Content-Based Image Retrieval in large archives through the use of visual features has become a very attractive research topic in recent years. The cause of this strong impulse in this area of research is certainly to be attributed to the use of Convolutional Neural Network (CNN) activations as features and their outstanding performance. However, practically all the available image retrieval systems are implemented in main memory, limiting their applicability and preventing their usage in big-data applications. In this paper, we propose to transform CNN features into textual representations and index them with the well-known full-text retrieval engine Elasticsearch. We validate our approach on a novel CNN feature, namely Regional Maximum Activations of Convolutions. A preliminary experimental evaluation, conducted on the standard benchmark INRIA Holidays, shows the effectiveness and efficiency of the proposed approach and how it compares to state-of-the-art main-memory indexes.

Large-scale image retrieval with elasticsearch

Bolettieri P.;Carrara F.;
2018-01-01

Abstract

Content-Based Image Retrieval in large archives through the use of visual features has become a very attractive research topic in recent years. The cause of this strong impulse in this area of research is certainly to be attributed to the use of Convolutional Neural Network (CNN) activations as features and their outstanding performance. However, practically all the available image retrieval systems are implemented in main memory, limiting their applicability and preventing their usage in big-data applications. In this paper, we propose to transform CNN features into textual representations and index them with the well-known full-text retrieval engine Elasticsearch. We validate our approach on a novel CNN feature, namely Regional Maximum Activations of Convolutions. A preliminary experimental evaluation, conducted on the standard benchmark INRIA Holidays, shows the effectiveness and efficiency of the proposed approach and how it compares to state-of-the-art main-memory indexes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1001447
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact