BACCIU, DAVIDE Statistiche
BACCIU, DAVIDE
DIPARTIMENTO DI INFORMATICA
Bayesian Mixtures of Hidden Tree Markov Models for Structured Data Clustering
In corso di stampa Bacciu, Davide; Castellana, Daniele
Deep Graph Networks for Drug Repurposing with Multi-Protein Targets
2023-01-01 Bacciu, Davide; Errica, Federico; Gravina, Alessio; Madeddu, Lorenzo; Podda, Marco; Stilo, Giovanni
Modeling Mood Polarity and Declaration Occurrence by Neural Temporal Point Processes
2023-01-01 Bacciu, Davide; Morelli, Davide; Pandelea, Vlad
Safety and Robustness for Deep Neural Networks: An Automotive Use Case
2023-01-01 Bacciu, Davide; Carta, Antonio; Gallicchio, Claudio; Schmittner, Christoph
A causal learning framework for the analysis and interpretation of COVID-19 clinical data
2022-01-01 Ferrari, Elisa; Gargani, Luna; Barbieri, Greta; Ghiadoni, Lorenzo; Faita, Francesco; Bacciu, Davide
A Systematic Review of Wi-Fi and Machine Learning Integration with Topic Modeling Techniques
2022-01-01 Atzeni, D.; Bacciu, D.; Mazzei, D.; Prencipe, G.
A tensor framework for learning in structured domains
2022-01-01 Castellana, D.; Bacciu, D.
AI-as-a-Service Toolkit for Human-Centered Intelligence in Autonomous Driving
2022-01-01 De Caro, V.; Bano, S.; Machumilane, A.; Gotta, A.; Cassara, P.; Carta, A.; Semola, R.; Sardianos, C.; Chronis, C.; Varlamis, I.; Tserpes, K.; Lomonaco, V.; Gallicchio, C.; Bacciu, D.
An Empirical Verification of Wide Networks Theory
2022-01-01 Balboni, Dario; Bacciu, Davide
Avalanche RL: A Continual Reinforcement Learning Library
2022-01-01 Lucchesi, N.; Carta, A.; Lomonaco, V.; Bacciu, D.
Continual Incremental Language Learning for Neural Machine Translation
2022-01-01 Resta, Michele; Bacciu, Davide
Continual Learning for Human State Monitoring
2022-01-01 Matteoni, Federico; Cossu, Andrea; Gallicchio, Claudio; Lomonaco, Vincenzo; Bacciu, Davide
Controlling astrocyte-mediated synaptic pruning signals for schizophrenia drug repurposing with deep graph networks
2022-01-01 Gravina, Alessio; Wilson, Jennifer L; Bacciu, Davide; Grimes, Kevin J; Priami, Corrado
Deep Features for CBIR with Scarce Data using Hebbian Learning
2022-01-01 Lagani, G.; Bacciu, D.; Gallicchio, C.; Falchi, F.; Gennaro, C.; Amato, G.
Deep Reinforcement Learning Quantum Control on IBMQ Platforms and Qiskit Pulse
2022-01-01 Semola, R; Moro, L; Bacciu, D; Prati, E
Ex-Model: Continual Learning from a Stream of Trained Models
2022-01-01 Carta, A.; Cossu, A.; Lomonaco, V.; Bacciu, D.
Explaining Deep Graph Networks via Input Perturbation
2022-01-01 Bacciu, Davide; Numeroso, Danilo
FADER: Fast adversarial example rejection
2022-01-01 Crecchi, F.; Melis, M.; Sotgiu, A.; Bacciu, D.; Biggio, B.
Federated Adaptation of Reservoirs via Intrinsic Plasticity
2022-01-01 De Caro, Valerio; Gallicchio, Claudio; Bacciu, Davide
Graph Neural Network for Context-Aware Recommendation
2022-01-01 Sattar, A; Bacciu, D
Titolo | Data di pubblicazione | Autore(i) | File |
---|---|---|---|
Bayesian Mixtures of Hidden Tree Markov Models for Structured Data Clustering | In corso di stampa | Bacciu, Davide; Castellana, Daniele | |
Deep Graph Networks for Drug Repurposing with Multi-Protein Targets | 1-gen-2023 | Bacciu, Davide; Errica, Federico; Gravina, Alessio; Madeddu, Lorenzo; Podda, Marco; Stilo, Giovanni | |
Modeling Mood Polarity and Declaration Occurrence by Neural Temporal Point Processes | 1-gen-2023 | Bacciu, Davide; Morelli, Davide; Pandelea, Vlad | |
Safety and Robustness for Deep Neural Networks: An Automotive Use Case | 1-gen-2023 | Bacciu, Davide; Carta, Antonio; Gallicchio, Claudio; Schmittner, Christoph | |
A causal learning framework for the analysis and interpretation of COVID-19 clinical data | 1-gen-2022 | Ferrari, Elisa; Gargani, Luna; Barbieri, Greta; Ghiadoni, Lorenzo; Faita, Francesco; Bacciu, Davide | |
A Systematic Review of Wi-Fi and Machine Learning Integration with Topic Modeling Techniques | 1-gen-2022 | Atzeni, D.; Bacciu, D.; Mazzei, D.; Prencipe, G. | |
A tensor framework for learning in structured domains | 1-gen-2022 | Castellana, D.; Bacciu, D. | |
AI-as-a-Service Toolkit for Human-Centered Intelligence in Autonomous Driving | 1-gen-2022 | De Caro, V.; Bano, S.; Machumilane, A.; Gotta, A.; Cassara, P.; Carta, A.; Semola, R.; Sardianos, C.; Chronis, C.; Varlamis, I.; Tserpes, K.; Lomonaco, V.; Gallicchio, C.; Bacciu, D. | |
An Empirical Verification of Wide Networks Theory | 1-gen-2022 | Balboni, Dario; Bacciu, Davide | |
Avalanche RL: A Continual Reinforcement Learning Library | 1-gen-2022 | Lucchesi, N.; Carta, A.; Lomonaco, V.; Bacciu, D. | |
Continual Incremental Language Learning for Neural Machine Translation | 1-gen-2022 | Resta, Michele; Bacciu, Davide | |
Continual Learning for Human State Monitoring | 1-gen-2022 | Matteoni, Federico; Cossu, Andrea; Gallicchio, Claudio; Lomonaco, Vincenzo; Bacciu, Davide | |
Controlling astrocyte-mediated synaptic pruning signals for schizophrenia drug repurposing with deep graph networks | 1-gen-2022 | Gravina, Alessio; Wilson, Jennifer L; Bacciu, Davide; Grimes, Kevin J; Priami, Corrado | |
Deep Features for CBIR with Scarce Data using Hebbian Learning | 1-gen-2022 | Lagani, G.; Bacciu, D.; Gallicchio, C.; Falchi, F.; Gennaro, C.; Amato, G. | |
Deep Reinforcement Learning Quantum Control on IBMQ Platforms and Qiskit Pulse | 1-gen-2022 | Semola, R; Moro, L; Bacciu, D; Prati, E | |
Ex-Model: Continual Learning from a Stream of Trained Models | 1-gen-2022 | Carta, A.; Cossu, A.; Lomonaco, V.; Bacciu, D. | |
Explaining Deep Graph Networks via Input Perturbation | 1-gen-2022 | Bacciu, Davide; Numeroso, Danilo | |
FADER: Fast adversarial example rejection | 1-gen-2022 | Crecchi, F.; Melis, M.; Sotgiu, A.; Bacciu, D.; Biggio, B. | |
Federated Adaptation of Reservoirs via Intrinsic Plasticity | 1-gen-2022 | De Caro, Valerio; Gallicchio, Claudio; Bacciu, Davide | |
Graph Neural Network for Context-Aware Recommendation | 1-gen-2022 | Sattar, A; Bacciu, D |