We developed a closed-loop model of cardiac stimulation using a finite element model of the whole-heart embedded in the torso that is proposed as an useful tool for pacemaker design and testing. The electrical activity of the cardiac tissue is reproduced with a bidomain model incorporated with the FitzHugh-Nagumo equations. The finite element model is developed in Comsol Multiphysics, both in two and in three dimensions and then exported in Simulink environment where the pacemaker algorithm is implemented. To validate the model, we chose a demand inhibited pacemaker, which stimulates the myocardium only if the intrinsic activity of the heart is not revealed, but every type of pacemaker can be simulated. The model generates a controlled spontaneous activation in the sinoatrial node and it is also able to reproduce realistic electrocardiographic signals and the effects that the stimulation has on them.

Heart Closed-Loop Model for the Assessment of Cardiac Pacing

Biasi, Niccoló;Tognetti, Alessandro
2019-01-01

Abstract

We developed a closed-loop model of cardiac stimulation using a finite element model of the whole-heart embedded in the torso that is proposed as an useful tool for pacemaker design and testing. The electrical activity of the cardiac tissue is reproduced with a bidomain model incorporated with the FitzHugh-Nagumo equations. The finite element model is developed in Comsol Multiphysics, both in two and in three dimensions and then exported in Simulink environment where the pacemaker algorithm is implemented. To validate the model, we chose a demand inhibited pacemaker, which stimulates the myocardium only if the intrinsic activity of the heart is not revealed, but every type of pacemaker can be simulated. The model generates a controlled spontaneous activation in the sinoatrial node and it is also able to reproduce realistic electrocardiographic signals and the effects that the stimulation has on them.
2019
978-3-030-31634-1
978-3-030-31635-8
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1008576
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact