This paper presents an approach for real-time car parking occupancy detection that uses a Convolutional Neural Network (CNN) classifier running on-board of a smart camera with limited resources. Experiments show that our technique is very effective and robust to light condition changes, presence of shadows, and partial occlusions. The detection is reliable, even when tests are performed using images captured from a viewpoint different than the viewpoint used for training. In addition, it also demonstrates its robustness when training and tests are executed on different parking lots. We have tested and compared our solution against state of the art techniques, using a reference benchmark for parking occupancy detection. We have also produced and made publicly available an additional dataset that contains images of the parking lot taken from different viewpoints and in different days with different light conditions. The dataset captures occlusion and shadows that might disturb the classification of the parking spaces status.

Car parking occupancy detection using smart camera networks and Deep Learning

Carrara F.;Vairo C.
2016-01-01

Abstract

This paper presents an approach for real-time car parking occupancy detection that uses a Convolutional Neural Network (CNN) classifier running on-board of a smart camera with limited resources. Experiments show that our technique is very effective and robust to light condition changes, presence of shadows, and partial occlusions. The detection is reliable, even when tests are performed using images captured from a viewpoint different than the viewpoint used for training. In addition, it also demonstrates its robustness when training and tests are executed on different parking lots. We have tested and compared our solution against state of the art techniques, using a reference benchmark for parking occupancy detection. We have also produced and made publicly available an additional dataset that contains images of the parking lot taken from different viewpoints and in different days with different light conditions. The dataset captures occlusion and shadows that might disturb the classification of the parking spaces status.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1001449
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 155
  • ???jsp.display-item.citation.isi??? ND
social impact