Identification of limiting case between DBA and SBDBA (CL break area sensitivity): A new model for the boron injection system

Gonzalez Gonzalez, R. (San Piero A Grado Nuclear Research Group GRNSPG, Univ. of Pisa, Via Livornese 1291-56122, San Piero a Grado - Pisa (Italy)); Petruzzi, A. (San Piero A Grade Nuclear Research Group GRNSPG, Univ. of Pisa, Via Livornese 1291-56122, San Piero a Grado - Pisa (Italy)); D'Auria, F. (San Piero A Grado Nuclear Research Group GRNSPG, Univ. of Pisa, Via Livornese 1291-56122, San Piero a Grado - Pisa (Italy)); Mazzantini, O. (Nucleo-electrica Argentina Sociedad Anonima NA-SA, Buenos Aires (Argentina))

American Nuclear Society, Inc., 555 N. Kensington Avenue, La Grange Park, Illinois 60526 (United States)

Atucha-2 is a Siemens-designed PHWR reactor under construction in the Republic of Argentina. Its geometrical complexity and (e.g., oblique Control Rods, Positive Void coefficient) required a developed and validated complex three dimensional (3D) neutron kinetics (NK) coupled thermal hydraulic (TH) model. Reactor shut-down is obtained by oblique CRs and, during accidental conditions, by an emergency shut-down system (JDJ) injecting a highly concentrated boron solution (boron clouds) in the moderator tank, the boron clouds reconstruction is obtained using a CFD (CFX) code calculation. A complete LBLOCA calculation implies the application of the RELAP5-3D system code. Within the framework of the third Agreement NA-SA - Univ. of Pisa/ a new RELAP5-3D control system for the boron injection system was developed and implemented in the validated coupled RELAP5-3D/NESTLE model of the Atucha 2 NPP. The aim of this activity is to find out the limiting case (maximum break area size) for the Peak Cladding Temperature for LOCAs under fixed boundary conditions. (authors)

Primary Subject
GENERAL STUDIES OF NUCLEAR REACTORS (S22)

Record Type
Book

Language
English

Descriptors (DEI)
ARGENTINA, ATUCHA-2 REACTOR, BORON, BOUNDARY CONDITIONS, CLADDING, COMPUTER GRAPHICS, CONTROL ELEMENTS, CONTROL SYSTEMS, HEAVY WATER, KINETICS, LOSS OF COOLANT, MODERATORS, NEUTRONS, NUCLEAR INDUSTRY, NUCLEAR POWER PLANTS, SAFETY INJECTION, SENSITIVITY, THERMAL HYDRAULICS, THREE-DIMENSIONAL CALCULATIONS, VOID COEFFICIENT

Descriptors (DEC)
ACCIDENTS, BARYONS, DEPOSITION, DEUTERIUM COMPOUNDS, DEVELOPING COUNTRIES, ELEMENTARY PARTICLES, ELEMENTS, FERMIONS, FLUID MECHANICS, HADRONS, HEAVY WATER COOLED REACTORS, HEAVY WATER MODERATED REACTORS, HYDRAULICS, HYDROGEN COMPOUNDS, INDUSTRY, LATIN AMERICA, MECHANICS, NATURAL URANIUM REACTORS, NUCLEAR FACILITIES, NUCLEONS, OXYGEN COMPOUNDS, PHWR TYPE REACTORS, POWER PLANTS, POWER REACTORS, PRESSURE TUBE REACTORS, REACTIVITY COEFFICIENTS, REACTOR ACCIDENTS, REACTOR COMPONENTS, REACTORS, SEMIMETALS, SOUTH AMERICA, SURFACE COATING, THERMAL POWER PLANTS, THERMAL REACTORS, WATER

INIS Volume
44

INIS Issue
25