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Consensus Clustering of temporal 
profiles for the identification of 
metabolic markers of pre-diabetes 
in childhood (EarlyBird 73)
Mario Lauria  1,4, Maria Persico1, Nikola Dordevic1, Ornella Cominetti3, Alice Matone1,  
Joanne Hosking  2, Alison Jeffery  2, Jonathan Pinkney2, Laeticia Da Silva3,  
Corrado Priami  1,4,5, Ivan Montoliu3 & François-Pierre Martin3

In longitudinal clinical studies, methodologies available for the analysis of multivariate data with 
multivariate methods are relatively limited. Here, we present Consensus Clustering (CClust) a new 
computational method based on clustering of time profiles and posterior identification of correlation 
between clusters and predictors. Subjects are first clustered in groups according to a response variable 
temporal profile, using a robust consensus-based strategy. To discover which of the remaining variables 
are associated with the resulting groups, a non-parametric hypothesis test is performed between groups 
at every time point, and then the results are aggregated according to the Fisher method. Our approach 
is tested through its application to the EarlyBird cohort database, which contains temporal variations of 
clinical, metabolic, and anthropometric profiles in a population of 150 children followed-up annually from 
age 5 to age 16. Our results show that our consensus-based method is able to overcome the problem of 
the approach-dependent results produced by current clustering algorithms, producing groups defined 
according to Insulin Resistance (IR) and biological age (Tanner Score). Moreover, it provides meaningful 
biological results confirmed by hypothesis testing with most of the main clinical variables. These results 
position CClust as a valid alternative for the analysis of multivariate longitudinal data.

More than a third of children in the UK are now overweight or obese1 and the increasing worldwide prevalence 
of obesity and type 2 diabetes (T2D) in children is a serious public health concern. It is thought that insulin 
resistance (IR) is an important mechanism linking obesity to the development of T2D, and recent integration 
of longitudinal data on IR, pubertal timing, age, sex, adiposity, and levels of the hormone Insulin-like growth 
factor-1(IGF-1) has highlighted a strong and gender-specific relationship between adiposity and IR in child-
hood2. Since the development of T2D can be delayed or prevented by lifestyle and medical interventions, there is 
increasing awareness that early identification of children with susceptibility to diabetes is critical3. It is important, 
therefore, to define the influence of childhood developmental stages on adiposity, IR and associated metabolic 
parameters. The EarlyBird study is a longitudinal, non-interventional cohort study of 300 healthy children in 
the city of Plymouth in the UK, followed annually through childhood. The study was designed to investigate the 
anthropometric and metabolic and endocrine processes associated with IR and prediabetes during childhood and 
adolescence. Metabonomic analysis was also undertaken to explore novel earlier biomarkers of adiposity and IR. 
In this study, we addresses the methodological challenge of integrating and correlating the temporal variations 
of many different data types in the EarlyBird cohort from age 5 to age 16, including anthropometric, clinical and 
serum metabonomic data.

In the context of longitudinal studies, methodologies have been adapted to explore the data, and to consider 
the multiple data dimensions, including subjects, time, and different data types. Thus, a range of solutions have 
been proposed for the study of longitudinal omics data, including Generalized Linear Mixed Models (GLMM), 
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Generalized Estimating Equations (GEE), Markov models, non-parametric or semi-parametric or even Bayesian 
models, factor analysis, dictionary learning and latent growth curves, amongst others4–6. Non-parametric or 
semi-parametric statistical models are widely employed to model complex curves of longitudinal trajectories7. 
However, these techniques are designed to handle a single dataset generated over time. Richards et al. have previ-
ously summarized key approaches for intra- and inter-omic fusion strategies in a metabonomics-driven context8. 
However these integrative approaches lack the capability of accounting also for the temporal dimension. In short, 
a comprehensive multi-dimensional longitudinal study such as EarlyBird requires a data fusion strategy that can 
handle temporal profiles.

Here we report a new approach to tackle the problem of longitudinal multiple data types, and its application to 
the EarlyBird cohort study (Fig. 1). Briefly, we introduce the concept of primary and secondary variables, where 
the former are quantitative descriptors of the clinical phenotype of interest (e.g. HOMA IR), and the latter are the 
remaining clinical variables (anthropometric, metabolic and clinical). We use the primary variable temporal pro-
files to partition subjects into groups of interest (thus making effective use of the time and subject dimensions), 
and then to assess the relationship between these risk groups (e.g. high vs low HOMA IR) and the secondary 
variables.

A special challenge was represented by the partitioning of subjects based on their temporal profiles. Clustering 
of time series is extensively used in different areas of scientific research, and this is reflected in the abundance of 
different approaches that have been proposed and by the diversity of the respective sources9. The approaches dif-
fer in i) the way similarity between profiles is measured, ii) the algorithm that performs the partition based on the 
similarity matrix, and iii) the criterion used to decide the best number of groups (in the following we will use the 
terms ‘group’ and ‘cluster’ interchangeably). Given the diversity of conceptual approaches, it is not surprising that 
they produce different results when applied to the same dataset. In our work, the methods and packages we exam-
ined include fuzzy classification, K-means, Hierarchical clustering, Smoothing Spline Clustering (SSC), Time 
Series Clustering Utilities and Model-Based Clustering and Classification. As expected, we confirmed the lack of 
agreement of the respective procedures when run on the Earlybird dataset. As a solution to cope with these unde-
sired effects we adopted the comparison of the output of the different methods, and then selected those producing 
the most robust agreement across datasets in terms of group composition. The use of the consensus between 
cluster compositions as the final valid clustering provides the name for our approach (Consensus Clustering).

As a final step of the workflow described here, the groups, robustly identified on the basis of a whole temporal 
profile comparison, are characterized in a time point-wise manner across a large panel of secondary variables. 
This two-step procedure simultaneously accomplishes different objectives: i) identification of the secondary var-
iables that are biologically relevant with respect to the groups of interest (through aggregation of significance 
values across time points), ii) characterization of the association between risk group membership and variables 
found to be relevant, iii) discovery of possible age effects, and of possible co-evolution between primary and rele-
vant secondary variables. As an example, we have assessed computational methods to perform clustering of time 
profiles of selected clinical variables in relation to HOMA IR trajectory and pubertal staging, and then identified 
correlation with other clinical, metabolic, and anthropometric data.

Figure 1. Graphical representation of the analysis workflow and indication of the variables employed at each step.
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Results
Overview and description of the datasets. The EarlyBird study involved annual measurement of a 
range of clinical, anthropometric and metabolic variables in a cohort of children from the age of 5 to 16 years.

The Metabolic dataset includes repeated measurements of a panel of serum metabolites for 129 subjects. Of 
the original 82 species, for this work we used a subset of 46 for which an unambiguous annotation was available.

The Anthropometric and clinical dataset includes repeated measurements of a panel of anthropometric and 
clinical variables for 149 subjects, namely body weight, body mass index, body composition data generated 
by dual-energy x-ray absorptiometry (DEXA), skinfold thickness, actigraphy, resting energy expenditure, and 
pubertal Tanner scores, fasting glucose and insulin. To deal with the gaps related to missing data when overlap-
ping Metabolic and Anthropometric measurements, we decided to study them separately, giving us the opportu-
nity to test our clustering method on different datasets. Figure 2 illustrates the degree of overlap between datasets: 
the x-axis represents measured variables, and the y-axis represents subjects; the third dimension of time is not 
shown for simplicity. Each dataset has a number of missing measurements: rather than imputing the missing val-
ues, we decided to restrict our analysis to subjects with complete time series. In the case of the metabolic dataset, 
we carried out the analysis separately for early time points and late time points, with age 11 as the dividing point. 
This choice was motivated by the discovery of a convergence of the metabolic parameters around age 11 in all 
subjects, but it also enabled the inclusion of a greater number of subjects in each analysis (since it was easier to 
identify subjects having complete time series over a shorter time span).

Definition and assessment of the clustering method. We break down the complexity of the multidi-
mensional analysis by first clustering subjects in groups based on their temporal profiles of a single clinical feature 
(phenotype), and then contrasting these groups with respect to each of the remaining clinical/anthropometric/
metabolic profiles. Any statistically significant difference in this latter step points to clinical/anthropometric/
metabolic patterns linked to the clinically determined subgroups identified in the first step.

The clustering of temporal profiles represented a challenge in itself. Several conceptual approaches have been 
proposed to partition a collection of temporal profiles in groups based on reciprocal similarity, which in general 
produce different outcomes. The approaches differ in several crucial respects: the way similarity between profiles 
is measured, the algorithm that performs the partition based on the computed similarities, and the criterion used 
to decide what should be the number of groups into which to partition the profiles. The strong dependence of 
the outcome on the method employed creates the problem of what clustering method and resulting partition of 
subjects to adopt as the starting point of the analysis. We decided to follow a strategy in which we compared the 
output of different methods and selected the ones that produced the most robust agreement across datasets in 
terms of group composition. The rationale for it is that if different conceptual approaches produce comparable 
outputs, then the resulting grouping is more likely to be reflecting the intrinsic properties of the profiles than 
those of the algorithms used. We call this strategy Consensus Clustering (CClust); we note that occasionally the 
same term has been used to indicate some technique to reconcile partitions resulting from different runs of the 
same algorithm, which is a problem unrelated to the one we are trying to solve in this work.

We adopted the availability of an implementation in the R language as a criterion for the selection of algo-
rithms to be included in our study. This choice simplified the comparative analysis of different approaches, and 
enhanced the reproducibility of our workflow. More importantly, this type of selection restricts the choice of 
algorithms to those that have been judged worth the effort of re-implementation in a widely used language by 
members of the scientific community. Together, the selected methods are likely to provide a good coverage of the 
current state of the art in the field. The algorithms and their respective implementations we used for the com-
parison are fuzzy classification (package Mfuzz), K-means (R package Mfuzz), K-means (R package NbClust), 
Hierarchical clustering (R package NbClust), Smoothing Spline Clustering (SSC) (R package SSCLUST), Time 

Figure 2. Extension of the Clinical, Anthropometric and Metabolic datasets across the subjects and temporal 
dimensions. The Z axis separates the individual datasets, the X axis represents number of included subjects, and 
the Y axis shows time points covered by each dataset.
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Series Clustering Utilities (R package TSclust) and Model-Based Clustering and Classification (R package 
longclust).

In our consensus-based method a crucial role is played by the measure of overlap between groups produced 
by different algorithms. The measure we used for quantifying the degree of overlap (consistency) between each 
pair of algorithms was the Adjusted Rand Index, the corrected-for-chance version of the Rand index (RI). Given 
a set of n elements - S, and two partitions - X and Y, RI is a fraction in which the numerator is the number of 
agreements between partitions X and Y and the denominator is the sum of the number of agreements between 
partitions X and Y and the number of disagreements between partitions X and Y. While RI may only assume a 
value between 0 and 1, the Adjusted Rand index can assume negative values if the index is less than the expected 
index. Additionally, unlike the less sensitive RI, the Adjusted Rand index for two random partitionings has as an 
expected value, which is the constant value zero.

Assessment of Consensus Clustering performance. Given the focus of the EarlyBird study on pro-
cesses associated with IR during childhood and adolescence, HOAM IR and Tanner score were identified as vari-
ables of high interest. Moreover complete temporal series of HOMA IR and pubertal Tanner score were available 
for all subjects in both datasets, and so the temporal profiles of these variables were selected as primary variables.. 
We defined a clustering as a partitioning of subjects in n groups based on the similarity of temporal profiles; we 
investigated values of n equal to 2 and 3, because larger values did not provide satisfactory results in preliminary 
tests (not shown). We performed an assessment of the quality of the CClust by partitioning the HOMA IR and 
Tanner score temporal profiles and studying the separation of the average curves of the resulting groups. Since the 
unassisted visual inspection of the average curves was inconclusive, we devised a quantitative method in which 
the obtained clustering was compared with a large sample of random clustering of subjects.

Clustering of HOMA IR profiles: preliminary analysis. A preliminary analysis of the data revealed that the nor-
malized time profiles appear to converge toward a restricted set of values around time point six (age 11), as seen 
in Fig. 3. While the graphs are relative to HOMA IR, the value convergence seems to represent a separation point 
between earlier and later metabolic phases. We took advantage of this observation, and decided to split the tem-
poral profiles at age 11 into an early and a late segment, and to cluster the two subsets separately. The benefits of 
the separate clustering are a subdivision of subjects into more homogeneous groups, and the availability of larger 
numbers of subjects with complete time profiles over the reduced time spans.

Clustering of HOMA IR profiles: comparison between methods. The marked difference among the results of 
the different clustering algorithms can be appreciated in Fig. 4. The different approaches produced inconsistent 
grouping of temporal profiles (i.e. having very little overlap with each other), which was not surprising given the 
challenging nature of the dataset (eg biological variability, age of the participants, etc…).

For a systematic assessment of the level of agreement between different clustering methods we computed the 
Adjusted Rand Index between every pair of methods averaged across 100 runs. Figure 5 illustrates the results for 
the HOMA IR profiles; in this figure each panel represents a matrix in which the index is shown as a circle of size 
proportional to its value for every possible pair of methods (one method per row and per column). Determining 
an average solution over several runs was necessary because the k-means algorithm is not deterministic, and thus 

Figure 3. Clustering of HOMA IR complete time profiles (age 5–16) showing a convergence of the curves 
around age 10 (method used: soft clustering Mfuzz algorithm, number of clusters set to n = 2). Left panel  
(a) Resulting clusters using Mfuzz default parameter values. Right panel (b) curves with uncertain membership 
are not included in the plots (parameter min.mem set to 0.5). Other algorithm parameters: fuzzifier was set to 
1.921382 (as estimated by the function mestimate) for both runs.
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the partitioning of the subject can change from run to run depending on the random initial assignment of the 
cluster centroids. The results of the comparison suggest that Mfuzz and SSC provide a high degree of consistency 
across all the experiments; this result was valid for the other variables as well and not just for HOMA IR (not 
shown). The fact that these two methods produce highly overlapping groupings of the profiles in the first place, 
despite being based on very different conceptual approaches lends additional confidence in the result. Among 
the other methods, the pair Mfuzz/K-means showed an agreement comparable with the outcome generated by 
Mfuzz/SSClust, although the latter performed better on the other tested clinical variables (not shown). We there-
fore selected Mfuzz and SSC as the building blocks of our CClust method. As result of CClust we take the set of 
subjects on whose group membership the two methods agree, using a criterium of maximum overlap between 
the two sets of groups; the subjects on which they disagree are declared unclassifiable and discarded from the 
remainder of the analysis. The size of the clusters produced by CClust and used for this case study are reported 
in Table 1 (the groups are called A and B, where the naming is arbitrary; the size of the groups produced by the 
each of the two methods separately are reported in Supplementary Table 1). While we expect that the selection 
of the pair of methods is data-set dependent, the procedure described here is quite general and can be applied to 
any chosen pair.

Clustering of HOMA IR profiles: permutation test. A first assessment of the quality of the clustering obtained 
as the consensus between Mfuzz and SSClust can be performed by plotting the average curves of the resulting 
groups. These curves, shown in Fig. 6, are the average curves of four clinical variables; group A and B averages 

Figure 4. Comparison of the output generated by the different methods considered for clustering the clinical 
variable HOMA IR time profiles. The methods were set for n = 2 clusters, using data for both genders and age 
range 11–16. (a,b) Mfuzz and kmInMfuzz respectively for the fuzzy logic and the k-means algorithm (Mfuzz 
package); (c) SSClust for the Smoothing Spline Clustering method (SSC); (d) longclust for the model based 
clustering for longitudinal data; (e,f) nbclust1 and nbclust3 respectively for the clustering schemes described in 
the text; (g,h) tscluCORThc and tscluCORTpam respectively for the clustering schemes described in the text.



www.nature.com/scientificreports/

6SCIENTIFIC REPORTS |  (2018) 8:1393  | DOI:10.1038/s41598-017-19059-2

are shown in red and blue respectively, where the two groups of subjects are those resulting from the clustering 
of HOMA IR curves. While the plots generally show a clear separation, the distance between curves is generally 
smaller than the standard deviations at each time point; therefore the result of the visual comparison is inconclu-
sive. In order to rigorously quantify the quality of the clustering, we estimated the likelihood of observing such 

Figure 5. Evaluation of the overlap in composition of clusters of temporal trajectories of clinical variable 
HOMA IR obtained with different methods, using n = 2 as number of clusters. Circle color and size encode the 
Adjusted Rand Index for each comparison. Top row: females, (a) early (5–10 years) and (b) late time points 
(11–16 years). Bottom row: males (c) early and (d) late time points. The results are obtained by averaging 100 
comparison between all possible pairs of clustering schemes. The following abbreviations have been used: Mfuzz 
and kmInMfuzz respectively for the fuzzy logic and the k-means implementations in the R package Mfuzz; 
nbclust1 and nbclust3 respectively for the clustering schemes described in the text and implemented in the R 
package NbClust; SSClust for the Smoothing Spline Clustering method (SSC) implemented in the R package 
SSCLUST; tscluCORThc and tscluCORTpam respectively for the clustering schemes described in the text and 
implemented in the R package TSclust.

Group A Group B
HOMA IR - males (Early time points) 23 9
HOMA IR - females (Early time points) 4 3
HOMA IR - males (Late time points) 31 22
HOMA IR - females (Late time points) 10 5
Tanner score - males 33 27
Tanner score - females 38 27

Table 1. Size of A, B clusters obtained by Consensus Clustering for the HOMA IR and Tanner score time 
profiles.
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levels of separation by chance. We first summarized the distance between curves by adding the squares of the 
distance at each time point (equivalent to the square of the Euclidean distance), and we then derived an empirical 
distribution of values of this aggregated sum by repeatedly partitioning the subjects at random and computing 
the resulting sum of squares (n = 10000 permutations). The results are reported in Table 2, showing a separation 
significantly different from a random effect in all cases except one.

Discovery of associations between primary and secondary variables: HOMA IR-based clustering.  
The ultimate purpose of the clustering was to identify significant correlations between risk groups and secondary 
variables – metabolites, clinical and anthropometric variables. Specifically, a first question we sought to answer 
was whether any of the secondary variables were significantly different between groups A and B at any age. A 
second question of interest was whether the whole time profile of any secondary variable is significantly different 
between groups A and B.

Point-wise comparison. In order to answer the first question, a comparison was performed between the values of 
each secondary variable for subjects in group A and group B, separately for each time point, where A and B were 
the groups of subjects resulting from the clustering of temporal profiles of the primary variable referred to in the 
figure (the assignment of the name A or B to each group is arbitrary). The results of the comparison are visualized 
in the form of a pair of heatmaps (Figs 7 and 8, Figures S1–S6). In each figure, the leftmost heatmap reports the 
results of the statistical tests, and the heatmap on the right illustrates the differences in the average values of the 
secondary variables.

In more detail, the values in the leftmost heatmap were computed using a nonparametric test (Matt-Whitney 
U test) for each of the secondary variables (one variable per row, one time point per column). A summary p-value 

Figure 6. Average trajectories computed for the A, B clusters of Clinical variable HOMAIR temporal profiles 
(late time points). Top: female subjects (n = 10 and n = 5 for group A, B respectively). Bottom: male subjects 
subjects (n = 31 and n = 22 for group A, B respectively). Average curves for clinical variables HOMAIR (a,e), 
HOMA2B (b,f), Insulin (c,g), Glucose (d,h) with standard deviation values represented as error bars. Average 
curves corresponding to consensus cluster A are in red, the ones from consensus cluster B are in blue.

HOMA IR HOMA.2B Glucose Insulin
Females 0.003 0.015 0.261 0.004
Males 0.0001 <0.0001 <0.0001 0.0001

Table 2. Likelihood of observing a distance between average curves as large (or larger) as the one obtained by 
CClust over n = 10000 random partitions of the subjects in the 2-way clustering of HOMA IR temporal profiles 
(late time points). An average curve for each of the n = 2 clusters was obtained for each one of the random 
partitions, and for each one of the four clinical variables shown, and the Euclidean distance between curves was 
computed. The values in the table indicate the percentage of random partitions producing a distance at least as 
large as the one measured for the CClust clusters.
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in the last column of the heatmap was computed using Fisher’s method. For example, the left heatmap of Fig. 7 
shows that two groups resulting from the clustering of HOMA IR temporal profiles of male subjects (late time 
points) had average Creatine values that were significantly different only at age 16 (p < 0.05), but the difference 
remained close to significant at other ages, with p < 0.1 for each of the two-group comparisons at ages 7, 8, 9, 12, 
14, 15 and 16. Overall, the cumulative evidence across the whole age range favoring a difference between the two 
groups reached statistical significance as shown by the combined Fisher p-value.

The values in the rightmost heatmap were computed as follows: values for a certain variable were transformed 
into z-scores separately for each year (i.e. standardized to 0 mean and standard deviation of 1 considering all sub-
jects per year), then the difference between the average z-score of group A minus the average of group B for each 
year was computed and represented as a color shade. A difference of 1 or −1 indicates that there was a difference 
of one standard deviation between the two clusters means. Thus for example the right side of Fig. 7 shows that 
average Creatine was higher in group A, and that the difference reached one standard deviation at ages 9 and 14.

We note that the p-values reported for this comparison were not corrected for multiple testing. None of the 
variables reached statistical significance when FDR correction was applied (Figure S7); this is possibly due to the 
limited number of subjects in each group. This, together with the exploratory nature of this work, makes us con-
sider these p-values only as indications of significance.

Time profile comparison. In order to answer the second question, for each secondary variable we first sum-
marized the time profiles of the variable separately for each of groups A and B, and then performed a A-vs-B 
comparison of the resulting summary profiles. We opted for a simple summarization based on the average profile, 
defined as the sequence of group averages at each time point. The main advantage of summarization by simple 
average over more sophisticated modelling approaches, such as mixed effect models, is that this makes no diffi-
cult to verify assumptions on the data (for example, in terms of presumed linearity of the time evolution), thus 
resulting in a broader applicability of this newly proposed method. For the subsequent comparison step, after 

Figure 7. Left: heatmap of significance of difference between metabolic/clinic variable means between the 
two groups of samples (clustering according to HOMA2.IR, late time points, males only), Right: heatmap of 
difference between the normalized averages (z-scores) of the two clusters. Legend: TennSc: Tanner score, RQ; 
respiratory quotient; ch_wtsds, child body weight z score; ch_wcsd, child waist circumference z score; ch_
glucose, child glucose; ch_gest: child gestational age; ch_bwt_sds, child birth weight z score, TBLH, total body 
less head.
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computing an average profile of each group for each secondary variable we then measured the Euclidean distance 
between the average curves. To obtain a statistical significance assessment of the measured distances, for each 
variable we estimated how likely it was to obtain the observed distance value purely by chance, by performing a 
random permutation based analysis. The resulting p-values are reported in Table 3; in the table we also report the 
FDR-corrected p-values.

Discovery of associations between primary and secondary variables: Tanner score-based clus-
tering. We repeated the above procedure on the dataset of 129 subjects for which we had metabolite meas-
urements. This time we used the Tanner score temporal profiles as primary variables, and we also compared the 
results of the 2-way and 3-way clusterings, obtained forcing the number of desired groups to 2 and 3 respectively. 
Both 2-way and 3-way clustering produced well defined subject groups (Fig. 9), that could be interpreted as 
“early” and “late” stages in the former, and “early”, “intermediate” and “late” stage in the latter.

To select the best solutions generated by 2-way and 3-way CClust clusterings we compared the significance 
of the separation of average clinical variables values between the two cases. Using random permutation-based 
analysis, we obtained the empirical distribution of the Euclidean distance between the average curves, with one 
average curve computed for each cluster; we repeated the analysis for the 2-way and the 3-way clusterings, and for 
each one of the seven representative clinical variables. The resulting p-values unambiguously pointed to the 2-way 
solution as the one most distant from the random distribution of average curve separation values (Tables 4 and 
5). We therefore performed the remainder of the analysis on the 2-way clustering, producing the table of random 
permutation p-values (Table 6), and the heatmaps of Mann-Whitney p-values (not corrected for multiple testing) 
and average z-score differences (Figs 10 and 11). None of the variables reached statistical significance when FDR 
correction was applied (Figure S7).

Figure 8. Left: heatmap of significance of difference between metabolic/clinic variable means between the 
two groups of samples (clustering according to HOMA2.IR, late time points, females only), Right: heatmap 
of difference between the normalized averages (z-scores) of the two clusters. Legend: TennSc: Tanner score, 
RQ; respiratory quotient; ch_wtsds, child body weight z score; ch_wcsd, child waist circumference z score; 
ch_glucose, child glucose; ch_gest: child gestational age; ch_bwt_sds, child birth weight z score, TBLH, total 
body less head.
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Discussion
In this work we tackle the problem of finding relevant associations between the temporal profiles of a set of quan-
titative variables (clinical, anthropometric, metabolic) measured at yearly intervals between the ages of 5 and 16 
for a cohort of subjects. We introduce a notion of variable prioritization by requiring the user to select a variable 
of particular interest (called primary variables), typically one directly associated to a phenotype under study. If 

Metabolite Female p-val Females FDR Males p-val Males FDR
L-asparagine 0.00775 0.07958 0.01426 0.04089
L-leucine 0.09576 0.09789 0.03131 0.04892
L-isoleucine 0.0385 0.09031 0.04877 0.05904
L-valine 0.0878 0.09393 0.00222 0.02272
2-ketobutyric acid 0.06736 0.09031 0.03037 0.04892
3-methyl-2-oxovaleric acid 0.03144 0.09031 0.03074 0.04892
Alpha-ketoisovaleric acid 0.08719 0.09393 0.012 0.03943
Unassigned metabolite signal 0.06129 0.09031 0.04616 0.05739
3-hydroxybutyric acid 0.07808 0.09031 0.00007 0.00322
L-lactic acid (1H signal at 1.20 ppm) 0.0562 0.09031 0.09473 0.09473
L-alanine 0.01189 0.07958 0.08229 0.08603
VLDL 1H signal 1 0.02936 0.09031 0.03391 0.04892
VLDL 1H signal 2 0.04105 0.09031 0.05111 0.05921
VLDL 1H signal 3 0.04694 0.09031 0.01778 0.04089
L-arginine 0.07832 0.09031 0.01047 0.03705
L-lysine 0.04167 0.09031 0.00043 0.0069
Acetic acid 0.01209 0.07958 0.00247 0.02272
N-acetyl-glycoproteins 0.01346 0.07958 0.01697 0.04089
O-acetyl-glycoproteins 0.02252 0.09031 0.05467 0.05988
Acetoacetic acid 0.07679 0.09031 0.03403 0.04892
Glutamic acid 0.09331 0.09755 0.04088 0.05429
Glutamine 0.04983 0.09031 0.0059 0.03016
Citric acid 0.06048 0.09031 0.04198 0.05429
Polyunsaturated fatty acid signal 1 0.05083 0.09031 0.07081 0.07575
Polyunsaturated fatty acid signal 2 0.01353 0.07958 0.01411 0.04089
Trimethylamine 0.03381 0.09031 0.02378 0.04591
Dimethylglycine 0.00834 0.07958 0.02318 0.04591
Creatine 0.01691 0.08643 0.00045 0.0069
Citrulline 0.053 0.09031 0.04249 0.05429
Phospholipides 0.05923 0.09031 0.03983 0.05429
Trimethylamine.N.oxide 0.01064 0.07958 0.02443 0.04591
Taurine 0.01384 0.07958 0.05264 0.05921
L-proline 0.05202 0.09031 0.02013 0.04409
Methanol 0.07076 0.09031 0.01753 0.04089
Glycine 0.0557 0.09031 0.03255 0.04892
L-serine 0.06438 0.09031 0.00799 0.03341
Creatinine 0.08476 0.09393 0.0078 0.03341
L-lactic acid (1H signal at 4.14 ppm) 0.1 0.1 0.09382 0.09473
L-threonine 0.03829 0.09031 0.01764 0.04089
Unsaturated fatty acid signal 1 0.03264 0.09031 0.0043 0.02826
Unsaturated fatty acid signal 2 0.05561 0.09031 0.02495 0.04591
L-histidine 0.02047 0.09031 0.0032 0.02453
L-tyrosine 0.06184 0.09031 0.05277 0.05921
Formic acid 0.07178 0.09031 0.00954 0.03657
L-phenylalanine 0.06624 0.09031 0.00527 0.03016
Glucose 0.07853 0.09031 0.03085 0.04892

Table 3. Empirical p-values obtained by random permutations using HOMA IR as primary variable and 
metabolites as secondary ones. Numbers shown indicate the likelihood of observing a distance between the 
reported metabolite average curves over n = 10000 random partitions which is as large (or larger) as the 
one obtained by 2-way clustering of HOMA IR profiles using our algorithm. Asterisks mark the statistically 
significant values (p < 0.05).
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the user is interested in more than on phenotype, the workflow can be repeated for each one of the associated 
variables. As an example, in the EarlyBird study we selected HOMA IR and Tanner score as proxies, respectively, 
for insulin resistance and developmental phases in childhood and puberty. The prioritization of a variable ena-
bles the partition of the subjects into groups homogeneous with respect to the temporal evolution of the related 

Figure 9. Comparison of Tanner score time profile clustering performed imposing either a 2-cluster solution or 
a 3-cluster solution. (Top row) 2-way clustering: (a) males, (b) females. (Bottom row) 3-way clustering: (c) males, 
(d) females. The clustering were obtained with Mfuzz: dark colors represent the group membership, and light 
blue colors show the trajectories associated to low values of membership according to the fuzzy setting of the 
algorithm. Mfuzz output is shown here in order to account for the trajectories of uncertain classification.

BMI z score Skin fold wcsd Glucose Insulin HOMA2 IR HOMA 2B
females <0.001 0.02 0.01 0.29 0.01 0.02 0.02
males 0.27 0.12 0.36 0.04 0.07 0.05 0.27

Table 4. Likelihood of observing a distance between average curves at least as large as the one obtained by 
CClust over n = 10000 random partitions of the subjects in the 2-way clustering of Tanner score temporal 
profiles. An average curve for each of the n = 2 clusters was obtained for each one of the random partitions, and 
for each one of the seven clinical variables shown, and the Euclidean distance between curves was computed. 
The values in the table indicate the percentage of random partitions producing a distance at least as large as the 
one measured for the CClust clusters. Legend: wcsd: waist circumference z score.
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phenotype, and focuses the subsequent analysis on the discovery of associations between such phenotype and the 
remaining variables.

Our proposed approach solves a number of challenges that a user can expect to encounter in the imple-
mentation of this workflow. We describe a method to remedy the lack of agreement between existing clustering 
strategies while making use of existing results in the field. We term this method “consensus clustering”, because 
it is based on the identification of the two algorithms providing the largest overlap between partitions; the initial 
pool of algorithms comprises conceptually different approaches, in order to make the consensus non-trivial and 
to ensure it reflects the intrinsic structure of data.

A challenge that is relatively common in analyses encompassing a large numbers of subjects and measure-
ments carried over several years was the non-uniform data coverage of subjects between different types of data 
– in other words, not all clinical, metabolic and anthropometric variables were available for every subject. The 
solution we used was to personalize the analysis to the range of ages and individuals available for each data type. 
Similarly, we decided to restrict our analysis to subjects with complete time series for the primary variables, 
which sacrificed some of the available data values but removed any concern about possible artifacts introduced 
by imputation techniques.

Another challenge was that none of the metabolic or clinical variables reached statistical significance when 
the subgroups were contrasted in a timepoint-wise manner, possibly due to the limited number of subjects. 
Interestingly, however, when we contrasted the whole time profiles of the different subgroups we obtained sig-
nificant differences for several metabolic variables between HOMA IR subgroups (male subjects only), and for 
anthropometric variables between Tanner score subgroups (female subjects only). The uncorrected point-wise 
p-values reported in the heatmaps are still a valuable result, useful for prioritizing clinical variables and metabolic 
species in view of a possible follow-up study.

For instance, the application of our methodology to study HOMA IR trajectories in boys has revealed a limited 
contribution of anthropometric parameters to IR clinical behaviour. The approach also highlighted some serum 
metabolic patterns related to amino acid metabolism (histidine, glutamine, lysine, valine), central energy metab-
olism (creatine) and ketogenesis (acetate, 3D-hydroxybutyrate). Some of the metabolite patterns are consistent 
with previous findings, including the positive association of branch chained amino acids with IR10 and decreased 
ketogenesis in obese prepubertal children11. Since susceptibility to pre-diabetes and obesity later in life is influ-
enced by various factors during childhood growth and puberty, our approach provides us with tools to explore 
the interactions between pubertal staging, metabolic functions and IR. One key factor currently being studied is 
excess of body weight during childhood which can also influence pubertal development and IR, through influ-
ences on timing of pubertal onset and pubertal hormonal levels12. This is exemplified here as well, through the 
very strong and gender-specific patterns of anthropometric and metabolites associated with pubertal staging. 
Such data will provide important opportunities to examine the molecular processes associated with adiposity-IR 
interactions during the complex period of puberty and adolescence.

In conclusion, we show that our consensus-based method is able to cluster the study subjects into groups pos-
sessing desirable properties. First, the groups are robust with respect to the method, in other words their grouping 
reflects the consensus among different conceptual approaches to clustering. Second, we show that the groups we 
obtained produced statistically significant separation between most of the main clinical variables, giving confi-
dence that the risk groups we identified may have real biological correlates. We then proceeded to identify the 
metabolic, anthropometric and remaining clinical variables that correlated with the risk groups, and were able to 
discuss their biological relevance.

Materials and Methods
Study Population. The EarlyBird Diabetes Study incorporates a 1995/1996 birth cohort recruited in 
2000/2001 when the children were 5 years old (307 children, 170 boys)13. The collection of data from the EarlyBird 
cohort is composed of several clinical and anthropometric variables measured on an annual basis from the age of 
5 to the age of 16. Details on the measurement methods are reported in Supplementary Materials and Methods.

Statistics. We performed all statistical calculations in the R language ver. 3.3.214. Heatmaps were created in 
R using the RColorBrewer ver 1.1–215, Lattice ver. 0.20–3416, GridExtra ver. 2.2.117, and Grid ver. 0.7–414 pack-
ages. The values in the leftmost heatmap were computed using a Matt-Whitney U test for each of the secondary 
variables (one per row); the test was performed between the values for subjects in the A and B groups, where A 
and B were the group of subjects resulting from the clustering (performed using CClust) of temporal profiles of 
the primary variable to which the figure refers to. The summary p-value in the last column of the heatmap was 
computed using the CombinePValue package18. The values in the rightmost heatmap were computed as follows: 

bmisd skf wcsd glucose Insulin HOMA2.IR HOMA.2B
females 0.01 0.12 0.04 0.24 0.05 0.04 0.07
males 0.64 0.58 0.91 0.22 0.26 0.24 0.5

Table 5. Likelihood of observing a distance between average curves at least as large as the one obtained by 
CClust over n = 10000 random partitions of the subjects in the 3-way clustering of Tanner score temporal 
profiles. An average curve for each of the n = 3 clusters was obtained for each one of the random partitions, and 
for each one of the seven clinical variables shown, and the Euclidean distance between curves was computed. 
The values in the table indicate the percentage of random partitions producing a distance at least as large as the 
one measured for the CClust clusters.
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Female p-val Females FDR Males p-val Males FDR
(a) - Metabolites
L-asparagine 0.0692 0.31832 0.0111 0.12683
L-leucine 0.3119 0.56828 0.747 0.85905
L-isoleucine 0.3596 0.57881 0.7187 0.85905
L-valine 0.4512 0.6486 0.6727 0.83633
2-ketobutyric acid 0.016 0.2622 0.4674 0.65153
3-methyl-2-oxovaleric acid 0.3212 0.56828 0.7453 0.85905
Alpha-ketoisovaleric acid 0.6416 0.7027 0.933 0.933
Unassigned metabolite signal 0.8203 0.8203 0.8179 0.90449
3-hydroxybutyric acid 0.6324 0.7027 0.3558 0.56437
L-lactic acid (1H signal at 1.20 ppm) 0.3126 0.56828 0.5923 0.77845
L-alanine 0.1675 0.47354 0.4298 0.61784
VLDL 1H signal 1 0.032 0.31832 0.0869 0.23514
VLDL 1H signal 2 0.1514 0.47354 0.2455 0.43435
VLDL 1H signal 3 0.2034 0.478 0.0262 0.13391
L-arginine 0.0688 0.31832 0.3459 0.56437
L-lysine 0.0595 0.31832 0.0565 0.184
Acetic acid 0.0974 0.34465 0.0671 0.19291
N-acetyl-glycoproteins 0.2387 0.478 0.8455 0.90449
O-acetyl-glycoproteins 0.1853 0.47354 0.1084 0.27702
Acetoacetic acid 0.3649 0.57881 0.9006 0.92061
Glutamic acid 0.4827 0.64926 0.0557 0.184
Glutamine 0.6745 0.72156 0.0193 0.12683
Citric acid 0.3402 0.57881 0.06 0.184
Polyunsaturated fatty acid signal 1 0.2254 0.478 0.2706 0.46102
Polyunsaturated fatty acid signal 2 0.7596 0.79413 0.8657 0.90505
Trimethylamine 0.0117 0.2622 0.0037 0.0644
Dimethylglycine 0.0844 0.33695 0.0178 0.12683
Creatine 0.0657 0.31832 0.2041 0.4082
Citrulline 0.5608 0.69721 0.3891 0.57737
Phospholipides 0.1563 0.47354 0.6454 0.82468
Trimethylamine.N.oxide 0.7924 0.81001 0.0184 0.12683
Taurine 0.2181 0.478 0.2291 0.42909
L-proline 0.4909 0.64926 0.038 0.1748
Methanol 0.494 0.64926 0.1474 0.3231
Glycine 0.4158 0.61699 0.0427 0.17856
L-serine 0.239 0.478 0.5463 0.73911
Creatinine 0.3855 0.5911 0.0236 0.13391
L-lactic acid (1H signal at 4.14 ppm) 0.6255 0.7027 0.8442 0.90449
L-threonine 0.0447 0.31832 0.2332 0.42909
Unsaturated fatty acid signal 1 0.5764 0.69775 0.1326 0.32103
Unsaturated fatty acid signal 2 0.1786 0.47354 0.0579 0.184
L-histidine 0.0879 0.33695 0.0015 0.0644
L-tyrosine 0.5223 0.66738 0.1475 0.3231
Formic acid 0.0171 0.2622 0.0042 0.0644
L-phenylalanine 0.0421 0.31832 0.1997 0.4082
Glucose 0.6299 0.7027 0.3709 0.56871
(b) - Anthropometric variables
Bone mass 0.0019 0.00585 0.5863 0.5688
Fat mass 0.02 0.0207 0.0948 0.5688
Lean mass 0.0027 0.00585 0.8486 0.5688
Bone mass (total body less head) 0.0031 0.00585 0.604 0.5688
Fat mass (total body less head) 0.0207 0.0207 0.0948 0.5688
Lean mass (total body less head) 0.0039 0.00585 0.8845 0.8845

Table 6. Empirical p-values obtained by random permutations using Tanner score as primary variable and 
metabolites as secondary ones. Numbers shown indicate the likelihood of observing a distance between the 
reported metabolite average curves over n = 10000 random partitions which is as large (or larger) as the one 
obtained by 2-way clustering of Tanner score profiles using our algorithm. Asterisks mark the statistically 
significant values (p < 0.05). (a) Metabolites. (b) Anthropometric variables. Anthropometric variables were 
analyzed separately because they were available for a range of time points different than the other variables.
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values for a certain variable were transformed into z-scores separately for each year (i.e. standardized to 0 mean 
and standard deviation of 1 considering all subjects per year), then the difference between the average z-score of 
group A minus the average of group B for each year was computed and represented as a color shade.

Clustering. We used the following R packages of clustering algorithms for our analysis: MFuzz ver. 2.34.00, 
NBClust ver. 3.0, ssClust ver. 3.0, TSclust ver 1.2.3, Longclust ver 1.2. A comparison of the results of the applica-
tion of these algorithms to the HOMA IR time profiles is reported in Fig. 4 (graphs of clustered time profiles) and 
in Supplementary Table ST1 (size of clusters). Additional details on the clustering methods employed in this study 
are reported in Supplementary Materials and Methods.

Measure of overlap. The measure we used for quantify the degree of overlap (consistency) between every pair 
of methods was the Adjusted Rand Index, the corrected for chance version of the Rand index. Though the Rand 
index may only assume a value between 0 and 1, the Adjusted Rand index can assume negative values if the index 
is less than the expected index. Given a set of n elements S and two partitions X and Y the Rand index is a fraction 
in which at the numerator there is the number of agreements between partitions X and Y and at the denominator 
the sum of number of agreements between partitions X and Y and the number of disagreements between parti-
tions X and Y.

Accordance. We conducted the study in accordance with the ethics guidelines of the Declaration of Helsinki II.

Approval. Ethics approval was granted by the Plymouth Local Research Ethics Committee (1999).

Figure 10. Left: heatmap of significance of difference between metabolic variable means between the two 
groups of samples (clustering by CClust according to Tanner score, all time points, females only), Right: 
heatmap of difference between the normalized averages (z-scores) of the two clusters. White boxes are fill-ins 
for the anthropometric variables missing time points. Legend: TennSc: Tanner score, RQ; respiratory quotient; 
ch_wtsds, child body weight z score; ch_wcsd, child waist circumference z score; ch_glucose, child glucose; 
ch_gest: child gestational age; ch_bwt_sds, child birth weight z score, TBLH, total body less head.
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Informed consent. Parents gave written consent and children verbal assent.

Data sharing statement. Data may be available upon request to Francois-Pierre Martin and Jonathan 
Pinkney, subject in particular, to ethical and privacy considerations.
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