 
(p<0.01). 

C AlCl3 Functional parameters 
 10-2 M  10-1 M  

 Nucleoli organized by more NORs 82±8 a 78.4 ± 9 a 78.9±6 a 

 Nucleoli organized by single NOR 18±3 a 21.6 ± 2.8 a 21.1±2 a 

 
Nucleoli organized by single NOR from 
chromosome I 

39.47±4.7 a 18.66± 1.6 bc 4.61±0.6 c 

 
Nucleoli organized by single NOR from 
chromosome II 

29.94±4.4 b 66.98± 4.7 a 80.83±3.46 a 

 
Nucleoli organized by single NOR from 
chromosome V 

30.57±3.1 a 14.35± 2.9 b 14.54±1.8 bc 
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